File: ark_robertson_root.c

package info (click to toggle)
sundials 6.4.1%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 79,368 kB
  • sloc: ansic: 218,700; f90: 62,503; cpp: 61,511; fortran: 5,166; python: 4,642; sh: 4,114; makefile: 562; perl: 123
file content (343 lines) | stat: -rw-r--r-- 14,161 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
/*---------------------------------------------------------------
 * Programmer(s): Daniel R. Reynolds @ SMU
 *---------------------------------------------------------------
 * SUNDIALS Copyright Start
 * Copyright (c) 2002-2022, Lawrence Livermore National Security
 * and Southern Methodist University.
 * All rights reserved.
 *
 * See the top-level LICENSE and NOTICE files for details.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 * SUNDIALS Copyright End
 *---------------------------------------------------------------
 * Example problem:
 *
 * The following test simulates the Robertson problem,
 * corresponding to the kinetics of an autocatalytic reaction.
 * This is an ODE system with 3 components, Y = [u,v,w], satisfying
 * the equations,
 *    du/dt = -0.04*u + 1e4*v*w
 *    dv/dt = 0.04*u - 1e4*v*w - 3e7*v^2
 *    dw/dt = 3e7*v^2
 * for t in the interval [0.0, 1e11], with initial conditions
 * Y0 = [1,0,0].
 *
 * While integrating the system, we use the rootfinding feature
 * to find the times at which either u=1e-4 or w=1e-2.
 *
 * This program solves the problem with one of the solvers, ERK,
 * DIRK or ARK.  For DIRK and ARK, implicit subsystems are solved
 * using a Newton iteration with the dense SUNLinearSolver, and a
 * user-supplied Jacobian routine.
 *
 * 100 outputs are printed at equal intervals, and run statistics
 * are printed at the end.
 *---------------------------------------------------------------*/

/* Header files */
#include <stdio.h>
#include <math.h>
#include <arkode/arkode_arkstep.h>      /* prototypes for ARKStep fcts., consts */
#include <nvector/nvector_serial.h>     /* serial N_Vector types, fcts., macros */
#include <sunmatrix/sunmatrix_dense.h>  /* access to dense SUNMatrix            */
#include <sunlinsol/sunlinsol_dense.h>  /* access to dense SUNLinearSolver      */
#include <sundials/sundials_types.h>    /* defs. of 'realtype', 'sunindextype'  */

#if defined(SUNDIALS_EXTENDED_PRECISION)
#define GSYM "Lg"
#define ESYM "Le"
#define FSYM "Lf"
#else
#define GSYM "g"
#define ESYM "e"
#define FSYM "f"
#endif

/* User-supplied Functions Called by the Solver */
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data);
static int Jac(realtype t, N_Vector y, N_Vector fy, SUNMatrix J,
               void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
static int g(realtype t, N_Vector y, realtype *gout, void *user_data);

/* Private function to check function return values */
static int check_flag(void *flagvalue, const char *funcname, int opt);

/* Main Program */
int main()
{
  /* general problem parameters */
  realtype T0 = RCONST(0.0);     /* initial time */
  realtype T1 = RCONST(0.4);     /* first output time */
  realtype TMult = RCONST(10.0); /* output time multiplication factor */
  int Nt = 12;                   /* total number of output times */
  sunindextype NEQ = 3;              /* number of dependent vars. */
 
  /* rootfinding variables */
  int rootsfound[2];
  int rtflag;         /* root info flag */

  /* general problem variables */
  int flag;                      /* reusable error-checking flag */
  N_Vector y = NULL;             /* empty vector for storing solution */
  N_Vector atols = NULL;         /* empty vector for absolute tolerances */
  SUNMatrix A = NULL;            /* empty matrix for linear solver */
  SUNLinearSolver LS = NULL;     /* empty linear solver object */
  void *arkode_mem = NULL;       /* empty ARKode memory structure */
  FILE *UFID;
  realtype t, tout;
  int iout;
  long int nst, nst_a, nfe, nfi, nsetups, nje, nfeLS, nni, nnf, ncfn, netf, nge;

  /* set up the initial conditions */
  realtype u0 = RCONST(1.0);
  realtype v0 = RCONST(0.0);
  realtype w0 = RCONST(0.0);
  realtype reltol = RCONST(1.0e-4);

  /* Create the SUNDIALS context object for this simulation */
  SUNContext ctx;
  flag = SUNContext_Create(NULL, &ctx);
  if (check_flag(&flag, "SUNContext_Create", 1)) return 1;

  /* Initial problem output */
  printf("\nRobertson ODE test problem (with rootfinding):\n");
  printf("    initial conditions:  u0 = %"GSYM",  v0 = %"GSYM",  w0 = %"GSYM"\n",u0,v0,w0);

  /* Initialize data structures */
  y = N_VNew_Serial(NEQ, ctx);         /* Create serial vector for solution */
  if (check_flag((void *) y, "N_VNew_Serial", 0)) return 1;
  NV_Ith_S(y,0) = u0;             /* Set initial conditions into y */
  NV_Ith_S(y,1) = v0;
  NV_Ith_S(y,2) = w0;

  atols = N_VClone(y);    /* Create serial vector absolute tolerances */
  if (check_flag((void *) atols, "N_VNew_Serial", 0)) return 1;

  /* Set absolute tolerances */
  NV_Ith_S(atols,0) = RCONST(1.0e-8);
  NV_Ith_S(atols,1) = RCONST(1.0e-11);
  NV_Ith_S(atols,2) = RCONST(1.0e-8);

  /* Call ARKStepCreate to initialize the ARK timestepper module and
     specify the right-hand side function in y'=f(t,y), the inital time
     T0, and the initial dependent variable vector y.  Note: since this
     problem is fully implicit, we set f_E to NULL and f_I to f. */
  arkode_mem = ARKStepCreate(NULL, f, T0, y, ctx);
  if (check_flag((void *)arkode_mem, "ARKStepCreate", 0)) return 1;

  /* Set routines */
  flag = ARKStepSetMaxErrTestFails(arkode_mem, 20);           /* Increase max error test fails */
  if (check_flag(&flag, "ARKStepSetMaxErrTestFails", 1)) return 1;
  flag = ARKStepSetMaxNonlinIters(arkode_mem, 8);             /* Increase max nonlin iters  */
  if (check_flag(&flag, "ARKStepSetMaxNonlinIters", 1)) return 1;
  flag = ARKStepSetNonlinConvCoef(arkode_mem, RCONST(1.e-7)); /* Set nonlinear convergence coeff. */
  if (check_flag(&flag, "ARKStepSetNonlinConvCoef", 1)) return 1;
  flag = ARKStepSetMaxNumSteps(arkode_mem, 100000);           /* Increase max num steps */
  if (check_flag(&flag, "ARKStepSetMaxNumSteps", 1)) return 1;
  flag = ARKStepSetPredictorMethod(arkode_mem, 1);            /* Specify maximum-order predictor */
  if (check_flag(&flag, "ARKStepSetPredictorMethod", 1)) return 1;
  flag = ARKStepSVtolerances(arkode_mem, reltol, atols);      /* Specify tolerances */
  if (check_flag(&flag, "ARKStepSStolerances", 1)) return 1;

  /* Specify the root-finding function, having 2 equations */
  flag = ARKStepRootInit(arkode_mem, 2, g);
  if (check_flag(&flag, "ARKStepRootInit", 1)) return 1;

  /* Initialize dense matrix data structure and solver */
  A = SUNDenseMatrix(NEQ, NEQ, ctx);
  if (check_flag((void *)A, "SUNDenseMatrix", 0)) return 1;
  LS = SUNLinSol_Dense(y, A, ctx);
  if (check_flag((void *)LS, "SUNLinSol_Dense", 0)) return 1;

  /* Linear solver interface */
  flag = ARKStepSetLinearSolver(arkode_mem, LS, A);        /* Attach matrix and linear solver */
  if (check_flag(&flag, "ARKStepSetLinearSolver", 1)) return 1;
  flag = ARKStepSetJacFn(arkode_mem, Jac);                 /* Set the Jacobian routine */
  if (check_flag(&flag, "ARKStepSetJacFn", 1)) return 1;

  /* Open output stream for results, output comment line */
  UFID = fopen("solution.txt","w");
  fprintf(UFID,"# t u v w\n");

  /* output initial condition to disk */
  fprintf(UFID," %.16"ESYM" %.16"ESYM" %.16"ESYM" %.16"ESYM"\n",
          T0, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));

  /* Main time-stepping loop: calls ARKStepEvolve to perform the integration, then
     prints results.  Stops when the final time has been reached */
  t = T0;
  printf("        t             u             v             w\n");
  printf("   -----------------------------------------------------\n");
  printf("  %12.5"ESYM"  %12.5"ESYM"  %12.5"ESYM"  %12.5"ESYM"\n",
      t, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));
  tout = T1;
  iout = 0;
  while(1) {

    flag = ARKStepEvolve(arkode_mem, tout, y, &t, ARK_NORMAL);       /* call integrator */
    if (check_flag(&flag, "ARKStepEvolve", 1)) break;
    printf("  %12.5"ESYM"  %12.5"ESYM"  %12.5"ESYM"  %12.5"ESYM"\n",              /* access/print solution */
           t, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));
    fprintf(UFID," %.16"ESYM" %.16"ESYM" %.16"ESYM" %.16"ESYM"\n",
            t, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));
    if (flag == ARK_ROOT_RETURN) {                          /* check if a root was found */
      rtflag = ARKStepGetRootInfo(arkode_mem, rootsfound);
      if (check_flag(&rtflag, "ARKStepGetRootInfo", 1)) return 1;
      printf("      rootsfound[] = %3d %3d\n",
          rootsfound[0], rootsfound[1]);
    }
    if (flag >= 0) {                                        /* successful solve: update output time */
      iout++;
      tout *= TMult;
    } else {                                                /* unsuccessful solve: break */
      fprintf(stderr,"Solver failure, stopping integration\n");
      break;
    }
    if (iout == Nt) break;                                  /* stop after enough outputs */
  }
  printf("   -----------------------------------------------------\n");
  fclose(UFID);

  /* Print some final statistics */
  flag = ARKStepGetNumSteps(arkode_mem, &nst);
  check_flag(&flag, "ARKStepGetNumSteps", 1);
  flag = ARKStepGetNumStepAttempts(arkode_mem, &nst_a);
  check_flag(&flag, "ARKStepGetNumStepAttempts", 1);
  flag = ARKStepGetNumRhsEvals(arkode_mem, &nfe, &nfi);
  check_flag(&flag, "ARKStepGetNumRhsEvals", 1);
  flag = ARKStepGetNumLinSolvSetups(arkode_mem, &nsetups);
  check_flag(&flag, "ARKStepGetNumLinSolvSetups", 1);
  flag = ARKStepGetNumErrTestFails(arkode_mem, &netf);
  check_flag(&flag, "ARKStepGetNumErrTestFails", 1);
  flag = ARKStepGetNumStepSolveFails(arkode_mem, &ncfn);
  check_flag(&flag, "ARKStepGetNumStepSolveFails", 1);
  flag = ARKStepGetNumNonlinSolvIters(arkode_mem, &nni);
  check_flag(&flag, "ARKStepGetNumNonlinSolvIters", 1);
  flag = ARKStepGetNumNonlinSolvConvFails(arkode_mem, &nnf);
  check_flag(&flag, "ARKStepGetNumNonlinSolvConvFails", 1);
  flag = ARKStepGetNumJacEvals(arkode_mem, &nje);
  check_flag(&flag, "ARKStepGetNumJacEvals", 1);
  flag = ARKStepGetNumLinRhsEvals(arkode_mem, &nfeLS);
  check_flag(&flag, "ARKStepGetNumLinRhsEvals", 1);
  flag = ARKStepGetNumGEvals(arkode_mem, &nge);
  check_flag(&flag, "ARKStepGetNumGEvals", 1);

  printf("\nFinal Solver Statistics:\n");
  printf("   Internal solver steps = %li (attempted = %li)\n",
         nst, nst_a);
  printf("   Total RHS evals:  Fe = %li,  Fi = %li\n", nfe, nfi);
  printf("   Total linear solver setups = %li\n", nsetups);
  printf("   Total RHS evals for setting up the linear system = %li\n", nfeLS);
  printf("   Total number of Jacobian evaluations = %li\n", nje);
  printf("   Total number of Newton iterations = %li\n", nni);
  printf("   Total root-function g evals = %li\n", nge);
  printf("   Total number of nonlinear solver convergence failures = %li\n", nnf);
  printf("   Total number of error test failures = %li\n", netf);
  printf("   Total number of failed steps from solver failure = %li\n", ncfn);

  /* Clean up and return with successful completion */
  N_VDestroy(y);               /* Free y vector */
  N_VDestroy(atols);           /* Free atols vector */
  ARKStepFree(&arkode_mem);    /* Free integrator memory */
  SUNLinSolFree(LS);           /* Free linear solver */
  SUNMatDestroy(A);            /* Free A matrix */
  SUNContext_Free(&ctx);       /* Free context */

  return 0;
}

/*-------------------------------
 * Functions called by the solver
 *-------------------------------*/

/* f routine to compute the ODE RHS function f(t,y). */
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
  realtype u = NV_Ith_S(y,0);   /* access current solution */
  realtype v = NV_Ith_S(y,1);
  realtype w = NV_Ith_S(y,2);

  /* Fill in ODE RHS function */
  NV_Ith_S(ydot,0) = -0.04*u + 1.e4*v*w;
  NV_Ith_S(ydot,1) = 0.04*u - 1.e4*v*w - 3.e7*v*v;
  NV_Ith_S(ydot,2) = 3.e7*v*v;

  return 0;                     /* Return with success */
}

/* Jacobian routine to compute J(t,y) = df/dy. */
static int Jac(realtype t, N_Vector y, N_Vector fy, SUNMatrix J,
               void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
  realtype v = NV_Ith_S(y,1);   /* access current solution */
  realtype w = NV_Ith_S(y,2);
  SUNMatZero(J);                /* initialize Jacobian to zero */

  /* Fill in the Jacobian of the ODE RHS function */
  SM_ELEMENT_D(J,0,0) = -0.04;
  SM_ELEMENT_D(J,0,1) = 1.e4*w;
  SM_ELEMENT_D(J,0,2) = 1.e4*v;

  SM_ELEMENT_D(J,1,0) = 0.04;
  SM_ELEMENT_D(J,1,1) = -1.e4*w - 6.e7*v;
  SM_ELEMENT_D(J,1,2) = -1.e4*v;

  SM_ELEMENT_D(J,2,1) = 6.e7*v;

  return 0;                     /* Return with success */
}

/* g routine to compute the root-finding function g(t,y). */
static int g(realtype t, N_Vector y, realtype *gout, void *user_data)
{
  realtype u = NV_Ith_S(y,0);    /* access current solution */
  realtype w = NV_Ith_S(y,2);

  gout[0] = u - RCONST(0.0001);  /* check for u == 1e-4 */
  gout[1] = w - RCONST(0.01);    /* check for w == 1e-2 */

  return 0;                      /* Return with success */
}

/*-------------------------------
 * Private helper functions
 *-------------------------------*/

/* Check function return value...
    opt == 0 means SUNDIALS function allocates memory so check if
             returned NULL pointer
    opt == 1 means SUNDIALS function returns a flag so check if
             flag >= 0
    opt == 2 means function allocates memory so check if returned
             NULL pointer
*/
static int check_flag(void *flagvalue, const char *funcname, int opt)
{
  int *errflag;

  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */
  if (opt == 0 && flagvalue == NULL) {
    fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return 1; }

  /* Check if flag < 0 */
  else if (opt == 1) {
    errflag = (int *) flagvalue;
    if (*errflag < 0) {
      fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with flag = %d\n\n",
              funcname, *errflag);
      return 1; }}

  /* Check if function returned NULL pointer - no memory allocated */
  else if (opt == 2 && flagvalue == NULL) {
    fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return 1; }

  return 0;
}


/*---- end of file ----*/