1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
/* ----------------------------------------------------------------
* Programmer(s): David J. Gardner @ LLNL
* ----------------------------------------------------------------
* Based on ark_brusselator.c by Daniel R. Reynolds @ SMU
* ----------------------------------------------------------------
* SUNDIALS Copyright Start
* Copyright (c) 2002-2022, Lawrence Livermore National Security
* and Southern Methodist University.
* All rights reserved.
*
* See the top-level LICENSE and NOTICE files for details.
*
* SPDX-License-Identifier: BSD-3-Clause
* SUNDIALS Copyright End
* ----------------------------------------------------------------
* Example problem:
*
* The following test simulates a brusselator problem from chemical
* kinetics. This is an ODE system with 3 components, Y = [u,v,w],
* satisfying the equations,
*
* du/dt = a - (w+1)*u + v*u^2
* dv/dt = w*u - v*u^2
* dw/dt = (b-w)/ep - w*u
*
* for t in the interval [0.0, 2.0], with parameter values a=1,
* b=3.5, and ep=1.0e-2. The initial conditions Y0 = [u0,v0,w0] are
* u0=1.2, v0=3.1, and w0=3.
*
* This program solves the problem with the MRI stepper. Outputs are
* printed at equal intervals of 0.1 and run statistics are printed
* at the end.
* ----------------------------------------------------------------*/
/* Header files */
#include <stdio.h>
#include <math.h>
#include <arkode/arkode_mristep.h> /* prototypes for MRIStep fcts., consts */
#include <arkode/arkode_arkstep.h> /* prototypes for ARKStep fcts., consts */
#include <nvector/nvector_serial.h> /* serial N_Vector types, fcts., macros */
#include <sundials/sundials_types.h> /* def. of type 'realtype' */
#if defined(SUNDIALS_EXTENDED_PRECISION)
#define GSYM "Lg"
#define ESYM "Le"
#define FSYM "Lf"
#else
#define GSYM "g"
#define ESYM "e"
#define FSYM "f"
#endif
/* User-supplied functions called by the solver */
static int fs(realtype t, N_Vector y, N_Vector ydot, void *user_data);
static int ff(realtype t, N_Vector y, N_Vector ydot, void *user_data);
/* Private function to check function return values */
static int check_retval(void *returnvalue, const char *funcname, int opt);
/* Main Program */
int main()
{
/* general problem parameters */
realtype T0 = RCONST(0.0); /* initial time */
realtype Tf = RCONST(2.0); /* final time */
realtype dTout = RCONST(0.1); /* time between outputs */
sunindextype NEQ = 3; /* number of dependent vars. */
int Nt = (int) ceil(Tf/dTout); /* number of output times */
realtype hs = RCONST(0.025); /* slow step size */
realtype hf = RCONST(0.001); /* fast step size */
realtype a, b, ep; /* ODE parameters */
realtype u0, v0, w0; /* initial conditions */
realtype rdata[3]; /* user data */
/* general problem variables */
int retval; /* reusable error-checking flag */
N_Vector y = NULL; /* empty vector for storing solution */
void *arkode_mem = NULL; /* empty ARKode memory structure */
void *inner_arkode_mem = NULL; /* empty ARKode memory structure */
MRIStepInnerStepper inner_stepper = NULL; /* inner stepper */
FILE *UFID;
realtype t, tout;
int iout;
long int nsts, nstf, nfse, nfsi, nff, tmp;
/*
* Initialization
*/
/* Create the SUNDIALS context object for this simulation */
SUNContext ctx;
retval = SUNContext_Create(NULL, &ctx);
if (check_retval(&retval, "SUNContext_Create", 1)) return 1;
/* Set up the test problem parameters */
a = RCONST(1.0);
b = RCONST(3.5);
ep = RCONST(1.0e-2);
/* Set the initial contions */
u0 = RCONST(1.2);
v0 = RCONST(3.1);
w0 = RCONST(3.0);
/* Initial problem output */
printf("\nBrusselator ODE test problem:\n");
printf(" initial conditions: u0 = %"GSYM", v0 = %"GSYM", w0 = %"GSYM"\n",u0,v0,w0);
printf(" problem parameters: a = %"GSYM", b = %"GSYM", ep = %"GSYM"\n",a,b,ep);
printf(" hs = %"GSYM", hf = %"GSYM"\n\n",hs,hf);
/* Set parameters in user data */
rdata[0] = a;
rdata[1] = b;
rdata[2] = ep;
/* Create and initialize serial vector for the solution */
y = N_VNew_Serial(NEQ, ctx);
if (check_retval((void *)y, "N_VNew_Serial", 0)) return 1;
NV_Ith_S(y,0) = u0;
NV_Ith_S(y,1) = v0;
NV_Ith_S(y,2) = w0;
/*
* Create the fast integrator and set options
*/
/* Initialize the fast integrator. Specify the explicit fast right-hand side
function in y'=fe(t,y)+fi(t,y)+ff(t,y), the inital time T0, and the
initial dependent variable vector y. */
inner_arkode_mem = ARKStepCreate(ff, NULL, T0, y, ctx);
if (check_retval((void *) inner_arkode_mem, "ARKStepCreate", 0)) return 1;
/* Attach user data to fast integrator */
retval = ARKStepSetUserData(inner_arkode_mem, (void *) rdata);
if (check_retval(&retval, "ARKStepSetUserData", 1)) return 1;
/* Set the fast method */
retval = ARKStepSetTableNum(inner_arkode_mem, -1, ARKODE_KNOTH_WOLKE_3_3);
if (check_retval(&retval, "ARKStepSetTableNum", 1)) return 1;
/* Set the fast step size */
retval = ARKStepSetFixedStep(inner_arkode_mem, hf);
if (check_retval(&retval, "ARKStepSetFixedStep", 1)) return 1;
/* Create inner stepper */
retval = ARKStepCreateMRIStepInnerStepper(inner_arkode_mem,
&inner_stepper);
if (check_retval(&retval, "ARKStepCreateMRIStepInnerStepper", 1)) return 1;
/*
* Create the slow integrator and set options
*/
/* Initialize the slow integrator. Specify the explicit slow right-hand side
function in y'=fe(t,y)+fi(t,y)+ff(t,y), the inital time T0, the
initial dependent variable vector y, and the fast integrator. */
arkode_mem = MRIStepCreate(fs, NULL, T0, y, inner_stepper, ctx);
if (check_retval((void *)arkode_mem, "MRIStepCreate", 0)) return 1;
/* Pass rdata to user functions */
retval = MRIStepSetUserData(arkode_mem, (void *) rdata);
if (check_retval(&retval, "MRIStepSetUserData", 1)) return 1;
/* Set the slow step size */
retval = MRIStepSetFixedStep(arkode_mem, hs);
if (check_retval(&retval, "MRIStepSetFixedStep", 1)) return 1;
/*
* Integrate ODE
*/
/* Open output stream for results, output comment line */
UFID = fopen("ark_brusselator_mri_solution.txt","w");
fprintf(UFID,"# t u v w\n");
/* output initial condition to disk */
fprintf(UFID," %.16"ESYM" %.16"ESYM" %.16"ESYM" %.16"ESYM"\n",
T0, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));
/* Main time-stepping loop: calls MRIStepEvolve to perform the
integration, then prints results. Stops when the final time
has been reached */
t = T0;
tout = T0+dTout;
printf(" t u v w\n");
printf(" ----------------------------------------------\n");
printf(" %10.6"FSYM" %10.6"FSYM" %10.6"FSYM" %10.6"FSYM"\n",
t, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));
for (iout=0; iout<Nt; iout++) {
/* call integrator */
retval = MRIStepEvolve(arkode_mem, tout, y, &t, ARK_NORMAL);
if (check_retval(&retval, "MRIStepEvolve", 1)) break;
/* access/print solution */
printf(" %10.6"FSYM" %10.6"FSYM" %10.6"FSYM" %10.6"FSYM"\n",
t, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));
fprintf(UFID," %.16"ESYM" %.16"ESYM" %.16"ESYM" %.16"ESYM"\n",
t, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));
/* successful solve: update time */
tout += dTout;
tout = (tout > Tf) ? Tf : tout;
}
printf(" ----------------------------------------------\n");
fclose(UFID);
/*
* Finalize
*/
/* Get some slow integrator statistics */
retval = MRIStepGetNumSteps(arkode_mem, &nsts);
check_retval(&retval, "MRIStepGetNumSteps", 1);
retval = MRIStepGetNumRhsEvals(arkode_mem, &nfse, &nfsi);
check_retval(&retval, "MRIStepGetNumRhsEvals", 1);
/* Get some fast integrator statistics */
retval = ARKStepGetNumSteps(inner_arkode_mem, &nstf);
check_retval(&retval, "ARKStepGetNumSteps", 1);
retval = ARKStepGetNumRhsEvals(inner_arkode_mem, &nff, &tmp);
check_retval(&retval, "ARKStepGetNumRhsEvals", 1);
/* Print some final statistics */
printf("\nFinal Solver Statistics:\n");
printf(" Steps: nsts = %li, nstf = %li\n", nsts, nstf);
printf(" Total RHS evals: Fs = %li, Ff = %li\n", nfse, nff);
/* Clean up and return */
N_VDestroy(y); /* Free y vector */
ARKStepFree(&inner_arkode_mem); /* Free integrator memory */
MRIStepInnerStepper_Free(&inner_stepper); /* Free inner stepper */
MRIStepFree(&arkode_mem); /* Free integrator memory */
SUNContext_Free(&ctx); /* Free context */
return 0;
}
/* ------------------------------
* Functions called by the solver
* ------------------------------*/
/* ff routine to compute the fast portion of the ODE RHS. */
static int ff(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
realtype *rdata = (realtype *) user_data; /* cast user_data to realtype */
realtype b = rdata[1]; /* access data entries */
realtype ep = rdata[2];
realtype w = NV_Ith_S(y,2); /* access solution values */
/* fill in the RHS function */
NV_Ith_S(ydot,0) = 0.0;
NV_Ith_S(ydot,1) = 0.0;
NV_Ith_S(ydot,2) = (b-w)/ep;
/* Return with success */
return 0;
}
/* fs routine to compute the slow portion of the ODE RHS. */
static int fs(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
realtype *rdata = (realtype *) user_data; /* cast user_data to realtype */
realtype a = rdata[0]; /* access data entries */
realtype u = NV_Ith_S(y,0); /* access solution values */
realtype v = NV_Ith_S(y,1);
realtype w = NV_Ith_S(y,2);
/* fill in the RHS function */
NV_Ith_S(ydot,0) = a - (w+1.0)*u + v*u*u;
NV_Ith_S(ydot,1) = w*u - v*u*u;
NV_Ith_S(ydot,2) = -w*u;
/* Return with success */
return 0;
}
/* ------------------------------
* Private helper functions
* ------------------------------*/
/* Check function return value...
opt == 0 means SUNDIALS function allocates memory so check if
returned NULL pointer
opt == 1 means SUNDIALS function returns a retval so check if
retval < 0
opt == 2 means function allocates memory so check if returned
NULL pointer
*/
static int check_retval(void *returnvalue, const char *funcname, int opt)
{
int *retval;
/* Check if SUNDIALS function returned NULL pointer - no memory allocated */
if (opt == 0 && returnvalue == NULL) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return 1; }
/* Check if retval < 0 */
else if (opt == 1) {
retval = (int *) returnvalue;
if (*retval < 0) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with retval = %d\n\n",
funcname, *retval);
return 1; }}
/* Check if function returned NULL pointer - no memory allocated */
else if (opt == 2 && returnvalue == NULL) {
fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return 1; }
return 0;
}
/*---- end of file ----*/
|