1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
!-----------------------------------------------------------------
! Programmer(s): Daniel R. Reynolds @ SMU
!-----------------------------------------------------------------
! SUNDIALS Copyright Start
! Copyright (c) 2002-2022, Lawrence Livermore National Security
! and Southern Methodist University.
! All rights reserved.
!
! See the top-level LICENSE and NOTICE files for details.
!
! SPDX-License-Identifier: BSD-3-Clause
! SUNDIALS Copyright End
!-----------------------------------------------------------------
! Example problem:
!
! The following test simulates a brusselator problem from chemical
! kinetics. This is an ODE system with 3 components, Y = [u,v,w],
! satisfying the equations,
! du/dt = a - (w+1)*u + v*u^2
! dv/dt = w*u - v*u^2
! dw/dt = (b-w)/ep - w*u
! for t in the interval [0.0, 10.0], with initial conditions
! Y0 = [u0,v0,w0]. We use the initial conditions and parameters
! u0=3.9, v0=1.1, w0=2.8, a=1.2, b=2.5, ep=1.0e-5
! Here, all three solution components exhibit a rapid transient
! change during the first 0.2 time units, followed by a slow and
! smooth evolution.
!
! This program solves a the Fortran ODE test problem using the
! FARKODE interface for the ARKode ODE solver module.
!
! This program uses the IMEX ARK solver; here the
! implicit systems are solved with a modified Newton iteration
! with the SUNDENSE linear solver. The Jacobian routine and
! right-hand side routines are supplied.
!
! Output is printed 10 times throughout the defined time interval.
! Run statistics (optional outputs) are printed at the end.
!-----------------------------------------------------------------
!-----------------------------------------------------------------
! Main driver program
!-----------------------------------------------------------------
program driver
! Declarations
implicit none
include "sundials/sundials_fconfig.h"
! general problem variables
integer*8, parameter :: NEQ=3
real(kind=REALTYPE), parameter :: T0=0.d0, Tf=10.d0
real(kind=REALTYPE) :: dTout, Tout, Tcur, rtol, atol, rout(6)
integer :: it, Nt, ier
integer*8 :: iout(35)
real(kind=REALTYPE), dimension(NEQ) :: y
! real/integer parameters to pass through to supplied functions
! ipar(1) -> unused
! rpar(1) -> "a" parameter
! rpar(2) -> "b" parameter
! rpar(3) -> "ep" parameter
integer*8 :: ipar
real(kind=REALTYPE) :: rpar(3)
! solver parameters
integer :: adapt_method
integer*8 :: order
real(kind=REALTYPE) :: nlscoef, adapt_params
!-----------------------
! set some solver parameters
order = 3 ! 3rd order method
adapt_method = 0 ! PID-controller
nlscoef = 1.d-2 ! Newton solver tolerance coefficient
! time-stepping information
dTout = (Tf-T0)/10.d0 ! output time interval
Nt = Tf/dTout + 0.5 ! number of outputs
! set initial conditions, problem parameters
y(1) = 3.9d0 ! u0
y(2) = 1.1d0 ! v0
y(3) = 2.8d0 ! w0
rpar(1) = 1.2d0 ! a
rpar(2) = 2.5d0 ! b
rpar(3) = 1.d-5 ! ep
! set tolerances according to problem specifications
atol = 1.d-10
rtol = 1.d-6
! initialize vector module
call FNVInitS(4, NEQ, ier)
if (ier < 0) then
write(0,*) 'Error in FNVInitS = ',ier
stop
endif
! initialize dense matrix and dense linear solver modules
call FSunDenseMatInit(4, NEQ, NEQ, ier)
call FSunDenseLinSolInit(4, ier)
! initialize ARKode solver to use IMEX integrator, scalar tolerances
call FARKMalloc(T0, y, 2, 1, rtol, atol, &
iout, rout, ipar, rpar, ier)
if (ier < 0) then
write(0,*) 'Error in FARKMalloc = ',ier
stop
endif
! set integrator options
call FARKSetIin('ORDER', order, ier)
if (ier < 0) then
write(0,*) 'Error in FARKSetIin = ',ier
stop
endif
call FARKSetRin('NLCONV_COEF', nlscoef, ier)
if (ier < 0) then
write(0,*) 'Error in FARKSetIin = ',ier
stop
endif
adapt_params = 0.d0
call FARKSetAdaptivityMethod(adapt_method, 1, 0, adapt_params, ier)
if (ier < 0) then
write(0,*) 'Error in FARKSetAdaptMethod = ',ier
stop
endif
! attach matrix and linear solver modules to ARKLs interface
call FARKLsInit(ier)
if (ier < 0) then
write(0,*) 'Error in FARKLsInit = ',ier
stop
endif
! notify ARKLs module of user-supplied Jacobian construction routine
call FARKDenseSetJac(1, ier)
if (ier < 0) then
write(0,*) 'Error in FARKDenseSetJac = ',ier
stop
endif
! Open output stream for results, output comment line
open(100, file='solution.txt')
write(100,*) '# t u v w'
! output initial condition to disk
write(100,'(3x,4(es23.16,1x))') T0, y
! loop over time outputs
Tout = T0
Tcur = T0
print *, ' t u v w'
print *, ' ----------------------------------------------------'
print '(3x,4(es12.5,1x))', Tcur, y
do it = 1,Nt
Tout = min(Tout + dTout, Tf) ! set next output time
call FARKode(Tout, Tcur, y, 1, ier) ! call solver
if (ier < 0) then
print *, 'Error at step ',it,', FARKode return flag =',ier
exit
end if
! output current solution
print '(3x,4(es12.5,1x))', Tcur, y
write(100,'(3x,4(es23.16,1x))') Tcur, y
end do
print *, ' ----------------------------------------------------'
close(100)
! output solver statistics
print *, ' '
print *, 'Final Solver Statistics:'
print '(2(A,i7),A)', ' Internal solver steps =', iout(3), &
' (attempted =', iout(6), ')'
print '(2(A,i7))', ' Total RHS evals: Fe =', iout(7), &
', Fi =', iout(8)
print '(A,i7)', ' Total linear solver setups =', iout(9)
print '(A,i7)', ' Total RHS evals for setting up the linear system =', iout(17)
print '(A,i7)', ' Total number of Jacobian evaluations =', iout(18)
print '(A,i7)', ' Total number of Newton iterations =', iout(11)
print '(A,i7)', ' Total number of nonlinear solver convergence failures =', iout(12)
print '(A,i7)', ' Total number of error test failures =', iout(10)
print *, ' '
! clean up
call FARKFree()
end program driver
!-----------------------------------------------------------------
!-----------------------------------------------------------------
! Required subroutines for FARKODE interface
!-----------------------------------------------------------------
subroutine farkifun(t, y, ydot, ipar, rpar, ier)
!-----------------------------------------------------------------
! Implicit portion of the right-hand side of the ODE system
!-----------------------------------------------------------------
! Declarations
implicit none
include "sundials/sundials_fconfig.h"
! Arguments
real(kind=REALTYPE), intent(in) :: t, rpar(3)
integer*8, intent(in) :: ipar(1)
real(kind=REALTYPE), intent(in) :: y(3)
real(kind=REALTYPE), intent(out) :: ydot(3)
integer, intent(out) :: ier
! temporary variables
real*8 :: u, v, w, a, b, ep
! set temporary values
a = rpar(1)
b = rpar(2)
ep = rpar(3)
u = y(1)
v = y(2)
w = y(3)
! fill implicit RHS, set success flag
ydot(1) = 0.d0
ydot(2) = 0.d0
ydot(3) = (b-w)/ep
ier = 0
end subroutine farkifun
!-----------------------------------------------------------------
subroutine farkefun(t, y, ydot, ipar, rpar, ier)
!-----------------------------------------------------------------
! Explicit portion of the right-hand side of the ODE system
!-----------------------------------------------------------------
! Declarations
implicit none
include "sundials/sundials_fconfig.h"
! Arguments
real(kind=REALTYPE), intent(in) :: t, rpar(3)
integer*8, intent(in) :: ipar(1)
real(kind=REALTYPE), intent(in) :: y(3)
real(kind=REALTYPE), intent(out) :: ydot(3)
integer, intent(out) :: ier
! temporary variables
real*8 :: u, v, w, a, b, ep
! set temporary values
a = rpar(1)
b = rpar(2)
ep = rpar(3)
u = y(1)
v = y(2)
w = y(3)
! fill explicit RHS, set success flag
ydot(1) = a - (w+1.d0)*u + v*u*u
ydot(2) = w*u - v*u*u
ydot(3) = -w*u
ier = 0
end subroutine farkefun
!-----------------------------------------------------------------
subroutine farkdjac(neq,t,y,fy,DJac,h,ipar,rpar,wk1,wk2,wk3,ier)
!-----------------------------------------------------------------
! Jacobian computation routine
!-----------------------------------------------------------------
! Declarations
implicit none
include "sundials/sundials_fconfig.h"
! Arguments
real(kind=REALTYPE), intent(in) :: t, h, rpar(3)
integer*8, intent(in) :: ipar(1)
integer*8, intent(in) :: neq
integer, intent(out) :: ier
real(kind=REALTYPE), intent(in), dimension(neq) :: y, fy, wk1, wk2, wk3
real(kind=REALTYPE), intent(out) :: DJac(neq,neq)
! temporary variables
real*8 :: u, v, w, a, b, ep
! set temporary values
a = rpar(1)
b = rpar(2)
ep = rpar(3)
u = y(1)
v = y(2)
w = y(3)
! fill implicit Jacobian, set success flag
DJac = 0.d0
DJac(3,3) = -1.d0/ep
ier = 0
end subroutine farkdjac
!-----------------------------------------------------------------
|