File: cv_heat2D.hpp

package info (click to toggle)
sundials 6.4.1%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 79,368 kB
  • sloc: ansic: 218,700; f90: 62,503; cpp: 61,511; fortran: 5,166; python: 4,642; sh: 4,114; makefile: 562; perl: 123
file content (333 lines) | stat: -rw-r--r-- 10,659 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/* -----------------------------------------------------------------------------
 * Programmer(s): David J. Gardner @ LLNL
 *                Daniel R. Reynolds @ SMU
 * -----------------------------------------------------------------------------
 * SUNDIALS Copyright Start
 * Copyright (c) 2002-2022, Lawrence Livermore National Security
 * and Southern Methodist University.
 * All rights reserved.
 *
 * See the top-level LICENSE and NOTICE files for details.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 * SUNDIALS Copyright End
 * -----------------------------------------------------------------------------
 * Header file for 2D heat equation example problem.
 * See cv_heat2D.cpp for more information.
 * ---------------------------------------------------------------------------*/

#include <cmath>
#include <cstdio>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <limits>
#include <string>

// SUNDIALS types
#include <sundials/sundials_nvector.h>
#include <sundials/sundials_types.h>

// Common utility functions
#include <example_utilities.hpp>

// Macros for problem constants
#define PI    RCONST(3.141592653589793238462643383279502884197169)
#define ZERO  RCONST(0.0)
#define ONE   RCONST(1.0)
#define TWO   RCONST(2.0)
#define EIGHT RCONST(8.0)

// -----------------------------------------------------------------------------
// User data structure
// -----------------------------------------------------------------------------

struct UserData
{
  // Diffusion coefficients in the x and y directions
  sunrealtype kx = ONE;
  sunrealtype ky = ONE;

  // Final time
  sunrealtype tf = ONE;

  // Upper bounds in x and y directions
  sunrealtype xu = ONE;
  sunrealtype yu = ONE;

  // Number of nodes in the x and y directions
  sunindextype nx = 32;
  sunindextype ny = 32;

  // Total number of nodes
  sunindextype nodes = nx * ny;

  // Mesh spacing in the x and y directions
  sunrealtype dx = xu / (nx - 1);
  sunrealtype dy = yu / (ny - 1);

  // Integrator settings
  sunrealtype rtol = SUN_RCONST(1.0e-4); // relative tolerance
  sunrealtype atol = SUN_RCONST(1.0e-8); // absolute tolerance
  int maxsteps     = 0;                  // max number of steps between outputs

  // Linear solver and preconditioner settings
  bool pcg           = true; // use PCG (true) or GMRES (false)
  bool prec          = true; // preconditioner on/off
  int liniters       = 20;   // number of linear iterations
  int msbp           = 0;    // max number of steps between preconditioner setups
  sunrealtype epslin = ZERO; // linear solver tolerance factor

  // Inverse of Jacobian diagonal for preconditioner
  N_Vector d = nullptr;

  // Ouput variables
  bool output = false; // write solution to disk
  int nout    = 20;    // number of output times
  std::ofstream uout;  // output file stream
  std::ofstream eout;  // error file stream

  // Destructor
  ~UserData();
};

// Free memory allocated within Userdata
UserData::~UserData()
{
  // Free preconditioner data
  if (d) {
    N_VDestroy(d);
    d = nullptr;
  }
}

// -----------------------------------------------------------------------------
// Utility functions
// -----------------------------------------------------------------------------

// Compute the exact solution
int Solution(sunrealtype t, N_Vector u, UserData& udata)
{
  auto uarray = N_VGetArrayPointer(u);
  if (check_ptr(uarray, "N_VGetArrayPointer")) return -1;

  // Initialize u to one (handles boundary conditions)
  N_VConst(ONE, u);

  // Compute the true solution
  auto cos_sqr_t = cos(PI * t) * cos(PI * t);

  for (sunindextype j = 1; j < udata.ny - 1; j++) {
    for (sunindextype i = 1; i < udata.nx - 1; i++) {
      auto x = i * udata.dx;
      auto y = j * udata.dy;

      auto sin_sqr_x = sin(PI * x) * sin(PI * x);
      auto sin_sqr_y = sin(PI * y) * sin(PI * y);

      auto idx    = i + j * udata.nx;
      uarray[idx] = sin_sqr_x * sin_sqr_y * cos_sqr_t + ONE;
    }
  }

  return 0;
}

// Compute the solution error
int SolutionError(sunrealtype t, N_Vector u, N_Vector e, UserData& udata)
{
  // Compute true solution
  auto flag = Solution(t, e, udata);
  if (flag != 0) return -1;

  // Compute absolute error
  N_VLinearSum(ONE, u, -ONE, e, e);
  N_VAbs(e, e);

  return 0;
}

// Print command line options
void InputHelp()
{
  std::cout << std::endl
            << "Command line options:\n"
            << "  --nx <nx>          : number of x mesh points\n"
            << "  --nx <nx>          : number of y mesh points\n"
            << "  --xu <xu>          : x upper bound\n"
            << "  --yu <yu>          : y upper bound\n"
            << "  --kx <kx>          : x diffusion coefficient\n"
            << "  --kx <ky>          : y diffusion coefficient\n"
            << "  --tf <time>        : final time\n"
            << "  --rtol <rtol>      : relative tolerance\n"
            << "  --atol <atol>      : absoltue tolerance\n"
            << "  --gmres            : use GMRES linear solver\n"
            << "  --noprec           : disable preconditioner\n"
            << "  --liniters <iters> : max number of iterations\n"
            << "  --epslin <factor>  : linear tolerance factor\n"
            << "  --msbp <steps>     : max steps between prec setups\n"
            << "  --output           : write solution to disk\n"
            << "  --nout <nout>      : number of outputs\n"
            << "  --maxsteps <steps> : max steps between outputs\n"
            << "  --help             : print this message and exit\n";
}

// Read command line inputs
int ReadInputs(std::vector<std::string>& args, UserData& udata)
{
  if (find(args.begin(), args.end(), "--help") != args.end()) {
    InputHelp();
    return 1;
  }

  find_arg(args, "--nx", udata.nx);
  find_arg(args, "--ny", udata.ny);
  find_arg(args, "--xu", udata.xu);
  find_arg(args, "--yu", udata.yu);
  find_arg(args, "--kx", udata.kx);
  find_arg(args, "--ky", udata.ky);
  find_arg(args, "--tf", udata.tf);
  find_arg(args, "--rtol", udata.rtol);
  find_arg(args, "--atol", udata.atol);
  find_arg(args, "--gmres", udata.pcg, false);
  find_arg(args, "--noprec", udata.prec, false);
  find_arg(args, "--liniters", udata.liniters);
  find_arg(args, "--msbp", udata.msbp);
  find_arg(args, "--epslin", udata.epslin);
  find_arg(args, "--output", udata.output);
  find_arg(args, "--nout", udata.nout);
  find_arg(args, "--maxsteps", udata.maxsteps);

  // Recompute total number of nodes and mesh spacing
  udata.nodes = udata.nx * udata.ny;
  udata.dx    = udata.xu / (udata.nx - 1);
  udata.dy    = udata.yu / (udata.ny - 1);

  // Return success
  return 0;
}

// Print user data
void PrintUserData(UserData& udata)
{
  std::cout << std::endl
            << "2D Heat problem:\n"
            << " ----------------------------\n"
            << "  kx        = " << udata.kx << "\n"
            << "  ky        = " << udata.ky << "\n"
            << "  tf        = " << udata.tf << "\n"
            << "  xu        = " << udata.xu << "\n"
            << "  yu        = " << udata.yu << "\n"
            << "  nx        = " << udata.nx << "\n"
            << "  ny        = " << udata.ny << "\n"
            << "  dx        = " << udata.dx << "\n"
            << "  dy        = " << udata.dy << "\n"
            << " ----------------------------\n";
  if (udata.pcg) {
    std::cout << "  linear solver  = PCG\n";
  }
  else {
    std::cout << "  linear solver  = GMRES\n";
  }
  std::cout << "  rtol      = " << udata.rtol << "\n"
            << "  atol      = " << udata.atol << "\n"
            << " ----------------------------\n"
            << "  lin iters = " << udata.liniters << "\n"
            << "  eps lin   = " << udata.epslin << "\n"
            << "  prec      = " << udata.prec << "\n"
            << "  msbp      = " << udata.msbp << "\n"
            << " ----------------------------\n"
            << "  output    = " << udata.output << "\n"
            << " ----------------------------\n"
            << std::endl;
}

// Initialize output
int OpenOutput(UserData& udata)
{
  // Header for status output
  std::cout << std::scientific << std::setprecision(std::numeric_limits<sunrealtype>::digits10)
            << "          t                     ||u||_rms      "
            << "          max error\n"
            << " ----------------------------------------------"
            << "-------------------------\n";

  // Output problem information and open output streams
  if (udata.output) {
    // Each processor outputs subdomain information
    std::ofstream dout;
    dout.open("heat2d_info.txt");
    dout << "xu  " << udata.xu << std::endl;
    dout << "yu  " << udata.yu << std::endl;
    dout << "nx  " << udata.nx << std::endl;
    dout << "ny  " << udata.ny << std::endl;
    dout << "nt  " << udata.nout + 1 << std::endl;
    dout.close();

    // Open output streams for solution and error
    udata.uout.open("heat2d_solution.txt");
    udata.uout << std::scientific << std::setprecision(std::numeric_limits<sunrealtype>::digits10);

    udata.eout.open("heat2d_error.txt");
    udata.eout << std::scientific << std::setprecision(std::numeric_limits<sunrealtype>::digits10);
  }

  return 0;
}

// Write output
int WriteOutput(sunrealtype t, N_Vector u, N_Vector e, UserData& udata)
{
  // Compute the error
  auto flag = SolutionError(t, u, e, udata);
  if (check_flag(flag, "SolutionError")) return 1;

  // Compute max error
  sunrealtype max = N_VMaxNorm(e);

  // Compute rms norm of the state
  sunrealtype urms = sqrt(N_VDotProd(u, u) / udata.nx / udata.ny);

  // Output current status
  std::cout << std::setw(22) << t << std::setw(25) << urms << std::setw(25) << max << std::endl;

  // Write solution and error to disk
  if (udata.output) {
    sunrealtype* uarray = N_VGetArrayPointer(u);
    if (check_ptr(uarray, "N_VGetArrayPointer")) return -1;

    udata.uout << t << " ";
    for (sunindextype i = 0; i < udata.nodes; i++) {
      udata.uout << uarray[i] << " ";
    }
    udata.uout << std::endl;

    // Output error to disk
    sunrealtype* earray = N_VGetArrayPointer(e);
    if (check_ptr(earray, "N_VGetArrayPointer")) return -1;

    udata.eout << t << " ";
    for (sunindextype i = 0; i < udata.nodes; i++) {
      udata.eout << earray[i] << " ";
    }
    udata.eout << std::endl;
  }

  return 0;
}

// Finalize output
int CloseOutput(UserData& udata)
{
  // Footer for status output
  std::cout << " ----------------------------------------------"
            << "-------------------------\n\n";

  if (udata.output) {
    // Close output streams
    udata.uout.close();
    udata.eout.close();
  }

  return 0;
}