1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
|
/* ----------------------------------------------------------------
* Programmer(s): Daniel R. Reynolds @ SMU
* Rujeko Chinomona @ SMU
* ----------------------------------------------------------------
* SUNDIALS Copyright Start
* Copyright (c) 2002-2022, Lawrence Livermore National Security
* and Southern Methodist University.
* All rights reserved.
*
* See the top-level LICENSE and NOTICE files for details.
*
* SPDX-License-Identifier: BSD-3-Clause
* SUNDIALS Copyright End
* ----------------------------------------------------------------
* Multirate nonlinear Kvaerno-Prothero-Robinson ODE test problem:
*
* [u]' = [ G e ] [(-1+u^2-r)/(2u)] + [ r'(t)/(2u) ]
* [v] [ e -1 ] [(-2+v^2-s)/(2v)] [ s'(t)/(2*sqrt(2+s(t))) ]
* = [ fs(t,u,v) ]
* [ ff(t,u,v) ]
*
* where r(t) = 0.5*cos(t), s(t) = cos(w*t), 0 < t < 5.
*
* This problem has analytical solution given by
* u(t) = sqrt(1+r(t)), v(t) = sqrt(2+s(t)).
*
* We use the parameters:
* e = 0.5 (fast/slow coupling strength) [default]
* G = -1e2 (stiffness at slow time scale) [default]
* w = 100 (time-scale separation factor) [default]
* hs = 0.01 (slow step size) [default]
*
* The stiffness of the slow time scale is essentially determined
* by G, for |G| > 50 it is 'stiff' and ideally suited to a
* multirate method that is implicit at the slow time scale.
*
* We select the MRI method to use based on an additional input,
* solve_type; with options (slow type-order/fast type-order):
* 0. exp-3/exp-3 (standard MIS) [default]
* 1. none/exp-3 (no slow, explicit fast)
* 2. none/dirk-3 (no slow, dirk fast)
* 3. exp-3/none (explicit slow, no fast)
* 4. dirk-2/none (dirk slow, no fast) -- solve-decoupled
* 5. exp-4/exp-4 (MRI-GARK-ERK45a / ERK-4-4)
* 6. exp-4/exp-3 (MRI-GARK-ERK45a / ERK-3-3)
* 7. dirk-3/exp-3 (MRI-GARK-ESDIRK34a / ERK-3-3) -- solve decoupled
* 8. ars343/exp-3 (IMEX-MRI3b / ERK-3-3) -- solve decoupled
* 9. imexark4/exp-4 (IMEX-MRI4/ ERK-4-4) -- solve decoupled
*
* We note that once we have methods that are IMEX at the slow time
* scale, the nonstiff slow term, [ r'(t)/(2u) ], can be treated
* explicitly.
*
* The program should be run with arguments in the following order:
* $ a.out solve_type h G w e deduce
* Not all arguments are required, but these must be omitted from
* end-to-beginning, i.e. any one of
* $ a.out solve_type h G w e
* $ a.out solve_type h G w
* $ a.out solve_type h G
* $ a.out solve_type h
* $ a.out solve_type
* $ a.out
* are acceptable. We require:
* * 0 <= solve_type <= 9
* * 0 < h < 1/|G|
* * G < 0.0
* * w >= 1.0
*
* This program solves the problem with the MRI stepper. Outputs are
* printed at equal intervals of 0.1 and run statistics are printed
* at the end.
* ----------------------------------------------------------------*/
/* Header files */
#include <stdio.h>
#include <math.h>
#include <arkode/arkode_mristep.h> /* prototypes for MRIStep fcts., consts */
#include <arkode/arkode_arkstep.h> /* prototypes for ARKStep fcts., consts */
#include <nvector/nvector_serial.h> /* serial N_Vector type, fcts., macros */
#include <sunmatrix/sunmatrix_dense.h> /* dense matrix type, fcts., macros */
#include <sunlinsol/sunlinsol_dense.h> /* dense linear solver */
#include <sundials/sundials_math.h> /* def. math fcns, 'realtype' */
#if defined(SUNDIALS_EXTENDED_PRECISION)
#define GSYM ".20Lg"
#define ESYM "Le"
#define FSYM "Lf"
#else
#define GSYM "g"
#define ESYM "e"
#define FSYM "f"
#endif
#define ZERO RCONST(0.0)
#define ONE RCONST(1.0)
#define TWO RCONST(2.0)
/* User-supplied functions called by the solver */
static int fse(realtype t, N_Vector y, N_Vector ydot, void *user_data);
static int fsi(realtype t, N_Vector y, N_Vector ydot, void *user_data);
static int fs(realtype t, N_Vector y, N_Vector ydot, void *user_data);
static int ff(realtype t, N_Vector y, N_Vector ydot, void *user_data);
static int fn(realtype t, N_Vector y, N_Vector ydot, void *user_data);
static int f0(realtype t, N_Vector y, N_Vector ydot, void *user_data);
static int Js(realtype t, N_Vector y, N_Vector fy, SUNMatrix J, void *user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
static int Jsi(realtype t, N_Vector y, N_Vector fy, SUNMatrix J, void *user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
static int Jn(realtype t, N_Vector y, N_Vector fy, SUNMatrix J, void *user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
/* Private function to check function return values */
static realtype r(realtype t, void *user_data);
static realtype s(realtype t, void *user_data);
static realtype rdot(realtype t, void *user_data);
static realtype sdot(realtype t, void *user_data);
static realtype utrue(realtype t, void *user_data);
static realtype vtrue(realtype t, void *user_data);
static int Ytrue(realtype t, N_Vector y, void *user_data);
static int check_retval(void *returnvalue, const char *funcname, int opt);
/* Main Program */
int main(int argc, char *argv[])
{
SUNContext ctx;
/* general problem parameters */
realtype T0 = RCONST(0.0); /* initial time */
realtype Tf = RCONST(5.0); /* final time */
realtype dTout = RCONST(0.1); /* time between outputs */
sunindextype NEQ = 2; /* number of dependent vars. */
int Nt = (int) ceil(Tf/dTout); /* number of output times */
int solve_type = 0; /* problem configuration type */
realtype hs = RCONST(0.01); /* slow step size */
realtype e = RCONST(0.5); /* fast/slow coupling strength */
realtype G = RCONST(-100.0); /* stiffness at slow time scale */
realtype w = RCONST(100.0); /* time-scale separation factor */
realtype reltol = RCONST(0.01);
realtype abstol = 1e-11;
/* general problem variables */
int retval; /* reusable error-checking flag */
N_Vector y = NULL; /* vector for the solution */
void *arkode_mem = NULL; /* ARKode memory structure */
void *inner_arkode_mem = NULL; /* ARKode memory structure */
MRIStepInnerStepper inner_stepper = NULL; /* inner stepper */
ARKodeButcherTable B = NULL; /* fast method Butcher table */
MRIStepCoupling C = NULL; /* slow coupling coefficients */
SUNMatrix Af = NULL; /* matrix for fast solver */
SUNLinearSolver LSf = NULL; /* fast linear solver object */
SUNMatrix As = NULL; /* matrix for slow solver */
SUNLinearSolver LSs = NULL; /* slow linear solver object */
booleantype implicit_slow;
booleantype imex_slow = SUNFALSE;
booleantype deduce = SUNFALSE;
FILE *UFID;
realtype hf, gamma, beta, t, tout, rpar[3];
realtype uerr, verr, uerrtot, verrtot, errtot;
int iout;
long int nsts, nstf, nfse, nfsi, nff, nnif, nncf, njef, nnis, nncs, njes, tmp;
/*
* Initialization
*/
/* Retrieve the command-line options: solve_type h G w e */
if (argc > 1) solve_type = (sunindextype) atol(argv[1]);
if (argc > 2) hs = SUNStrToReal(argv[2]);
if (argc > 3) G = SUNStrToReal(argv[3]);
if (argc > 4) w = SUNStrToReal(argv[4]);
if (argc > 5) e = SUNStrToReal(argv[5]);
if (argc > 6) deduce = (booleantype) atoi(argv[6]);
/* Check arguments for validity */
/* 0 <= solve_type <= 9 */
/* G < 0.0 */
/* h > 0 */
/* h < 1/|G| (explicit slow) */
/* w >= 1.0 */
if ((solve_type < 0) || (solve_type > 9)) {
printf("ERROR: solve_type be an integer in [0,9] \n");
return(-1);
}
if (G >= ZERO) {
printf("ERROR: G must be a negative real number\n");
return(-1);
}
implicit_slow = SUNFALSE;
if ((solve_type == 4) || (solve_type == 7))
implicit_slow = SUNTRUE;
if ((solve_type == 8) || (solve_type == 9)) {
implicit_slow = SUNTRUE;
imex_slow = SUNTRUE;
}
if (hs <= ZERO){
printf("ERROR: hs must be in positive\n");
return(-1);
}
if ((hs > ONE/SUNRabs(G)) && (!implicit_slow)) {
printf("ERROR: hs must be in (0, 1/|G|)\n");
return(-1);
}
if (w < ONE) {
printf("ERROR: w must be >= 1.0\n");
return(-1);
}
rpar[0] = G;
rpar[1] = w;
rpar[2] = e;
hf = hs/w;
/* Initial problem output (and set implicit solver tolerances as needed) */
printf("\nMultirate nonlinear Kvaerno-Prothero-Robinson test problem:\n");
printf(" time domain: (%"GSYM",%"GSYM"]\n",T0,Tf);
printf(" hs = %"GSYM"\n",hs);
printf(" hf = %"GSYM"\n",hf);
printf(" G = %"GSYM"\n",G);
printf(" w = %"GSYM"\n",w);
printf(" e = %"GSYM"\n",e);
switch (solve_type) {
case(0):
printf(" solver: exp-3/exp-3 (standard MIS)\n\n");
break;
case(1):
printf(" solver: none/exp-3 (no slow, explicit fast)\n\n");
break;
case(2):
reltol = SUNMAX(hs*hs*hs, 1e-10);
abstol = 1e-11;
printf(" solver: none/dirk-3 (no slow, dirk fast)\n\n");
printf(" reltol = %.2"ESYM", abstol = %.2"ESYM"\n", reltol, abstol);
break;
case(3):
printf(" solver: exp-3/none (explicit slow, no fast)\n");
break;
case(4):
reltol = SUNMAX(hs*hs, 1e-10);
abstol = 1e-11;
printf(" solver: dirk-2/none (dirk slow, no fast)\n");
printf(" reltol = %.2"ESYM", abstol = %.2"ESYM"\n", reltol, abstol);
break;
case(5):
printf(" solver: exp-4/exp-4 (MRI-GARK-ERK45a / ERK-4-4)\n\n");
break;
case(6):
printf(" solver: exp-4/exp-3 (MRI-GARK-ERK45a / ERK-3-3)\n\n");
break;
case(7):
reltol = SUNMAX(hs*hs*hs, 1e-10);
abstol = 1e-11;
printf(" solver: dirk-3/exp-3 (MRI-GARK-ESDIRK34a / ERK-3-3) -- solve decoupled\n");
printf(" reltol = %.2"ESYM", abstol = %.2"ESYM"\n", reltol, abstol);
break;
case(8):
reltol = SUNMAX(hs*hs*hs, 1e-10);
abstol = 1e-11;
printf(" solver: ars343/exp-3 (IMEX-MRI3b / ERK-3-3) -- solve decoupled\n");
printf(" reltol = %.2"ESYM", abstol = %.2"ESYM"\n", reltol, abstol);
break;
case(9):
reltol = SUNMAX(hs*hs*hs*hs, 1e-14);
abstol = 1e-14;
printf(" solver: imexark4/exp-4 (IMEX-MRI4 / ERK-4-4) -- solve decoupled\n");
printf(" reltol = %.2"ESYM", abstol = %.2"ESYM"\n", reltol, abstol);
break;
}
/* Create the SUNDIALS context object for this simulation */
retval = SUNContext_Create(NULL, &ctx);
if (check_retval(&retval, "SUNContext_Create", 1)) return 1;
/* Create and initialize serial vector for the solution */
y = N_VNew_Serial(NEQ, ctx);
if (check_retval((void *)y, "N_VNew_Serial", 0)) return 1;
retval = Ytrue(T0, y, rpar);
if (check_retval(&retval, "Ytrue", 1)) return 1;
/*
* Create the fast integrator and set options
*/
/* Initialize the fast integrator. Specify the fast right-hand side
function in y'=fs(t,y)+ff(t,y) = fse(t,y)+fsi(t,y)+ff(t,y), the inital time T0,
and the initial dependent variable vector y. */
switch (solve_type) {
case(0):
case(6):
case(7):
case(8): /* erk-3-3 fast solver */
inner_arkode_mem = ARKStepCreate(ff, NULL, T0, y, ctx);
if (check_retval((void *) inner_arkode_mem, "ARKStepCreate", 0)) return 1;
B = ARKodeButcherTable_Alloc(3, SUNTRUE);
if (check_retval((void *)B, "ARKodeButcherTable_Alloc", 0)) return 1;
B->A[1][0] = RCONST(0.5);
B->A[2][0] = -ONE;
B->A[2][1] = TWO;
B->b[0] = ONE/RCONST(6.0);
B->b[1] = TWO/RCONST(3.0);
B->b[2] = ONE/RCONST(6.0);
B->d[1] = ONE;
B->c[1] = RCONST(0.5);
B->c[2] = ONE;
B->q=3;
B->p=2;
retval = ARKStepSetTables(inner_arkode_mem, 3, 2, NULL, B);
if (check_retval(&retval, "ARKStepSetTables", 1)) return 1;
ARKodeButcherTable_Free(B);
break;
case(1): /* erk-3-3 fast solver (full problem) */
inner_arkode_mem = ARKStepCreate(fn, NULL, T0, y, ctx);
if (check_retval((void *) inner_arkode_mem, "ARKStepCreate", 0)) return 1;
B = ARKodeButcherTable_Alloc(3, SUNTRUE);
if (check_retval((void *)B, "ARKodeButcherTable_Alloc", 0)) return 1;
B->A[1][0] = RCONST(0.5);
B->A[2][0] = -ONE;
B->A[2][1] = TWO;
B->b[0] = ONE/RCONST(6.0);
B->b[1] = TWO/RCONST(3.0);
B->b[2] = ONE/RCONST(6.0);
B->d[1] = ONE;
B->c[1] = RCONST(0.5);
B->c[2] = ONE;
B->q=3;
B->p=2;
retval = ARKStepSetTables(inner_arkode_mem, 3, 2, NULL, B);
if (check_retval(&retval, "ARKStepSetTables", 1)) return 1;
ARKodeButcherTable_Free(B);
break;
case(9):
case(5): /* erk-4-4 fast solver */
inner_arkode_mem = ARKStepCreate(ff, NULL, T0, y, ctx);
if (check_retval((void *) inner_arkode_mem, "ARKStepCreate", 0)) return 1;
B = ARKodeButcherTable_Alloc(4, SUNFALSE);
if (check_retval((void *)B, "ARKodeButcherTable_Alloc", 0)) return 1;
B->A[1][0] = RCONST(0.5);
B->A[2][1] = RCONST(0.5);
B->A[3][2] = ONE;
B->b[0] = ONE/RCONST(6.0);
B->b[1] = ONE/RCONST(3.0);
B->b[2] = ONE/RCONST(3.0);
B->b[3] = ONE/RCONST(6.0);
B->c[1] = RCONST(0.5);
B->c[2] = RCONST(0.5);
B->c[3] = ONE;
B->q=4;
retval = ARKStepSetTables(inner_arkode_mem, 4, 0, NULL, B);
if (check_retval(&retval, "ARKStepSetTables", 1)) return 1;
ARKodeButcherTable_Free(B);
break;
case(2): /* esdirk-3-3 fast solver (full problem) */
inner_arkode_mem = ARKStepCreate(NULL, fn, T0, y, ctx);
if (check_retval((void *) inner_arkode_mem, "ARKStepCreate", 0)) return 1;
B = ARKodeButcherTable_Alloc(3, SUNFALSE);
if (check_retval((void *)B, "ARKodeButcherTable_Alloc", 0)) return 1;
beta = SUNRsqrt(RCONST(3.0))/RCONST(6.0) + RCONST(0.5);
gamma = (-ONE/RCONST(8.0))*(SUNRsqrt(RCONST(3.0))+ONE);
B->A[1][0] = RCONST(4.0)*gamma+TWO*beta;
B->A[1][1] = ONE-RCONST(4.0)*gamma-TWO*beta;
B->A[2][0] = RCONST(0.5)-beta-gamma;
B->A[2][1] = gamma;
B->A[2][2] = beta;
B->b[0] = ONE/RCONST(6.0);
B->b[1] = ONE/RCONST(6.0);
B->b[2] = TWO/RCONST(3.0);
B->c[1] = ONE;
B->c[2] = RCONST(0.5);
B->q=3;
retval = ARKStepSetTables(inner_arkode_mem, 3, 0, B, NULL);
if (check_retval(&retval, "ARKStepSetTables", 1)) return 1;
Af = SUNDenseMatrix(NEQ, NEQ, ctx);
if (check_retval((void *)Af, "SUNDenseMatrix", 0)) return 1;
LSf = SUNLinSol_Dense(y, Af, ctx);
if (check_retval((void *)LSf, "SUNLinSol_Dense", 0)) return 1;
retval = ARKStepSetLinearSolver(inner_arkode_mem, LSf, Af);
if (check_retval(&retval, "ARKStepSetLinearSolver", 1)) return 1;
retval = ARKStepSetJacFn(inner_arkode_mem, Jn);
if (check_retval(&retval, "ARKStepSetJacFn", 1)) return 1;
retval = ARKStepSStolerances(inner_arkode_mem, reltol, abstol);
if (check_retval(&retval, "ARKStepSStolerances", 1)) return 1;
ARKodeButcherTable_Free(B);
break;
case(3): /* no fast dynamics ('evolve' explicitly w/ erk-3-3) */
case(4):
inner_arkode_mem = ARKStepCreate(f0, NULL, T0, y, ctx);
if (check_retval((void *) inner_arkode_mem, "ARKStepCreate", 0)) return 1;
B = ARKodeButcherTable_Alloc(3, SUNTRUE);
if (check_retval((void *)B, "ARKodeButcherTable_Alloc", 0)) return 1;
B->A[1][0] = RCONST(0.5);
B->A[2][0] = -ONE;
B->A[2][1] = TWO;
B->b[0] = ONE/RCONST(6.0);
B->b[1] = TWO/RCONST(3.0);
B->b[2] = ONE/RCONST(6.0);
B->d[1] = ONE;
B->c[1] = RCONST(0.5);
B->c[2] = ONE;
B->q=3;
B->p=2;
retval = ARKStepSetTables(inner_arkode_mem, 3, 2, NULL, B);
if (check_retval(&retval, "ARKStepSetTables", 1)) return 1;
ARKodeButcherTable_Free(B);
}
/* Set the user data pointer */
retval = ARKStepSetUserData(inner_arkode_mem, (void *) rpar);
if (check_retval(&retval, "ARKStepSetUserData", 1)) return 1;
/* Set the fast step size */
retval = ARKStepSetFixedStep(inner_arkode_mem, hf);
if (check_retval(&retval, "ARKStepSetFixedStep", 1)) return 1;
/* Create inner stepper */
retval = ARKStepCreateMRIStepInnerStepper(inner_arkode_mem,
&inner_stepper);
if (check_retval(&retval, "ARKStepCreateMRIStepInnerStepper", 1)) return 1;
/*
* Create the slow integrator and set options
*/
/* Initialize the slow integrator. Specify the slow right-hand side
function in y'=fs(t,y)+ff(t,y) = fse(t,y)+fsi(t,y)+ff(t,y), the inital time
T0, the initial dependent variable vector y, and the fast integrator. */
switch (solve_type) {
case(0): /* KW3 slow solver */
arkode_mem = MRIStepCreate(fs, NULL, T0, y, inner_stepper, ctx);
if (check_retval((void *)arkode_mem, "MRIStepCreate", 0)) return 1;
C = MRIStepCoupling_LoadTable(ARKODE_MIS_KW3);
if (check_retval((void *)C, "MRIStepCoupling_LoadTable", 0)) return 1;
retval = MRIStepSetCoupling(arkode_mem, C);
if (check_retval(&retval, "MRIStepSetCoupling", 1)) return 1;
break;
case(3): /* KW3 slow solver (full problem) */
arkode_mem = MRIStepCreate(fn, NULL, T0, y, inner_stepper, ctx);
if (check_retval((void *)arkode_mem, "MRIStepCreate", 0)) return 1;
C = MRIStepCoupling_LoadTable(ARKODE_MIS_KW3);
if (check_retval((void *)C, "MRIStepCoupling_LoadTable", 0)) return 1;
retval = MRIStepSetCoupling(arkode_mem, C);
if (check_retval(&retval, "MRIStepSetCoupling", 1)) return 1;
break;
case(5): /* MRI-GARK-ERK45a slow solver */
case(6):
arkode_mem = MRIStepCreate(fs, NULL, T0, y, inner_stepper, ctx);
if (check_retval((void *)arkode_mem, "MRIStepCreate", 0)) return 1;
C = MRIStepCoupling_LoadTable(ARKODE_MRI_GARK_ERK45a);
if (check_retval((void*)C, "MRIStepCoupling_LoadTable", 1)) return 1;
retval = MRIStepSetCoupling(arkode_mem, C);
if (check_retval(&retval, "MRIStepSetCoupling", 1)) return 1;
break;
case(1):
case(2): /* no slow dynamics (use ERK-2-2) */
arkode_mem = MRIStepCreate(f0, NULL, T0, y, inner_stepper, ctx);
if (check_retval((void *)arkode_mem, "MRIStepCreate", 0)) return 1;
B = ARKodeButcherTable_Alloc(2, SUNFALSE);
if (check_retval((void *)B, "ARKodeButcherTable_Alloc", 0)) return 1;
B->A[1][0] = TWO/RCONST(3.0);
B->b[0] = RCONST(0.25);
B->b[1] = RCONST(0.75);
B->c[1] = TWO/RCONST(3.0);
B->q=2;
C = MRIStepCoupling_MIStoMRI(B, 2, 0);
if (check_retval((void *)C, "MRIStepCoupling_MIStoMRI", 0)) return 1;
retval = MRIStepSetCoupling(arkode_mem, C);
if (check_retval(&retval, "MRIStepSetCoupling", 1)) return 1;
ARKodeButcherTable_Free(B);
break;
case(4): /* dirk-2 (trapezoidal), solve-decoupled slow solver */
arkode_mem = MRIStepCreate(NULL, fn, T0, y, inner_stepper, ctx);
if (check_retval((void *)arkode_mem, "MRIStepCreate", 0)) return 1;
C = MRIStepCoupling_LoadTable(ARKODE_MRI_GARK_IRK21a);
if (check_retval((void*)C, "MRIStepCoupling_LoadTable", 1)) return 1;
retval = MRIStepSetCoupling(arkode_mem, C);
if (check_retval(&retval, "MRIStepSetCoupling", 1)) return 1;
As = SUNDenseMatrix(NEQ, NEQ, ctx);
if (check_retval((void *)As, "SUNDenseMatrix", 0)) return 1;
LSs = SUNLinSol_Dense(y, As, ctx);
if (check_retval((void *)LSs, "SUNLinSol_Dense", 0)) return 1;
retval = MRIStepSetLinearSolver(arkode_mem, LSs, As);
if (check_retval(&retval, "MRIStepSetLinearSolver", 1)) return 1;
retval = MRIStepSetJacFn(arkode_mem, Jn);
if (check_retval(&retval, "MRIStepSetJacFn", 1)) return 1;
retval = MRIStepSStolerances(arkode_mem, reltol, abstol);
if (check_retval(&retval, "MRIStepSStolerances", 1)) return 1;
break;
case(7): /* MRI-GARK-ESDIRK34a, solve-decoupled slow solver */
arkode_mem = MRIStepCreate(NULL, fs, T0, y, inner_stepper, ctx);
if (check_retval((void *)arkode_mem, "MRIStepCreate", 0)) return 1;
C = MRIStepCoupling_LoadTable(ARKODE_MRI_GARK_ESDIRK34a);
if (check_retval((void*)C, "MRIStepCoupling_LoadTable", 1)) return 1;
retval = MRIStepSetCoupling(arkode_mem, C);
if (check_retval(&retval, "MRIStepSetCoupling", 1)) return 1;
As = SUNDenseMatrix(NEQ, NEQ, ctx);
if (check_retval((void *)As, "SUNDenseMatrix", 0)) return 1;
LSs = SUNLinSol_Dense(y, As, ctx);
if (check_retval((void *)LSs, "SUNLinSol_Dense", 0)) return 1;
retval = MRIStepSetLinearSolver(arkode_mem, LSs, As);
if (check_retval(&retval, "MRIStepSetLinearSolver", 1)) return 1;
retval = MRIStepSetJacFn(arkode_mem, Js);
if (check_retval(&retval, "MRIStepSetJacFn", 1)) return 1;
retval = MRIStepSStolerances(arkode_mem, reltol, abstol);
if (check_retval(&retval, "MRIStepSStolerances", 1)) return 1;
break;
case(8): /* IMEX-MRI-GARK3b, solve-decoupled slow solver */
arkode_mem = MRIStepCreate(fse, fsi, T0, y, inner_stepper, ctx);
if (check_retval((void *)arkode_mem, "MRIStepCreate", 0)) return 1;
C = MRIStepCoupling_LoadTable(ARKODE_IMEX_MRI_GARK3b);
if (check_retval((void *)C, "MRIStepCoupling_LoadTable", 0)) return 1;
retval = MRIStepSetCoupling(arkode_mem, C);
if (check_retval(&retval, "MRIStepSetCoupling", 1)) return 1;
As = SUNDenseMatrix(NEQ, NEQ, ctx);
if (check_retval((void *)As, "SUNDenseMatrix", 0)) return 1;
LSs = SUNLinSol_Dense(y, As, ctx);
if (check_retval((void *)LSs, "SUNLinSol_Dense", 0)) return 1;
retval = MRIStepSetLinearSolver(arkode_mem, LSs, As);
if (check_retval(&retval, "MRIStepSetLinearSolver", 1)) return 1;
retval = MRIStepSetJacFn(arkode_mem, Jsi);
if (check_retval(&retval, "MRIStepSetJacFn", 1)) return 1;
retval = MRIStepSStolerances(arkode_mem, reltol, abstol);
if (check_retval(&retval, "MRIStepSStolerances", 1)) return 1;
break;
case(9): /* IMEX-MRI-GARK4, solve-decoupled slow solver */
arkode_mem = MRIStepCreate(fse, fsi, T0, y, inner_stepper, ctx);
if (check_retval((void *)arkode_mem, "MRIStepCreate", 0)) return 1;
C = MRIStepCoupling_LoadTable(ARKODE_IMEX_MRI_GARK4);
if (check_retval((void *)C, "MRIStepCoupling_LoadTable", 0)) return 1;
retval = MRIStepSetCoupling(arkode_mem, C);
if (check_retval(&retval, "MRIStepSetCoupling", 1)) return 1;
As = SUNDenseMatrix(NEQ, NEQ, ctx);
if (check_retval((void *)As, "SUNDenseMatrix", 0)) return 1;
LSs = SUNLinSol_Dense(y, As, ctx);
if (check_retval((void *)LSs, "SUNLinSol_Dense", 0)) return 1;
retval = MRIStepSetLinearSolver(arkode_mem, LSs, As);
if (check_retval(&retval, "MRIStepSetLinearSolver", 1)) return 1;
retval = MRIStepSetJacFn(arkode_mem, Jsi);
if (check_retval(&retval, "MRIStepSetJacFn", 1)) return 1;
retval = MRIStepSStolerances(arkode_mem, reltol, abstol);
if (check_retval(&retval, "MRIStepSStolerances", 1)) return 1;
break;
}
/* Set the user data pointer */
retval = MRIStepSetUserData(arkode_mem, (void *) rpar);
if (check_retval(&retval, "MRIStepSetUserData", 1)) return 1;
retval = MRIStepSetDeduceImplicitRhs(arkode_mem, deduce);
if (check_retval(&retval, "MRIStepSetDeduceImplicitRhs", 1)) return 1;
/* Set the slow step size */
retval = MRIStepSetFixedStep(arkode_mem, hs);
if (check_retval(&retval, "MRIStepSetFixedStep", 1)) return 1;
/*
* Integrate ODE
*/
/* Open output stream for results, output comment line */
UFID = fopen("ark_kpr_mri_solution.txt","w");
fprintf(UFID,"# t u v uerr verr\n");
/* output initial condition to disk */
fprintf(UFID," %.16"ESYM" %.16"ESYM" %.16"ESYM" %.16"ESYM" %.16"ESYM"\n",
T0, NV_Ith_S(y,0), NV_Ith_S(y,1),
SUNRabs(NV_Ith_S(y,0)-utrue(T0,rpar)),
SUNRabs(NV_Ith_S(y,1)-vtrue(T0,rpar)));
/* Main time-stepping loop: calls MRIStepEvolve to perform the
integration, then prints results. Stops when the final time
has been reached */
t = T0;
tout = T0+dTout;
uerr = ZERO;
verr = ZERO;
uerrtot = ZERO;
verrtot = ZERO;
errtot = ZERO;
printf(" t u v uerr verr\n");
printf(" ------------------------------------------------------\n");
printf(" %10.6"FSYM" %10.6"FSYM" %10.6"FSYM" %.2"ESYM" %.2"ESYM"\n",
t, NV_Ith_S(y,0), NV_Ith_S(y,1), uerr, verr);
for (iout=0; iout<Nt; iout++) {
/* call integrator */
retval = MRIStepEvolve(arkode_mem, tout, y, &t, ARK_NORMAL);
if (check_retval(&retval, "MRIStepEvolve", 1)) break;
/* access/print solution and error */
uerr = SUNRabs(NV_Ith_S(y,0)-utrue(t,rpar));
verr = SUNRabs(NV_Ith_S(y,1)-vtrue(t,rpar));
printf(" %10.6"FSYM" %10.6"FSYM" %10.6"FSYM" %.2"ESYM" %.2"ESYM"\n",
t, NV_Ith_S(y,0), NV_Ith_S(y,1), uerr, verr);
fprintf(UFID," %.16"ESYM" %.16"ESYM" %.16"ESYM" %.16"ESYM" %.16"ESYM"\n",
t, NV_Ith_S(y,0), NV_Ith_S(y,1), uerr, verr);
uerrtot += uerr*uerr;
verrtot += verr*verr;
errtot += uerr*uerr + verr*verr;
/* successful solve: update time */
tout += dTout;
tout = (tout > Tf) ? Tf : tout;
}
uerrtot = SUNRsqrt(uerrtot / Nt);
verrtot = SUNRsqrt(verrtot / Nt);
errtot = SUNRsqrt(errtot / Nt / 2);
printf(" ------------------------------------------------------\n");
fclose(UFID);
/*
* Finalize
*/
/* Get some slow integrator statistics */
retval = MRIStepGetNumSteps(arkode_mem, &nsts);
check_retval(&retval, "MRIStepGetNumSteps", 1);
retval = MRIStepGetNumRhsEvals(arkode_mem, &nfse, &nfsi);
check_retval(&retval, "MRIStepGetNumRhsEvals", 1);
/* Get some fast integrator statistics */
retval = ARKStepGetNumSteps(inner_arkode_mem, &nstf);
check_retval(&retval, "ARKStepGetNumSteps", 1);
retval = ARKStepGetNumRhsEvals(inner_arkode_mem, &nff, &tmp);
check_retval(&retval, "ARKStepGetNumRhsEvals", 1);
/* Print some final statistics */
printf("\nFinal Solver Statistics:\n");
printf(" Steps: nsts = %li, nstf = %li\n", nsts, nstf);
printf(" u error = %.3"ESYM", v error = %.3"ESYM", total error = %.3"ESYM"\n",
uerrtot, verrtot, errtot);
if (imex_slow) {
printf(" Total RHS evals: Fse = %li, Fsi = %li, Ff = %li\n", nfse, nfsi, nff);
} else if (implicit_slow) {
printf(" Total RHS evals: Fs = %li, Ff = %li\n", nfsi, nff);
}
else {
printf(" Total RHS evals: Fs = %li, Ff = %li\n", nfse, nff);
}
/* Get/print slow integrator decoupled implicit solver statistics */
if ((solve_type == 4) || (solve_type == 7) ||
(solve_type == 8) || (solve_type == 9)) {
retval = MRIStepGetNonlinSolvStats(arkode_mem, &nnis, &nncs);
check_retval(&retval, "MRIStepGetNonlinSolvStats", 1);
retval = MRIStepGetNumJacEvals(arkode_mem, &njes);
check_retval(&retval, "MRIStepGetNumJacEvals", 1);
printf(" Slow Newton iters = %li\n", nnis);
printf(" Slow Newton conv fails = %li\n", nncs);
printf(" Slow Jacobian evals = %li\n", njes);
}
/* Get/print fast integrator implicit solver statistics */
if (solve_type == 2) {
retval = ARKStepGetNonlinSolvStats(inner_arkode_mem, &nnif, &nncf);
check_retval(&retval, "ARKStepGetNonlinSolvStats", 1);
retval = ARKStepGetNumJacEvals(inner_arkode_mem, &njef);
check_retval(&retval, "ARKStepGetNumJacEvals", 1);
printf(" Fast Newton iters = %li\n", nnif);
printf(" Fast Newton conv fails = %li\n", nncf);
printf(" Fast Jacobian evals = %li\n", njef);
}
/* Clean up and return */
N_VDestroy(y); /* Free y vector */
MRIStepCoupling_Free(C); /* free coupling coefficients */
SUNMatDestroy(Af); /* free fast matrix */
SUNLinSolFree(LSf); /* free fast linear solver */
SUNMatDestroy(As); /* free fast matrix */
SUNLinSolFree(LSs); /* free fast linear solver */
ARKStepFree(&inner_arkode_mem); /* Free fast integrator memory */
MRIStepInnerStepper_Free(&inner_stepper); /* Free inner stepper */
MRIStepFree(&arkode_mem); /* Free slow integrator memory */
SUNContext_Free(&ctx); /* Free context */
return 0;
}
/* ------------------------------
* Functions called by the solver
* ------------------------------*/
/* ff routine to compute the fast portion of the ODE RHS. */
static int ff(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
realtype *rpar = (realtype *) user_data;
const realtype e = rpar[2];
const realtype u = NV_Ith_S(y,0);
const realtype v = NV_Ith_S(y,1);
realtype tmp1, tmp2;
/* fill in the RHS function:
[0 0]*[(-1+u^2-r(t))/(2*u)] + [ 0 ]
[e -1] [(-2+v^2-s(t))/(2*v)] [sdot(t)/(2*vtrue(t))] */
tmp1 = (-ONE+u*u-r(t,rpar))/(TWO*u);
tmp2 = (-TWO+v*v-s(t,rpar))/(TWO*v);
NV_Ith_S(ydot,0) = ZERO;
NV_Ith_S(ydot,1) = e*tmp1 - tmp2 + sdot(t,rpar)/(TWO*vtrue(t,rpar));
/* Return with success */
return 0;
}
/* fs routine to compute the slow portion of the ODE RHS. */
static int fs(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
realtype *rpar = (realtype *) user_data;
const realtype G = rpar[0];
const realtype e = rpar[2];
const realtype u = NV_Ith_S(y,0);
const realtype v = NV_Ith_S(y,1);
realtype tmp1, tmp2;
/* fill in the RHS function:
[G e]*[(-1+u^2-r(t))/(2*u))] + [rdot(t)/(2*u)]
[0 0] [(-2+v^2-s(t))/(2*v)] [ 0 ] */
tmp1 = (-ONE+u*u-r(t,rpar))/(TWO*u);
tmp2 = (-TWO+v*v-s(t,rpar))/(TWO*v);
NV_Ith_S(ydot,0) = G*tmp1 + e*tmp2 + rdot(t,rpar)/(TWO*u);
NV_Ith_S(ydot,1) = ZERO;
/* Return with success */
return 0;
}
/* fse routine to compute the slow portion of the ODE RHS. */
static int fse(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
realtype *rpar = (realtype *) user_data;
const realtype u = NV_Ith_S(y,0);
/* fill in the slow explicit RHS function:
[rdot(t)/(2*u)]
[ 0 ] */
NV_Ith_S(ydot,0) = rdot(t,rpar)/(TWO*u);
NV_Ith_S(ydot,1) = ZERO;
/* Return with success */
return 0;
}
/* fsi routine to compute the slow portion of the ODE RHS.(currently same as fse) */
static int fsi(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
realtype *rpar = (realtype *) user_data;
const realtype G = rpar[0];
const realtype e = rpar[2];
const realtype u = NV_Ith_S(y,0);
const realtype v = NV_Ith_S(y,1);
realtype tmp1, tmp2;
/* fill in the slow implicit RHS function:
[G e]*[(-1+u^2-r(t))/(2*u))]
[0 0] [(-2+v^2-s(t))/(2*v)] */
tmp1 = (-ONE+u*u-r(t,rpar))/(TWO*u);
tmp2 = (-TWO+v*v-s(t,rpar))/(TWO*v);
NV_Ith_S(ydot,0) = G*tmp1 + e*tmp2;
NV_Ith_S(ydot,1) = ZERO;
/* Return with success */
return 0;
}
static int fn(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
realtype *rpar = (realtype *) user_data;
const realtype G = rpar[0];
const realtype e = rpar[2];
const realtype u = NV_Ith_S(y,0);
const realtype v = NV_Ith_S(y,1);
realtype tmp1, tmp2;
/* fill in the RHS function:
[G e]*[(-1+u^2-r(t))/(2*u))] + [rdot(t)/(2*u)]
[e -1] [(-2+v^2-s(t))/(2*v)] [sdot(t)/(2*vtrue(t))] */
tmp1 = (-ONE+u*u-r(t,rpar))/(TWO*u);
tmp2 = (-TWO+v*v-s(t,rpar))/(TWO*v);
NV_Ith_S(ydot,0) = G*tmp1 + e*tmp2 + rdot(t,rpar)/(TWO*u);
NV_Ith_S(ydot,1) = e*tmp1 - tmp2 + sdot(t,rpar)/(TWO*vtrue(t,rpar));
/* Return with success */
return 0;
}
static int f0(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
N_VConst(ZERO, ydot);
return(0);
}
static int Js(realtype t, N_Vector y, N_Vector fy, SUNMatrix J, void *user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
realtype *rpar = (realtype *) user_data;
const realtype G = rpar[0];
const realtype e = rpar[2];
const realtype u = NV_Ith_S(y,0);
const realtype v = NV_Ith_S(y,1);
/* fill in the Jacobian:
[G/2 + (G*(1+r(t))-rdot(t))/(2*u^2) e/2+e*(2+s(t))/(2*v^2)]
[ 0 0 ] */
SM_ELEMENT_D(J,0,0) = G/TWO + (G*(ONE+r(t,rpar))-rdot(t,rpar))/(2*u*u);
SM_ELEMENT_D(J,0,1) = e/TWO + e*(TWO+s(t,rpar))/(TWO*v*v);
SM_ELEMENT_D(J,1,0) = ZERO;
SM_ELEMENT_D(J,1,1) = ZERO;
/* Return with success */
return 0;
}
static int Jsi(realtype t, N_Vector y, N_Vector fy, SUNMatrix J, void *user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
realtype *rpar = (realtype *) user_data;
const realtype G = rpar[0];
const realtype e = rpar[2];
const realtype u = NV_Ith_S(y,0);
const realtype v = NV_Ith_S(y,1);
/* fill in the Jacobian:
[G/2 + (G*(1+r(t)))/(2*u^2) e/2 + e*(2+s(t))/(2*v^2)]
[ 0 0 ] */
SM_ELEMENT_D(J,0,0) = G/TWO + (G*(ONE+r(t,rpar)))/(2*u*u);
SM_ELEMENT_D(J,0,1) = e/TWO + e*(TWO+s(t,rpar))/(TWO*v*v);
SM_ELEMENT_D(J,1,0) = ZERO;
SM_ELEMENT_D(J,1,1) = ZERO;
/* Return with success */
return 0;
}
static int Jn(realtype t, N_Vector y, N_Vector fy, SUNMatrix J, void *user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
realtype *rpar = (realtype *) user_data;
const realtype G = rpar[0];
const realtype e = rpar[2];
const realtype u = NV_Ith_S(y,0);
const realtype v = NV_Ith_S(y,1);
/* fill in the Jacobian:
[G/2 + (G*(1+r(t))-rdot(t))/(2*u^2) e/2 + e*(2+s(t))/(2*v^2)]
[e/2+e*(1+r(t))/(2*u^2) -1/2 - (2+s(t))/(2*v^2) ] */
SM_ELEMENT_D(J,0,0) = G/TWO + (G*(ONE+r(t,rpar))-rdot(t,rpar))/(2*u*u);
SM_ELEMENT_D(J,0,1) = e/TWO + e*(TWO+s(t,rpar))/(TWO*v*v);
SM_ELEMENT_D(J,1,0) = e/TWO + e*(ONE+r(t,rpar))/(TWO*u*u);
SM_ELEMENT_D(J,1,1) = -ONE/TWO - (TWO+s(t,rpar))/(TWO*v*v);
/* Return with success */
return 0;
}
/* ------------------------------
* Private helper functions
* ------------------------------*/
static realtype r(realtype t, void *user_data)
{
return( RCONST(0.5)*cos(t) );
}
static realtype s(realtype t, void *user_data)
{
realtype *rpar = (realtype *) user_data;
return( cos(rpar[1]*t) );
}
static realtype rdot(realtype t, void *user_data)
{
return( -RCONST(0.5)*sin(t) );
}
static realtype sdot(realtype t, void *user_data)
{
realtype *rpar = (realtype *) user_data;
return( -rpar[1]*sin(rpar[1]*t) );
}
static realtype utrue(realtype t, void *user_data)
{
return( SUNRsqrt(ONE+r(t,user_data)) );
}
static realtype vtrue(realtype t, void *user_data)
{
return( SUNRsqrt(TWO+s(t,user_data)) );
}
static int Ytrue(realtype t, N_Vector y, void *user_data)
{
NV_Ith_S(y,0) = utrue(t,user_data);
NV_Ith_S(y,1) = vtrue(t,user_data);
return(0);
}
/* Check function return value...
opt == 0 means SUNDIALS function allocates memory so check if
returned NULL pointer
opt == 1 means SUNDIALS function returns a retval so check if
retval < 0
opt == 2 means function allocates memory so check if returned
NULL pointer
*/
static int check_retval(void *returnvalue, const char *funcname, int opt)
{
int *retval;
/* Check if SUNDIALS function returned NULL pointer - no memory allocated */
if (opt == 0 && returnvalue == NULL) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return 1; }
/* Check if retval < 0 */
else if (opt == 1) {
retval = (int *) returnvalue;
if (*retval < 0) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with retval = %d\n\n",
funcname, *retval);
return 1; }}
/* Check if function returned NULL pointer - no memory allocated */
else if (opt == 2 && returnvalue == NULL) {
fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return 1; }
return 0;
}
/*---- end of file ----*/
|