1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
|
/* ---------------------------------------------------------------------------
* Programmer(s): David J. Gardner @ LLNL
* ---------------------------------------------------------------------------
* SUNDIALS Copyright Start
* Copyright (c) 2002-2022, Lawrence Livermore National Security
* and Southern Methodist University.
* All rights reserved.
*
* See the top-level LICENSE and NOTICE files for details.
*
* SPDX-License-Identifier: BSD-3-Clause
* SUNDIALS Copyright End
* ---------------------------------------------------------------------------
* The following is a simple example problem based off of cvRoberts_klu.c. We
* simulate a scenario where a set of independent ODEs are grouped together to
* form a larger system. For simplicity, each set of ODEs is the same problem.
* The problem is from chemical kinetics, and consists of the following three
* rate equations:
*
* dy1/dt = -.04 * y1 + 1.0e4 * y2 * y3
* dy2/dt = -dy1/dt - dy3/dt
* dy3/dt = 3.0e7 * y2 * y2
*
* on the interval from t = 0.0 to t = 4.0e10, with initial conditions:
*
* y1 = 1.0, y2 = 0, and y3 = 0.
*
* The problem is stiff. By default this program solves the problem with the BDF
* methods, a Newton iteration, user-supplied Jacobian routine, and since the
* grouping of the independent systems results in a block diagonal linear
* system, with the oneMKL SUNLinearSolver. Alternatively, the SPGMR linear
* solver may be used with a Jacobi preconditioner. The problem uses a scalar
* relative tolerance and a vector absolute tolerance. Output is printed in
* decades from t = 0.1 to 1.0e6. Run statistics (optional outputs) are printed
* at the end.
*
* The program takes three optional argument: the number of independent ODE
* systems (default 100), a flag to use a direct (1, default) or iterative (0)
* linear solver, and a flag to enable (1, default) or disable (0) solution
* output:
*
* ./cvRoberts_blockdiag_onemkl [number of groups] [solver type] [output]
*
* This problem is comparable to the cvRoberts_block_klu.c example.
* ---------------------------------------------------------------------------*/
#include <cstdio>
#include <iostream>
#include <chrono>
#include <cvode/cvode.h> // access to CVODE fcts., consts.
#include <nvector/nvector_sycl.h> // access the SYCL NVector
#include <sunmemory/sunmemory_sycl.h> // access the SYCL Memory helper
#include <sunmatrix/sunmatrix_onemkldense.h> // access the oneMKL SUNMatrix
#include <sunlinsol/sunlinsol_onemkldense.h> // access the oneMKL SUNLinearSolver
#include <sunlinsol/sunlinsol_spgmr.h> // access the GMRES SUNLinearSolver
using namespace std;
// Problem Constants
#define GROUPSIZE 3 // number of equations per group
#define Y1 RCONST(1.0) // initial y components
#define Y2 RCONST(0.0)
#define Y3 RCONST(0.0)
#define RTOL RCONST(1.0e-4) // scalar relative tolerance
#define ATOL1 RCONST(1.0e-8) // vector absolute tolerance components
#define ATOL2 RCONST(1.0e-14)
#define ATOL3 RCONST(1.0e-6)
#define T0 RCONST(0.0) // initial time
#define T1 RCONST(0.1) // first output time
#define TMULT RCONST(10.0) // output time factor
#define NOUT 10 // number of output times
#define ZERO RCONST(0.0)
#define ONE RCONST(1.0)
// Functions Called by the Solver
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data);
static int Jac(realtype t, N_Vector y, N_Vector fy, SUNMatrix J,
void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
static int PSolve(realtype t, N_Vector u, N_Vector f, N_Vector r,
N_Vector z, realtype gamma, realtype delta, int lr,
void *user_data);
// Private function to output results
static void PrintOutput(realtype t, realtype y1, realtype y2, realtype y3);
// Private function to print final statistics
static void PrintFinalStats(void *cvode_mem, bool direct);
// Private function to check function return values
static int check_retval(void *returnvalue, const char *funcname, int opt);
// User data structure
typedef struct
{
sycl::queue* myQueue;
int ngroups;
int neq;
} UserData;
/* ---------------------------------------------------------------------------
* Main Program
* ---------------------------------------------------------------------------*/
int main(int argc, char *argv[])
{
// SUNDIALS simulation context
sundials::Context sunctx;
// return value flag
int retval;
// Parse command line arguments
// Number of ODE groups
int ngroups = 100;
if (argc > 1) ngroups = atoi(argv[1]);
// Use a direct or iterative linear sovler
bool direct = true;
if (argc > 2) direct = (atoi(argv[2])) ? true : false;
// Write the solution to the screen
bool output = true;
if (argc > 3) output = (atoi(argv[3])) ? true : false;
// Create an in-order GPU queue
sycl::gpu_selector selector;
sycl::queue myQueue(selector,
sycl::property_list{sycl::property::queue::in_order{}});
sycl::device dev = myQueue.get_device();
cout << "Running on "
<< (dev.get_info<sycl::info::device::name>())
<< endl;
// Total number of equations
sunindextype neq = ngroups * GROUPSIZE;
// Set user data values
UserData udata;
udata.myQueue = &myQueue;
udata.ngroups = ngroups;
udata.neq = neq;
// Create the SYCL memory helper
SUNMemoryHelper memhelper = SUNMemoryHelper_Sycl(sunctx);
if (check_retval((void *)memhelper, "SUNMemoryHelper_Sycl", 0)) return 1;
// Create SYCL vector for state and absolute tolerances
N_Vector y = N_VNew_Sycl(neq, &myQueue, sunctx);
if (check_retval((void *)y, "N_VNew", 0)) return 1;
N_Vector abstol = N_VClone(y);
if (check_retval((void *)abstol, "N_VClone", 0)) return 1;
// Initialize y
realtype* ydata = N_VGetArrayPointer(y);
for (sunindextype groupj = 0; groupj < neq; groupj += GROUPSIZE)
{
ydata[groupj] = Y1;
ydata[groupj + 1] = Y2;
ydata[groupj + 2] = Y3;
}
N_VCopyToDevice_Sycl(y);
// Set the scalar relative tolerance
realtype reltol = RTOL;
// Set the vector absolute tolerance
realtype* abstol_data = N_VGetArrayPointer(abstol);
for (sunindextype groupj = 0; groupj < neq; groupj += GROUPSIZE)
{
abstol_data[groupj] = ATOL1;
abstol_data[groupj + 1] = ATOL2;
abstol_data[groupj + 2] = ATOL3;
}
N_VCopyToDevice_Sycl(abstol);
// Create CVODE with BDF methods
void* cvode_mem = CVodeCreate(CV_BDF, sunctx);
if (check_retval((void *)cvode_mem, "CVodeCreate", 0)) return 1;
// Initialize CVODE
retval = CVodeInit(cvode_mem, f, T0, y);
if (check_retval(&retval, "CVodeInit", 1)) return 1;
// Call CVodeSetUserData to attach the user data structure
retval = CVodeSetUserData(cvode_mem, &udata);
if (check_retval(&retval, "CVodeSetUserData", 1)) return 1;
// Set tolerances
retval = CVodeSVtolerances(cvode_mem, reltol, abstol);
if (check_retval(&retval, "CVodeSVtolerances", 1)) return 1;
// Create and attach linear solver
SUNMatrix A = NULL;
SUNLinearSolver LS = NULL;
if (direct)
{
// Create SUNMatrix for use in linear solves
A = SUNMatrix_OneMklDenseBlock(ngroups, GROUPSIZE, GROUPSIZE,
SUNMEMTYPE_DEVICE, memhelper, &myQueue,
sunctx);
if (check_retval((void *)A, "SUNMatrix_OneMklDenseBlock", 0)) return 1;
// Create the SUNLinearSolver object for use by CVode
LS = SUNLinSol_OneMklDense(y, A, sunctx);
if (check_retval((void *)LS, "SUNLinSol_OneMklDense", 0)) return 1;
// Call CVodeSetLinearSolver to attach the matrix and linear solver to CVode
retval = CVodeSetLinearSolver(cvode_mem, LS, A);
if (check_retval(&retval, "CVodeSetLinearSolver", 1)) return 1;
// Set the user-supplied Jacobian routine Jac
retval = CVodeSetJacFn(cvode_mem, Jac);
if (check_retval(&retval, "CVodeSetJacFn", 1)) return 1;
}
else
{
// Create SPGMR solver
LS = SUNLinSol_SPGMR(y, SUN_PREC_RIGHT, 10, sunctx);
if (check_retval(&retval, "SUNLinSol_SPGMR", 1)) return 1;
// Call CVodeSetLinearSolver to attach the linear solver to CVode
retval = CVodeSetLinearSolver(cvode_mem, LS, NULL);
if (check_retval(&retval, "CVodeSetLinearSolver", 1)) return 1;
// Attach preconditioner
retval = CVodeSetPreconditioner(cvode_mem, NULL, PSolve);
if (check_retval(&retval, "CVodeSetPreconditioner", 1)) return 1;
}
// Loop over output times and print solution
printf("\nGroup of independent 3-species kinetics problems\n");
printf(" number of groups = %d\n", ngroups);
if (direct)
printf(" using direct linear solver\n");
else
printf(" using iterative linear solver\n");
if (output)
printf(" output enabled\n");
else
printf(" output disabled\n");
int iout = 0;
realtype tout = T1;
realtype t;
// Start timer
chrono::time_point<chrono::steady_clock> tstart = chrono::steady_clock::now();
while(1)
{
// Evolve in time
retval = CVode(cvode_mem, tout, y, &t, CV_NORMAL);
if (check_retval(&retval, "CVode", 1)) break;
if (output)
{
// Copy solution to host for output
N_VCopyFromDevice_Sycl(y);
for (sunindextype groupj = 0; groupj < ngroups; groupj += 10)
{
printf("group %ld: ", (long int) groupj);
PrintOutput(t, ydata[GROUPSIZE * groupj],
ydata[1 + GROUPSIZE * groupj],
ydata[2 + GROUPSIZE * groupj]);
}
}
// Update output counter and output time
iout++;
tout *= TMULT;
// Stop after NOUT outputs
if (iout == NOUT) break;
}
// Stop timer
myQueue.wait();
chrono::time_point<chrono::steady_clock> tstop = chrono::steady_clock::now();
// Print some final statistics
PrintFinalStats(cvode_mem, direct);
// Print evoltuion time
cout << "Evolution time: "
<< chrono::duration<double>(tstop - tstart).count() << endl;
// Free objects and integrator
N_VDestroy(y);
N_VDestroy(abstol);
SUNMatDestroy(A);
SUNLinSolFree(LS);
CVodeFree(&cvode_mem);
SUNMemoryHelper_Destroy(memhelper);
return 0;
}
/* ---------------------------------------------------------------------------
* Functions called by the solver
* ---------------------------------------------------------------------------*/
// Compute the right-hand side function, ydot = f(t, y).
static int f(realtype t, N_Vector y, N_Vector ydot, void* user_data)
{
UserData* udata = (UserData*) user_data;
realtype* ydata = N_VGetDeviceArrayPointer(y);
realtype* ydotdata = N_VGetDeviceArrayPointer(ydot);
const size_t ngroups = static_cast<size_t>(udata->ngroups);
const sunindextype N = GROUPSIZE;
udata->myQueue->submit([&](sycl::handler& h)
{
h.parallel_for(sycl::range{ngroups}, [=](sycl::id<1> idx)
{
sunindextype groupj = idx[0];
realtype y1 = ydata[N * groupj];
realtype y2 = ydata[N * groupj + 1];
realtype y3 = ydata[N * groupj + 2];
realtype yd1 = RCONST(-0.04) * y1 + RCONST(1.0e4) * y2 * y3;
realtype yd3 = RCONST(3.0e7) * y2 * y2;
ydotdata[N * groupj] = yd1;
ydotdata[N * groupj + 1] = -yd1 - yd3;
ydotdata[N * groupj + 2] = yd3;
});
});
udata->myQueue->wait_and_throw();
return 0;
}
// Compute the right-hand side Jacobian, J(t,y) = df/dy.
static int Jac(realtype t, N_Vector y, N_Vector fy, SUNMatrix J,
void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
UserData* udata = (UserData*) user_data;
realtype* Jdata = SUNMatrix_OneMklDense_Data(J);
realtype* ydata = N_VGetDeviceArrayPointer(y);
const size_t ngroups = static_cast<size_t>(udata->ngroups);
const sunindextype N = GROUPSIZE;
const sunindextype NN = GROUPSIZE * GROUPSIZE;
udata->myQueue->submit([&](sycl::handler& h)
{
h.parallel_for(sycl::range{ngroups}, [=](sycl::id<1> idx)
{
sunindextype groupj = idx[0];
// get y values
realtype y2 = ydata[N * groupj + 1];
realtype y3 = ydata[N * groupj + 2];
// first col of block
Jdata[NN * groupj] = RCONST(-0.04);
Jdata[NN * groupj + 1] = RCONST(0.04);
Jdata[NN * groupj + 2] = ZERO;
// second col of block
Jdata[NN * groupj + 3] = RCONST(1.0e4) * y3;
Jdata[NN * groupj + 4] = RCONST(-1.0e4) * y3 - RCONST(6.0e7) * y2;
Jdata[NN * groupj + 5] = RCONST(6.0e7) * y2;
// third col of block
Jdata[NN * groupj + 6] = RCONST(1.0e4) * y2;
Jdata[NN * groupj + 7] = RCONST(-1.0e4) * y2;
Jdata[NN * groupj + 8] = ZERO;
});
});
udata->myQueue->wait_and_throw();
return 0;
}
static int PSolve(realtype t, N_Vector y, N_Vector f, N_Vector r,
N_Vector z, realtype gamma, realtype delta, int lr,
void *user_data)
{
UserData* udata = (UserData*) user_data;
realtype* ydata = N_VGetDeviceArrayPointer(y);
realtype* rdata = N_VGetDeviceArrayPointer(r);
realtype* zdata = N_VGetDeviceArrayPointer(z);
const size_t ngroups = static_cast<size_t>(udata->ngroups);
const sunindextype N = GROUPSIZE;
udata->myQueue->submit([&](sycl::handler& h)
{
h.parallel_for(sycl::range{ngroups}, [=](sycl::id<1> idx)
{
sunindextype groupj = idx[0];
sunindextype i0 = N * groupj;
sunindextype i1 = N * groupj + 1;
sunindextype i2 = N * groupj + 2;
// Solve (I - gamma J) z = r
//
// [ 1 + a -b -c ] [ z0 ] [ r0 ]
// [ -a 1 + b + d c ] [ z1 ] = [ r1 ]
// [ 0 -d 1 ] [ z2 ] [ r2 ]
// get y values
realtype y2 = ydata[i1];
realtype y3 = ydata[i2];
// set matrix values
realtype a = gamma * RCONST(0.04);
realtype b = gamma * RCONST(1.0e4) * y3;
realtype c = gamma * RCONST(1.0e4) * y2;
realtype d = gamma * RCONST(6.0e7) * y2;
// Initial Jacobi iteration with zero guess
// z0 = r0 / (1 + a)
zdata[i0] = rdata[i0] / (ONE + a);
// z1 = r1 / (1 + b + d)
zdata[i1] = rdata[i1] / (1 + b + d);
// z2 = r2 + d
zdata[i2] = rdata[i2];
// Subsequent Jacobi iterations
for (int i = 1; i < 10; ++i)
{
realtype z0 = zdata[i0];
realtype z1 = zdata[i1];
realtype z2 = zdata[i2];
// z0 = (r0 + b * z1 + x * z2 / (1 + a)
zdata[i0] = (rdata[i0] + b * z1 + c * z2) / (ONE + a);
// z1 = r1 / (1 + b + d)
zdata[i1] = (rdata[i1] + a * z0 - c * z2) / (1 + b + d);
// z2 = r2 + d
zdata[i2] = (rdata[i2] + d * z1);
}
});
});
return 0;
}
/* ---------------------------------------------------------------------------
* Private helper functions
* ---------------------------------------------------------------------------*/
// Output solution
static void PrintOutput(realtype t, realtype y1, realtype y2, realtype y3)
{
#if defined(SUNDIALS_EXTENDED_PRECISION)
printf("At t = %0.4Le y =%14.6Le %14.6Le %14.6Le\n", t, y1, y2, y3);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
printf("At t = %0.4e y =%14.6e %14.6e %14.6e\n", t, y1, y2, y3);
#else
printf("At t = %0.4e y =%14.6e %14.6e %14.6e\n", t, y1, y2, y3);
#endif
return;
}
// Get and print some final statistics
static void PrintFinalStats(void *cvode_mem, bool direct)
{
int retval;
printf("\nFinal Statistics:\n");
// CVODE stats
long int nst, nfe, netf;
retval = CVodeGetNumSteps(cvode_mem, &nst);
check_retval(&retval, "CVodeGetNumSteps", 1);
retval = CVodeGetNumRhsEvals(cvode_mem, &nfe);
check_retval(&retval, "CVodeGetNumRhsEvals", 1);
retval = CVodeGetNumErrTestFails(cvode_mem, &netf);
check_retval(&retval, "CVodeGetNumErrTestFails", 1);
cout << "Time steps: " << nst << "\n";
cout << "RHS evals: " << nfe << "\n";
cout << "Error test fails: " << netf << "\n\n";
// Nonlinear solver stats
long int nni, ncfn;
retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
check_retval(&retval, "CVodeGetNumNonlinSolvIters", 1);
retval = CVodeGetNumNonlinSolvConvFails(cvode_mem, &ncfn);
check_retval(&retval, "CVodeGetNumNonlinSolvConvFails", 1);
cout << "NLS iters: " << nni << "\n";
cout << "NLS fails: " << ncfn << "\n\n";
// Linear solver stats
if (direct)
{
long int nsetups, nje;
retval = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);
check_retval(&retval, "CVodeGetNumLinSolvSetups", 1);
retval = CVodeGetNumJacEvals(cvode_mem, &nje);
check_retval(&retval, "CVodeGetNumJacEvals", 1);
cout << "LS setups: " << nsetups << "\n";
cout << "Jac evals: " << nje << "\n\n";
}
else
{
long int nli, ncfl, nfeLS, nps;
retval = CVodeGetNumLinIters(cvode_mem, &nli);
check_retval(&retval, "CVodeGetNumLinIters", 1);
retval = CVodeGetNumLinConvFails(cvode_mem, &ncfl);
check_retval(&retval, "CVodeGetNumLinConvFails", 1);
retval = CVodeGetNumLinRhsEvals(cvode_mem, &nfeLS);
check_retval(&retval, "CVodeGetNumLinRhsEvals", 1);
retval = CVodeGetNumPrecSolves(cvode_mem, &nps);
check_retval(&retval, "CVodeGetNumPrecSolves", 1);
cout << "LS iters: " << nli << "\n";
cout << "LS fails: " << ncfl << "\n";
cout << "LS RHS evals: " << nfeLS << "\n";
cout << "P solves: " << nps << "\n\n";
}
return;
}
/* Check function return value...
* opt == 0 means SUNDIALS function allocates memory so check if
* returned NULL pointer
* opt == 1 means SUNDIALS function returns an integer value so check if
* retval < 0
* opt == 2 means function allocates memory so check if returned
* NULL pointer */
static int check_retval(void *returnvalue, const char *funcname, int opt)
{
int *retval;
// Check if SUNDIALS function returned NULL pointer - no memory allocated
if (opt == 0 && returnvalue == NULL)
{
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return 1;
}
// Check if retval < 0
else if (opt == 1)
{
retval = (int *) returnvalue;
if (*retval < 0)
{
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with retval = %d\n\n",
funcname, *retval);
return 1;
}
}
// Check if function returned NULL pointer - no memory allocated
else if (opt == 2 && returnvalue == NULL)
{
fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return 1;
}
return 0;
}
|