1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
/* ---------------------------------------------------------------------------
* Programmer(s): David J. Gardner @ LLNL
* ---------------------------------------------------------------------------
* SUNDIALS Copyright Start
* Copyright (c) 2002-2022, Lawrence Livermore National Security
* and Southern Methodist University.
* All rights reserved.
*
* See the top-level LICENSE and NOTICE files for details.
*
* SPDX-License-Identifier: BSD-3-Clause
* SUNDIALS Copyright End
* ---------------------------------------------------------------------------
* Example problem:
*
* The following is a simple example problem with a banded Jacobian, with the
* program for its solution by CVODE. The problem is the semi-discrete form of
* the advection-diffusion equation in 2-D:
*
* u_t = u_xx + u_yy + 0.5 u_x
*
* on the rectangle 0 <= x <= 2, 0 <= y <= 1, and the time interval 0 <= t <= 1.
* Homogeneous Dirichlet boundary conditions are posed, and the initial
* condition is
*
* u(x,y,0) = x (2-x) y (1-y) exp(5xy).
*
* The PDE is discretized on a uniform MX+2 by MY+2 grid with central
* differencing, and with boundary values eliminated, leaving an ODE system of
* size NEQ = MX*MY.
*
* This program solves the problem with the BDF method, Newton iteration with
* the GMRES linear solver, and a user-supplied Jacobian-vector product routine.
* It uses scalar relative and absolute tolerances.
*
* Output is printed at t = .1, .2, ..., 1. Run statistics (optional outputs)
* are printed at the end.
* ---------------------------------------------------------------------------*/
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cvode/cvode.h> // access CVODE fcts., consts.
#include <nvector/nvector_sycl.h> // access the SYCL NVector
#include <sunlinsol/sunlinsol_spgmr.h> // access the SPGMR SUNLinearSolver
// Real Constants
#define ATOL RCONST(1.0e-5) // scalar absolute tolerance
#define T0 RCONST(0.0) // initial time
#define T1 RCONST(0.1) // first output time
#define DTOUT RCONST(0.1) // output time increment
#define NOUT 10 // number of output times
#define ZERO RCONST(0.0)
#define HALF RCONST(0.5)
#define ONE RCONST(1.0)
#define TWO RCONST(2.0)
#define FIVE RCONST(5.0)
#if defined(SUNDIALS_EXTENDED_PRECISION)
#define GSYM "Lg"
#define ESYM "Le"
#define FSYM "Lf"
#else
#define GSYM "g"
#define ESYM "e"
#define FSYM "f"
#endif
#if defined(SUNDIALS_INT64_T)
#define DSYM "ld"
#else
#define DSYM "d"
#endif
// User data sstructure contains model and discretization parameters
struct UserData
{
sycl::queue* myQueue = NULL; // SYCL queue
sunindextype MX = 10; // interior nodes in the x-direction
sunindextype MY = 5; // interior nodes in the y-direction
sunindextype NEQ = MX * MY; // number of equations
realtype xmax = RCONST(2.0); // x-domain boundary
realtype ymax = RCONST(1.0); // y-domain boundary
realtype dx = xmax / (MX + 1); // x-direction mesh spacing
realtype dy = ymax / (MY + 1); // y-directino mesh spacing
realtype hdcoef = ONE / (dx * dx); // x-diffusion
realtype vdcoef = ONE / (dy * dy); // y-diffusion
realtype hacoef = HALF / (TWO * dx); // x-advection
};
// Functions Called by the Solver
static int f(realtype t, N_Vector u, N_Vector udot, void* user_data);
static int jtv(N_Vector v, N_Vector Jv, realtype t,
N_Vector u, N_Vector fu,
void* user_data, N_Vector tmp);
// Private Helper Functions
static void PrintHeader(realtype reltol, realtype abstol, realtype umax,
UserData* data);
static void PrintOutput(realtype t, realtype umax, long int nst);
static void PrintFinalStats(void* cvode_mem);
// Private function to check function return values
static int check_retval(void* returnvalue, const char *funcname, int opt);
/* ---------------------------------------------------------------------------
* Main Program
* ---------------------------------------------------------------------------*/
int main(int argc, char** argv)
{
// SUNDIALS simulation context
sundials::Context sunctx;
// return flag value
int retval;
// Create an in-order GPU queue
sycl::gpu_selector selector;
sycl::queue myQueue(selector,
sycl::property_list{sycl::property::queue::in_order{}});
sycl::device dev = myQueue.get_device();
std::cout << "Running on "
<< (dev.get_info<sycl::info::device::name>())
<< std::endl;
// Create user data and set queue
UserData data;
data.myQueue = &myQueue;
// Create a SYCL vector
N_Vector u = N_VNew_Sycl(data.NEQ, &myQueue, sunctx);
if (check_retval((void*)u, "N_VNew_Sycl", 0)) return 1;
// Extract host pointer to solution vector data on the host
realtype* udata = N_VGetArrayPointer(u);
// Load initial profile into u vector
for (sunindextype tid = 0; tid < data.NEQ; tid++)
{
sunindextype i = tid / data.MY; // x-node index
sunindextype j = tid % data.MY; // y-node index
realtype x = (i + 1) * data.dx; // x location
realtype y = (j + 1) * data.dy; // y location
udata[tid] =
x * (data.xmax - x) * y * (data.ymax - y) * std::exp(FIVE * x * y);
}
// Copy data to device
N_VCopyToDevice_Sycl(u);
// Create CVODE and specify the Backward Differentiation Formula
void* cvode_mem = CVodeCreate(CV_BDF, sunctx);
if (check_retval((void *)cvode_mem, "CVodeCreate", 0)) return 1;
// Specify the right hand side function in f(t,u), initial condition (t0, u0)
retval = CVodeInit(cvode_mem, f, T0, u);
if (check_retval(&retval, "CVodeInit", 1)) return 1;
// Specify the scalar relative tolerance and scalar absolute tolerance
realtype reltol = ZERO;
realtype abstol = ATOL;
retval = CVodeSStolerances(cvode_mem, reltol, abstol);
if (check_retval(&retval, "CVodeSStolerances", 1)) return 1;
// Set the pointer to user-defined data
retval = CVodeSetUserData(cvode_mem, &data);
if (check_retval(&retval, "CVodeSetUserData", 1)) return 1;
// Create SPGMR solver without preconditioning and default Krylov dimension
SUNLinearSolver LS = SUNLinSol_SPGMR(u, SUN_PREC_NONE, 0, sunctx);
if (check_retval(&retval, "SUNLinSol_SPGMR", 1)) return 1;
// Attach the linear sovler to CVODE
retval = CVodeSetLinearSolver(cvode_mem, LS, NULL);
if (check_retval(&retval, "CVodeSetLinearSolver", 1)) return 1;
// Set the Jacobian-times-vector function
retval = CVodeSetJacTimes(cvode_mem, NULL, jtv);
if (check_retval(&retval, "CVodeSetJacTimesVecFn", 1)) return 1;
// In loop over output points: call CVODE, print results, test for errors
realtype umax = N_VMaxNorm(u);
PrintHeader(reltol, abstol, umax, &data);
realtype tout = T1; // output time
realtype t; // CVODE return time
long int nst; // number of time steps
for (int iout = 0; iout < NOUT; iout++)
{
// Advance in time
retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
if (check_retval(&retval, "CVode", 1)) break;
// Output status
retval = CVodeGetNumSteps(cvode_mem, &nst);
if (check_retval(&retval, "CVodeGetNumSteps", 1)) break;
umax = N_VMaxNorm(u);
PrintOutput(t, umax, nst);
// Update output time
tout += DTOUT;
}
PrintFinalStats(cvode_mem); // Print some final statistics
N_VDestroy(u); // Free the u vector
CVodeFree(&cvode_mem); // Free the integrator memory
SUNLinSolFree(LS); // Free linear solver memory
return 0;
}
/* ---------------------------------------------------------------------------
* Functions called by the solver
* ---------------------------------------------------------------------------*/
// Compute the ODE right-hand side function f(t,u).
static int f(realtype t, N_Vector u, N_Vector udot, void* user_data)
{
UserData* data = static_cast<UserData*>(user_data);
// Extract needed constants from data
const size_t MX = static_cast<size_t>(data->MX);
const size_t MY = static_cast<size_t>(data->MY);
const realtype hordc = data->hdcoef;
const realtype horac = data->hacoef;
const realtype verdc = data->vdcoef;
// Extract pointers to vector data
const realtype* udata = N_VGetDeviceArrayPointer(u);
realtype* dudata = N_VGetDeviceArrayPointer(udot);
data->myQueue->submit([&](sycl::handler& h)
{
h.parallel_for(sycl::range{MX, MY}, [=](sycl::id<2> idx)
{
sunindextype i = idx[0];
sunindextype j = idx[1];
sunindextype tid = i * MY + j;
realtype uij = udata[tid];
realtype udn = (j == 0) ? ZERO : udata[tid - 1];
realtype uup = (j == MY - 1) ? ZERO : udata[tid + 1];
realtype ult = (i == 0) ? ZERO : udata[tid - MY];
realtype urt = (i == MX - 1) ? ZERO : udata[tid + MY];
// Set diffusion and advection terms and load into udot
realtype hdiff = hordc * (ult - TWO * uij + urt);
realtype vdiff = verdc * (uup - TWO * uij + udn);
realtype hadv = horac * (urt - ult);
dudata[tid] = hdiff + vdiff + hadv;
});
});
return 0;
}
// Jacobian-times-vector routine.
static int jtv(N_Vector v, N_Vector Jv, realtype t, N_Vector u, N_Vector fu,
void* user_data, N_Vector tmp)
{
UserData* data = static_cast<UserData*>(user_data);
// Extract needed constants from data
const size_t MX = static_cast<size_t>(data->MX);
const size_t MY = static_cast<size_t>(data->MY);
const realtype hordc = data->hdcoef;
const realtype horac = data->hacoef;
const realtype verdc = data->vdcoef;
// Extract pointers to vector data
const realtype *vdata = N_VGetDeviceArrayPointer(v);
realtype *Jvdata = N_VGetDeviceArrayPointer(Jv);
data->myQueue->submit([&](sycl::handler& h)
{
h.parallel_for(sycl::range{MX, MY}, [=](sycl::id<2> idx)
{
sunindextype i = idx[0];
sunindextype j = idx[1];
sunindextype tid = i * MY + j;
// set the tid-th element of Jv
Jvdata[tid] = -TWO * (verdc + hordc) * vdata[tid];
if (i != 0) Jvdata[tid] += (hordc - horac) * vdata[tid - MY];
if (i != MX - 1) Jvdata[tid] += (hordc + horac) * vdata[tid + MY];
if (j != 0) Jvdata[tid] += verdc * vdata[tid - 1];
if (j != MY - 1) Jvdata[tid] += verdc * vdata[tid + 1];
});
});
return 0;
}
/* ---------------------------------------------------------------------------
* Private helper functions
* ---------------------------------------------------------------------------*/
// Print first lines of output (problem description)
static void PrintHeader(realtype reltol, realtype abstol, realtype umax,
UserData* data)
{
std::cout << "\n2-D Advection-Diffusion Equation" << std::endl;
std::cout << "Mesh dimensions = " << data->MX << " X " << data->MY << std::endl;
std::cout << "Total system size = " << data->NEQ << std::endl;
std::cout << "Tolerance parameters: reltol = " << reltol
<< " abstol = " << abstol << std::endl << std::endl;
std::cout << "At t = " << T0 << " max.norm(u) = " << umax << std::endl;
return;
}
// Print current value
static void PrintOutput(realtype t, realtype umax, long int nst)
{
std::cout << "At t = " << t << " max.norm(u) = "<< umax
<< " nst = " << nst << std::endl;
return;
}
// Get and print some final statistics
static void PrintFinalStats(void* cvode_mem)
{
long lenrw, leniw ;
long lenrwLS, leniwLS;
long int nst, nfe, nsetups, nni, ncfn, netf;
long int nli, npe, nps, ncfl, nfeLS;
int retval;
retval = CVodeGetWorkSpace(cvode_mem, &lenrw, &leniw);
check_retval(&retval, "CVodeGetWorkSpace", 1);
retval = CVodeGetNumSteps(cvode_mem, &nst);
check_retval(&retval, "CVodeGetNumSteps", 1);
retval = CVodeGetNumRhsEvals(cvode_mem, &nfe);
check_retval(&retval, "CVodeGetNumRhsEvals", 1);
retval = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);
check_retval(&retval, "CVodeGetNumLinSolvSetups", 1);
retval = CVodeGetNumErrTestFails(cvode_mem, &netf);
check_retval(&retval, "CVodeGetNumErrTestFails", 1);
retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
check_retval(&retval, "CVodeGetNumNonlinSolvIters", 1);
retval = CVodeGetNumNonlinSolvConvFails(cvode_mem, &ncfn);
check_retval(&retval, "CVodeGetNumNonlinSolvConvFails", 1);
retval = CVodeGetLinWorkSpace(cvode_mem, &lenrwLS, &leniwLS);
check_retval(&retval, "CVodeGetLinWorkSpace", 1);
retval = CVodeGetNumLinIters(cvode_mem, &nli);
check_retval(&retval, "CVodeGetNumLinIters", 1);
retval = CVodeGetNumPrecEvals(cvode_mem, &npe);
check_retval(&retval, "CVodeGetNumPrecEvals", 1);
retval = CVodeGetNumPrecSolves(cvode_mem, &nps);
check_retval(&retval, "CVodeGetNumPrecSolves", 1);
retval = CVodeGetNumLinConvFails(cvode_mem, &ncfl);
check_retval(&retval, "CVodeGetNumLinConvFails", 1);
retval = CVodeGetNumLinRhsEvals(cvode_mem, &nfeLS);
check_retval(&retval, "CVodeGetNumLinRhsEvals", 1);
std::cout << "\nFinal Statistics.. \n\n";
std::cout << "lenrw = " << lenrw << " leniw = " << leniw << "\n";
std::cout << "lenrwLS = " << lenrwLS << " leniwLS = " << leniwLS << "\n";
std::cout << "nst = " << nst << "\n";
std::cout << "nfe = " << nfe << " nfeLS = " << nfeLS << "\n";
std::cout << "nni = " << nni << " nli = " << nli << "\n";
std::cout << "nsetups = " << nsetups << " netf = " << netf << "\n";
std::cout << "npe = " << npe << " nps = " << nps << "\n";
std::cout << "ncfn = " << ncfn << " ncfl = " << ncfl << "\n\n";
return;
}
/* Check function return value...
opt == 0 means SUNDIALS function allocates memory so check if
returned NULL pointer
opt == 1 means SUNDIALS function returns an integer value so check if
retval >= 0
opt == 2 means function allocates memory so check if returned
NULL pointer */
static int check_retval(void* returnvalue, const char *funcname, int opt)
{
int *retval;
if (opt == 0 && returnvalue == NULL)
{
// Check if SUNDIALS function returned NULL pointer - no memory allocated
std::cerr << "\nSUNDIALS_ERROR: " << funcname
<< " failed - returned NULL pointer\n\n";
return 1;
}
else if (opt == 1)
{
// Check if retval < 0
retval = static_cast<int*>(returnvalue);
if (*retval < 0)
{
std::cerr << "\nSUNDIALS_ERROR: " << funcname
<< " failed with retval = " << *retval << "\n\n";
return 1;
}
}
else if (opt == 2 && returnvalue == NULL)
{
// Check if function returned NULL pointer - no memory allocated
std::cerr << "\nMEMORY_ERROR: " << funcname
<< " failed - returned NULL pointer\n\n";
return 1;
}
return 0;
}
|