1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
|
!-----------------------------------------------------------------
! Programmer(s): Daniel R. Reynolds @ SMU
!-----------------------------------------------------------------
! SUNDIALS Copyright Start
! Copyright (c) 2002-2022, Lawrence Livermore National Security
! and Southern Methodist University.
! All rights reserved.
!
! See the top-level LICENSE and NOTICE files for details.
!
! SPDX-License-Identifier: BSD-3-Clause
! SUNDIALS Copyright End
!-----------------------------------------------------------------
! Example problem:
!
! The following test simulates a simple anisotropic 2D heat
! equation,
! u_t = kx*u_xx + ky*u_yy + h,
! for t in [0, 10], (x,y) in [0, 1]^2, with initial conditions
! u(0,x,y) = 0,
! stationary boundary conditions, i.e.
! u_t(t,0,y) = u_t(t,1,y) = u_t(t,x,0) = u_t(t,x,1) = 0,
! and a heat source of the form
! h(x,y) = sin(pi*x)*sin(2*pi*y).
!
! Under this setup, the problem has an analytical solution:
! u(t,x,y) = a(t)*sin(pi*x)*sin(2*pi*y), where
! a(t) = (1 - exp(-(kx+4*ky)*pi^2*t)) / ((kx+4*ky)*pi^2).
!
! The spatial derivatives are computed using second-order
! centered differences, with the data distributed over nx*ny
! points on a uniform spatial grid.
!
! The spatial grid parameters nx and ny, the parameters kx and ky,
! as well as the desired relative and absolute solver tolerances,
! are provided in the input file input_heat2D.txt.
!
! This program solves the problem with a DIRK method. This
! employs a Newton iteration with the PCG iterative linear solver,
! which itself uses a Jacobi preconditioner. The example uses the
! built-in finite-difference Jacobian-vector product routine, but
! supplies both the RHS and preconditioner setup/solve functions.
!
! 20 outputs are printed at equal intervals, and run statistics
! are printed at the end.
!-----------------------------------------------------------------
!-----------------------------------------------------------------
! Main driver program
!-----------------------------------------------------------------
module UserData
!---------------------------------------------------------------
! Description:
! Module containing problem-defining parameters, as well as
! data buffers for MPI exchanges with neighboring processes.
! Also contains routines to:
! (a) initialize the module
! (b) perform exchanges
! (c) free module data.
!---------------------------------------------------------------
implicit none
include "sundials/sundials_fconfig.h"
save
integer*8 :: nx ! global number of x grid points
integer*8 :: ny ! global number of y grid points
integer*8 :: is ! global x indices of this subdomain
integer*8 :: ie
integer*8 :: js ! global y indices of this subdomain
integer*8 :: je
integer*8 :: nxl ! local number of x grid points
integer*8 :: nyl ! local number of y grid points
real*8 :: dx ! x-directional mesh spacing
real*8 :: dy ! y-directional mesh spacing
real*8 :: kx ! x-directional diffusion coefficient
real*8 :: ky ! y-directional diffusion coefficient
real(kind=REALTYPE), dimension(:,:), allocatable :: h ! heat source vector
real(kind=REALTYPE), dimension(:,:), allocatable :: d ! inverse of Jacobian diagonal
integer :: comm ! communicator object
integer :: myid ! MPI process ID
integer :: nprocs ! total number of MPI processes
logical :: HaveNbor(2,2) ! flags denoting neighbor on boundary
real(kind=REALTYPE), dimension(:), allocatable :: Erecv ! receive buffers for neighbor exchange
real(kind=REALTYPE), dimension(:), allocatable :: Wrecv
real(kind=REALTYPE), dimension(:), allocatable :: Nrecv
real(kind=REALTYPE), dimension(:), allocatable :: Srecv
real(kind=REALTYPE), dimension(:), allocatable :: Esend ! send buffers for neighbor exchange
real(kind=REALTYPE), dimension(:), allocatable :: Wsend
real(kind=REALTYPE), dimension(:), allocatable :: Nsend
real(kind=REALTYPE), dimension(:), allocatable :: Ssend
contains
!---------------------------------------------------------------
! Initialize memory allocated within Userdata (set to defaults)
!---------------------------------------------------------------
subroutine InitUserData()
implicit none
include "mpif.h"
nx = 0
ny = 0
is = 0
ie = 0
js = 0
je = 0
nxl = 0
nyl = 0
dx = 0.d0
dy = 0.d0
kx = 0.d0
ky = 0.d0
if (allocated(h)) deallocate(h)
if (allocated(d)) deallocate(d)
comm = MPI_COMM_WORLD
myid = 0
nprocs = 0
HaveNbor = .false.
if (allocated(Erecv)) deallocate(Erecv)
if (allocated(Wrecv)) deallocate(Wrecv)
if (allocated(Nrecv)) deallocate(Nrecv)
if (allocated(Srecv)) deallocate(Srecv)
if (allocated(Esend)) deallocate(Esend)
if (allocated(Wsend)) deallocate(Wsend)
if (allocated(Nsend)) deallocate(Nsend)
if (allocated(Ssend)) deallocate(Ssend)
end subroutine InitUserData
!---------------------------------------------------------------
!---------------------------------------------------------------
! Set up parallel decomposition
!---------------------------------------------------------------
subroutine SetupDecomp(ierr)
! declarations
implicit none
include "mpif.h"
integer, intent(out) :: ierr
integer :: dims(2), periods(2), coords(2)
! internals
! check that this has not been called before
if (allocated(h) .or. allocated(d)) then
write(0,*) "SetupDecomp warning: parallel decomposition already set up"
ierr = 1
return
end if
! get suggested parallel decomposition
dims = (/0, 0/)
call MPI_Comm_size(MPI_COMM_WORLD, nprocs, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Comm_size = " , ierr
return
end if
call MPI_Dims_create(nprocs, 2, dims, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Dims_create = " , ierr
return
end if
! set up 2D Cartesian communicator
periods = (/0, 0/)
call MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, comm, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Cart_create = " , ierr
return
end if
call MPI_Comm_rank(comm, myid, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Comm_rank = " , ierr
return
end if
! determine local extents
call MPI_Cart_get(comm, 2, dims, periods, coords, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Cart_get = " , ierr
return
end if
is = nx*coords(1)/dims(1) + 1
ie = nx*(coords(1)+1)/dims(1)
js = ny*coords(2)/dims(2) + 1
je = ny*(coords(2)+1)/dims(2)
nxl = ie-is+1
nyl = je-js+1
! determine if I have neighbors, and allocate exchange buffers
HaveNbor(1,1) = (is /= 1)
HaveNbor(1,2) = (ie /= nx)
HaveNbor(2,1) = (js /= 1)
HaveNbor(2,2) = (je /= ny)
if (HaveNbor(1,1)) then
allocate(Wrecv(nyl))
allocate(Wsend(nyl))
endif
if (HaveNbor(1,2)) then
allocate(Erecv(nyl))
allocate(Esend(nyl))
endif
if (HaveNbor(2,1)) then
allocate(Srecv(nxl))
allocate(Ssend(nxl))
endif
if (HaveNbor(2,2)) then
allocate(Nrecv(nxl))
allocate(Nsend(nxl))
endif
! allocate temporary vectors
allocate(h(nxl,nyl)) ! Create vector for heat source
allocate(d(nxl,nyl)) ! Create vector for Jacobian diagonal
ierr = 0 ! return with success flag
return
end subroutine SetupDecomp
!---------------------------------------------------------------
!---------------------------------------------------------------
! Perform neighbor exchange
!---------------------------------------------------------------
subroutine Exchange(y, ierr)
! declarations
implicit none
include "mpif.h"
real(kind=REALTYPE), intent(in) :: y(nxl,nyl)
integer, intent(out) :: ierr
integer :: reqSW, reqSE, reqSS, reqSN, reqRW, reqRE, reqRS, reqRN;
integer :: stat(MPI_STATUS_SIZE)
integer*8 :: i
integer :: ipW, ipE, ipS, ipN
integer :: coords(2), dims(2), periods(2), nbcoords(2)
! internals
! MPI neighborhood information
call MPI_Cart_get(comm, 2, dims, periods, coords, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Cart_get = ", ierr
return
endif
if (HaveNbor(1,1)) then
nbcoords = (/ coords(1)-1, coords(2) /)
call MPI_Cart_rank(comm, nbcoords, ipW, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Cart_rank = ", ierr
return
endif
endif
if (HaveNbor(1,2)) then
nbcoords = (/ coords(1)+1, coords(2) /)
call MPI_Cart_rank(comm, nbcoords, ipE, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Cart_rank = ", ierr
return
endif
endif
if (HaveNbor(2,1)) then
nbcoords = (/ coords(1), coords(2)-1 /)
call MPI_Cart_rank(comm, nbcoords, ipS, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Cart_rank = ", ierr
return
endif
endif
if (HaveNbor(2,2)) then
nbcoords = (/ coords(1), coords(2)+1 /)
call MPI_Cart_rank(comm, nbcoords, ipN, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Cart_rank = ", ierr
return
endif
endif
! open Irecv buffers
if (HaveNbor(1,1)) then
call MPI_Irecv(Wrecv, nyl, MPI_DOUBLE_PRECISION, ipW, &
MPI_ANY_TAG, comm, reqRW, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Irecv = ", ierr
return
endif
endif
if (HaveNbor(1,2)) then
call MPI_Irecv(Erecv, nyl, MPI_DOUBLE_PRECISION, ipE, &
MPI_ANY_TAG, comm, reqRE, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Irecv = ", ierr
return
endif
endif
if (HaveNbor(2,1)) then
call MPI_Irecv(Srecv, nxl, MPI_DOUBLE_PRECISION, ipS, &
MPI_ANY_TAG, comm, reqRS, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Irecv = ", ierr
return
endif
endif
if (HaveNbor(2,2)) then
call MPI_Irecv(Nrecv, nxl, MPI_DOUBLE_PRECISION, ipN, &
MPI_ANY_TAG, comm, reqRN, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Irecv = ", ierr
return
endif
endif
! send data
if (HaveNbor(1,1)) then
do i=1,nyl
Wsend(i) = y(1,i)
enddo
call MPI_Isend(Wsend, nyl, MPI_DOUBLE_PRECISION, ipW, 0, &
comm, reqSW, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Isend = ", ierr
return
endif
endif
if (HaveNbor(1,2)) then
do i=1,nyl
Esend(i) = y(nxl,i)
enddo
call MPI_Isend(Esend, nyl, MPI_DOUBLE_PRECISION, ipE, 1, &
comm, reqSE, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Isend = ", ierr
return
endif
endif
if (HaveNbor(2,1)) then
do i=1,nxl
Ssend(i) = y(i,1)
enddo
call MPI_Isend(Ssend, nxl, MPI_DOUBLE_PRECISION, ipS, 2, &
comm, reqSS, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Isend = ", ierr
return
endif
endif
if (HaveNbor(2,2)) then
do i=1,nxl
Nsend(i) = y(i,nyl)
enddo
call MPI_Isend(Nsend, nxl, MPI_DOUBLE_PRECISION, ipN, 3, &
comm, reqSN, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Isend = ", ierr
return
endif
endif
! wait for messages to finish
if (HaveNbor(1,1)) then
call MPI_Wait(reqRW, stat, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Wait = ", ierr
return
endif
call MPI_Wait(reqSW, stat, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Wait = ", ierr
return
endif
endif
if (HaveNbor(1,2)) then
call MPI_Wait(reqRE, stat, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Wait = ", ierr
return
endif
call MPI_Wait(reqSE, stat, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Wait = ", ierr
return
endif
endif
if (HaveNbor(2,1)) then
call MPI_Wait(reqRS, stat, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Wait = ", ierr
return
endif
call MPI_Wait(reqSS, stat, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Wait = ", ierr
return
endif
endif
if (HaveNbor(2,2)) then
call MPI_Wait(reqRN, stat, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Wait = ", ierr
return
endif
call MPI_Wait(reqSN, stat, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Wait = ", ierr
return
endif
endif
ierr = 0 ! return with success flag
return
end subroutine Exchange
!---------------------------------------------------------------
!---------------------------------------------------------------
! Free memory allocated within Userdata
!---------------------------------------------------------------
subroutine FreeUserData(ierr)
implicit none
integer, intent(out) :: ierr
if (allocated(h)) deallocate(h)
if (allocated(d)) deallocate(d)
if (allocated(Wrecv)) deallocate(Wrecv)
if (allocated(Wsend)) deallocate(Wsend)
if (allocated(Erecv)) deallocate(Erecv)
if (allocated(Esend)) deallocate(Esend)
if (allocated(Srecv)) deallocate(Srecv)
if (allocated(Ssend)) deallocate(Ssend)
if (allocated(Nrecv)) deallocate(Nrecv)
if (allocated(Nsend)) deallocate(Nsend)
ierr = 0 ! return with success flag
return
end subroutine FreeUserData
!---------------------------------------------------------------
!---------------------------------------------------------------
! RMS norm function for parallel array data
!---------------------------------------------------------------
subroutine PRMS(y,yrms,ierr)
! declarations
implicit none
include "mpif.h"
integer, intent(out) :: ierr
real(kind=REALTYPE), intent(in) :: y(nxl,nyl)
real(kind=REALTYPE), intent(out) :: yrms
real(kind=REALTYPE) :: lsum, gsum
! internals
lsum = sum(y**2)
call MPI_Allreduce(lsum, gsum, 1, MPI_DOUBLE_PRECISION, &
MPI_SUM, comm, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Allreduce = ", ierr
call MPI_Finalize(ierr)
endif
yrms = sqrt(gsum/nx/ny)
ierr = 0 ! return with success flag
return
end subroutine PRMS
!---------------------------------------------------------------
end module UserData
!-----------------------------------------------------------------
!-----------------------------------------------------------------
! Main driver program
!-----------------------------------------------------------------
program driver
! inclusions
use UserData
implicit none
include "mpif.h"
! Declarations
! general problem parameters
real*8, parameter :: pi = 3.1415926535897932d0
integer, parameter :: Nt = 20 ! total number of output times
integer*8, parameter :: nx_ = 60 ! spatial mesh size
integer*8, parameter :: ny_ = 120
integer, parameter :: PCGpretype = 1 ! enable preconditioner
integer, parameter :: PCGmaxl = 20 ! max num. PCG iterations
real(kind=REALTYPE), parameter :: T0 = 0.d0 ! initial time
real(kind=REALTYPE), parameter :: Tf = 0.3d0 ! final time
real(kind=REALTYPE), parameter :: rtol = 1.d-5 ! relative and absolute tolerances
real(kind=REALTYPE), parameter :: atol = 1.d-10
real(kind=REALTYPE), parameter :: kx_ = 0.5d0 ! heat conductivity coefficients
real(kind=REALTYPE), parameter :: ky_ = 0.75d0
real(kind=REALTYPE), parameter :: nlscoef = 1.d-7 ! nonlinear solver tolerance factor
! solution vector and other local variables
real(kind=REALTYPE), allocatable :: y(:,:)
real(kind=REALTYPE) :: rout(6), rpar, t, dTout, tout, urms
integer*8 :: iout(35), ipar, N, Ntot, i, j
integer :: flag, ioutput
logical :: outproc
character*100 :: outname
! initialize MPI
call MPI_Init(flag)
if (flag /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Init = ", flag
stop
end if
call MPI_Comm_rank(MPI_COMM_WORLD, myid, flag)
if (flag /= MPI_SUCCESS) then
write(0,*) "Error in MPI_Comm_rank = ", flag
call MPI_Finalize(flag)
end if
! Initialize UserData module
call InitUserData()
nx = nx_
ny = ny_
kx = kx_
ky = ky_
dx = 1.d0/(nx-1) ! x mesh spacing
dy = 1.d0/(ny-1) ! x mesh spacing
! Set up parallel decomposition (computes local mesh sizes)
call SetupDecomp(flag)
if (flag /= MPI_SUCCESS) then
write(0,*) "Error in SetupDecomp = ", flag
call MPI_Finalize(flag)
end if
! Initial problem output
outproc = (myid == 0)
if (outproc) then
write(6,*) " "
write(6,*) "2D Heat PDE test problem:";
write(6,'(A,i4)') " nprocs = " , nprocs
write(6,'(A,i4)') " nx = ", nx
write(6,'(A,i4)') " ny = ", ny
write(6,'(A,f5.2)') " kx = ", kx
write(6,'(A,f5.2)') " ky = ", ky
write(6,'(A,es9.2)') " rtol = ", rtol
write(6,'(A,es9.2)') " atol = ", atol
write(6,'(A,i4)') " nxl (proc 0) = ", nxl
write(6,'(A,i4)') " nyl (proc 0) = ", nyl
write(6,*) " "
endif
! Initialize data structures
N = nxl*nyl
Ntot = nx*ny
call FNVInitP(comm, 4, N, Ntot, flag)
if (flag /= MPI_SUCCESS) then
write(0,*) "Error in FNVInitP = ", flag
call MPI_Finalize(flag)
end if
allocate(y(nxl,nyl)) ! Create parallel vector for solution
y = 0.d0 ! Set initial conditions
! initialize PCG linear solver module
call FSunPCGInit(4, PCGpretype, PCGmaxl, flag)
if (flag /= MPI_SUCCESS) then
write(0,*) "Error in FSunPCGInit = ", flag
call MPI_Finalize(flag)
end if
! Create the solver memory to use DIRK integrator, scalar tolerances
call FARKMalloc(T0, y, 0, 1, rtol, atol, iout, rout, ipar, rpar, flag)
if (flag /= MPI_SUCCESS) then
write(0,*) "Error in FARKMalloc = ", flag
call MPI_Finalize(flag)
end if
! fill in the heat source array
do j=1,nyl
do i=1,nxl
h(i,j) = sin(pi*(is+i-2)*dx) * sin(2.d0*pi*(js+j-2)*dy)
enddo
enddo
! set integrator options
call FARKSetRin("NLCONV_COEF", nlscoef, flag)
if (flag < 0) then
write(0,*) "Error in FARKSetRin = ", flag
call MPI_Finalize(flag)
end if
call FARKSetIin("PREDICT_METHOD", 1_8, flag)
if (flag < 0) then
write(0,*) "Error in FARKSetIin = ", flag
call MPI_Finalize(flag)
end if
! attach linear solver module to ARKLs interface
call FARKLsInit(flag)
if (flag < 0) then
write(0,*) "Error in FARKLsInit = ", flag
call MPI_Finalize(flag)
end if
call FARKLsSetPrec(1, flag) ! Signal user-supplied preconditioner
if (flag < 0) then
write(0,*) "Error in FARKLsSetPrec = ", flag
call MPI_Finalize(flag)
end if
! specify that the problem is linearly implicit, but that Jacobian does not depend on time
call FARKSetIin("LINEAR", 0_8, flag)
if (flag < 0) then
write(0,*) "Error in FARKSetIin = ", flag
call MPI_Finalize(flag)
end if
! Each processor outputs subdomain information
write(outname,'(16Hheat2d_subdomain,f4.3,4H.txt)') myid/1000.0
open(100, file=outname)
write(100,'(6(i9,1x))') nx, ny, is, ie, js, je
close(100)
! Open output streams for results, access data array
write(outname,'(6Hheat2d,f4.3,4H.txt)') myid/1000.0
open(101, file=outname)
! Output initial condition to disk
do j=1,nyl
do i=1,nxl
write(101,'(es25.16)',advance='no') y(i,j)
enddo
enddo
write(101,*) " "
! Main time-stepping loop: calls ARKode to perform the integration, then
! prints results. Stops when the final time has been reached
t = T0
dTout = (Tf-T0)/Nt
tout = T0+dTout
call PRMS(y, urms, flag)
if (outproc) then
write(6,*) " t ||u||_rms"
write(6,*) " ----------------------"
write(6,'(2(2x,f10.6))') t, urms
endif
do ioutput=1,Nt
call FARKode(tout, t, y, 1, flag) ! call integrator
if (flag < 0) then
write(0,*) "Error in FARKode = ", flag
exit
end if
call PRMS(y, urms, flag)
if (outproc) &
write(6,'(2(2x,f10.6))') t, urms ! print solution stats
if (flag >= 0) then ! successful solve: update output time
tout = min(tout + dTout, Tf)
else ! unsuccessful solve: break
if (outproc) &
write(0,*) "Solver failure, stopping integration"
exit
endif
! output results to disk
do j=1,nyl
do i=1,nxl
write(101,'(es25.16)',advance='no') y(i,j)
enddo
enddo
write(101,*) " "
enddo
if (outproc) then
write(6,*) " ----------------------"
endif
close(101)
! Print some final statistics
if (outproc) then
write(6,*) " "
write(6,*) "Final Solver Statistics:"
write(6,'(2(A,i6),A)') " Internal solver steps = ", iout(3), &
" (attempted = ", iout(6), ")"
write(6,'(A,i6,A,i6)') " Total RHS evals: Fe = ", iout(7), ", Fi = ", iout(8)
write(6,'(A,i6)') " Total linear solver setups = ", iout(9)
write(6,'(A,i6)') " Total linear iterations = ", iout(23)
write(6,'(A,i6)') " Total number of Jacobian-vector products = ", iout(20)
write(6,'(A,i6)') " Total number of Preconditioner setups = ", iout(21)
write(6,'(A,i6)') " Total number of Preconditioner solves = ", iout(22)
write(6,'(A,i6)') " Total number of linear solver convergence failures = ", &
iout(24)
write(6,'(A,i6)') " Total number of Newton iterations = ", iout(11)
write(6,'(A,i6)') " Total number of nonlinear solver convergence failures = ", &
iout(12)
write(6,'(A,i6)') " Total number of error test failures = ", iout(10)
endif
! Clean up and return with successful completion
if (allocated(y)) deallocate(y) ! free solution
call FreeUserData(flag) ! free user data
call FARKFree() ! free integrator memory
call MPI_Barrier(comm, flag)
call MPI_Finalize(flag) ! Finalize MPI
end program driver
!-----------------------------------------------------------------
!-----------------------------------------------------------------
! Functions called by the solver
!-----------------------------------------------------------------
subroutine farkifun(t, y, ydot, ipar, rpar, ierr)
!-----------------------------------------------------------------
! f routine to compute the ODE RHS function f(t,y).
!-----------------------------------------------------------------
! declarations
use UserData
implicit none
include "mpif.h"
real(kind=REALTYPE), intent(in) :: t, rpar
real(kind=REALTYPE), intent(in) :: y(nxl,nyl)
real(kind=REALTYPE), intent(out) :: ydot(nxl,nyl)
integer*8, intent(in) :: ipar
real(kind=REALTYPE) :: c1, c2, c3
integer, intent(out) :: ierr
integer*8 :: i, j
! internals
! Initialize ydot to zero
ydot = 0.d0
! Exchange boundary data with neighbors
call Exchange(y, ierr)
if (ierr /= MPI_SUCCESS) then
write(0,*) "Error in Exchange = " , ierr
return
end if
! iterate over subdomain interior, computing approximation to RHS
c1 = kx/dx/dx
c2 = ky/dy/dy
c3 = -2.d0*(c1 + c2)
do j=2,nyl-1
do i=2,nxl-1
ydot(i,j) = c1*(y(i-1,j)+y(i+1,j)) + c2*(y(i,j-1)+y(i,j+1)) + c3*y(i,j)
enddo
enddo
! iterate over subdomain boundaries (if not at overall domain boundary)
if (HaveNbor(1,1)) then ! West face
i=1
do j=2,nyl-1
ydot(i,j) = c1*(Wrecv(j)+y(i+1,j)) + c2*(y(i,j-1)+y(i,j+1)) + c3*y(i,j)
enddo
endif
if (HaveNbor(1,2)) then ! East face
i=nxl
do j=2,nyl-1
ydot(i,j) = c1*(y(i-1,j)+Erecv(j)) + c2*(y(i,j-1)+y(i,j+1)) + c3*y(i,j)
enddo
endif
if (HaveNbor(2,1)) then ! South face
j=1
do i=2,nxl-1
ydot(i,j) = c1*(y(i-1,j)+y(i+1,j)) + c2*(Srecv(i)+y(i,j+1)) + c3*y(i,j)
enddo
endif
if (HaveNbor(2,2)) then ! West face
j=nyl
do i=2,nxl-1
ydot(i,j) = c1*(y(i-1,j)+y(i+1,j)) + c2*(y(i,j-1)+Nrecv(i)) + c3*y(i,j)
enddo
endif
if (HaveNbor(1,1) .and. HaveNbor(2,1)) then ! South-West corner
i=1
j=1
ydot(i,j) = c1*(Wrecv(j)+y(i+1,j)) + c2*(Srecv(i)+y(i,j+1)) + c3*y(i,j)
endif
if (HaveNbor(1,1) .and. HaveNbor(2,2)) then ! North-West corner
i=1
j=nyl
ydot(i,j) = c1*(Wrecv(j)+y(i+1,j)) + c2*(y(i,j-1)+Nrecv(i)) + c3*y(i,j)
endif
if (HaveNbor(1,2) .and. HaveNbor(2,1)) then ! South-East corner
i=nxl
j=1
ydot(i,j) = c1*(y(i-1,j)+Erecv(j)) + c2*(Srecv(i)+y(i,j+1)) + c3*y(i,j)
endif
if (HaveNbor(1,2) .and. HaveNbor(2,2)) then ! North-East corner
i=nxl
j=nyl
ydot(i,j) = c1*(y(i-1,j)+Erecv(j)) + c2*(y(i,j-1)+Nrecv(i)) + c3*y(i,j)
endif
ydot = ydot + h ! add in heat source
ierr = 0 ! Return with success
return
end subroutine farkifun
!-----------------------------------------------------------------
subroutine farkefun(t, y, ydot, ipar, rpar, ierr)
!-----------------------------------------------------------------
! Explicit portion of f routine (empty)
!-----------------------------------------------------------------
! declarations
use UserData
implicit none
real(kind=REALTYPE), intent(in) :: t, rpar
integer*8, intent(in) :: ipar
real(kind=REALTYPE), intent(in) :: y(nxl,nyl)
real(kind=REALTYPE), intent(out) :: ydot(nxl,nyl)
integer, intent(out) :: ierr
! internals
! Initialize ydot to zero and return with success
ydot = 0.d0
ierr = 0
return
end subroutine farkefun
!-----------------------------------------------------------------
subroutine farkpset(t, y, fy, jok, jcur, gamma, hcur, ipar, &
rpar, ierr)
!-----------------------------------------------------------------
! Preconditioner setup routine (fills inverse of Jacobian diagonal)
!-----------------------------------------------------------------
! declarations
use UserData
implicit none
real(kind=REALTYPE), intent(in) :: t, gamma, hcur, rpar
real(kind=REALTYPE), intent(in) :: y(nxl,nyl), fy(nxl,nyl)
integer*8, intent(in) :: ipar
integer, intent(in) :: jok
integer, intent(out) :: jcur, ierr
real(kind=REALTYPE) :: c
! internals
c = 1.d0 + gamma*2.d0*(kx/dx/dx + ky/dy/dy)
! set all entries of d to the inverse of the diagonal values in interior
! (since boundary RHS is 0, set boundary diagonals to the same)
d = 1.d0/c
jcur = 1 ! update jcur flag
ierr = 0 ! Return with success
return
end subroutine farkpset
subroutine farkpsol(t, y, fy, r, z, gamma, delta, lr, &
ipar, rpar, ierr)
!-----------------------------------------------------------------
! Preconditioner solve routine
!-----------------------------------------------------------------
! declarations
use UserData
implicit none
real(kind=REALTYPE), intent(in) :: t, gamma, delta, rpar
integer*8, intent(in) :: ipar
real(kind=REALTYPE), intent(in) :: y(nxl,nyl), fy(nxl,nyl), r(nxl,nyl)
real(kind=REALTYPE), intent(out) :: z(nxl,nyl)
integer, intent(in) :: lr
integer, intent(out) :: ierr
! internals
z = r*d ! perform Jacobi iteration (whole array operation)
ierr = 0 ! Return with success
return
end subroutine farkpsol
!-----------------------------------------------------------------
|