1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
/* -----------------------------------------------------------------
* Programmer(s): Daniel Reynolds and Ting Yan @ SMU
* Based on cvAdvDiff_bnd.c and parallelized with OpenMP
* -----------------------------------------------------------------
* SUNDIALS Copyright Start
* Copyright (c) 2002-2022, Lawrence Livermore National Security
* and Southern Methodist University.
* All rights reserved.
*
* See the top-level LICENSE and NOTICE files for details.
*
* SPDX-License-Identifier: BSD-3-Clause
* SUNDIALS Copyright End
* -----------------------------------------------------------------
* Example problem:
*
* The following is a simple example problem with a banded Jacobian,
* solved using CVODE.
* The problem is the semi-discrete form of the advection-diffusion
* equation in 2-D:
* du/dt = d^2 u / dx^2 + .5 du/dx + d^2 u / dy^2
* on the rectangle 0 <= x <= 2, 0 <= y <= 1, and the time
* interval 0 <= t <= 1. Homogeneous Dirichlet boundary conditions
* are posed, and the initial condition is
* u(x,y,t=0) = x(2-x)y(1-y)exp(5xy).
* The PDE is discretized on a uniform MX+2 by MY+2 grid with
* central differencing, and with boundary values eliminated,
* leaving an ODE system of size NEQ = MX*MY.
* This program solves the problem with the BDF method, Newton
* iteration with the SUNBAND linear solver, and a user-supplied
* Jacobian routine.
* It uses scalar relative and absolute tolerances.
* Output is printed at t = .1, .2, ..., 1.
* Run statistics (optional outputs) are printed at the end.
*
* Optionally, we can set the number of threads from environment
* variable or command line. To check the current value for number
* of threads from environment:
* % echo $OMP_NUM_THREADS
*
* Execution:
*
* To use the default value or the number of threads from the
* environment value, run without arguments:
* % ./cvAdvDiff_bnd_omp
* The environment variable can be over-ridden with a command line
* argument specifying the number of threads to use, e.g:
* % ./cvAdvDiff_bnd_omp 5
* ----------------------------------------------------------------- */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
/* Header files with a description of contents */
#include <cvode/cvode.h> /* prototypes for CVODE fcts., consts. */
#include <nvector/nvector_openmp.h> /* serial N_Vector types, fcts., macros */
#include <sunmatrix/sunmatrix_band.h> /* access to band SUNMatrix */
#include <sunlinsol/sunlinsol_band.h> /* access to band SUNLinearSolver */
#include <sundials/sundials_types.h> /* definition of type realtype */
#ifdef _OPENMP
#include <omp.h>
#endif
/* Problem Constants */
#define XMAX RCONST(2.0) /* domain boundaries */
#define YMAX RCONST(1.0)
#define MX 10 /* mesh dimensions */
#define MY 5
#define NEQ MX*MY /* number of equations */
#define ATOL RCONST(1.0e-5) /* scalar absolute tolerance */
#define T0 RCONST(0.0) /* initial time */
#define T1 RCONST(0.1) /* first output time */
#define DTOUT RCONST(0.1) /* output time increment */
#define NOUT 10 /* number of output times */
#define ZERO RCONST(0.0)
#define HALF RCONST(0.5)
#define ONE RCONST(1.0)
#define TWO RCONST(2.0)
#define FIVE RCONST(5.0)
/* User-defined vector access macro IJth */
/* IJth is defined in order to isolate the translation from the
mathematical 2-dimensional structure of the dependent variable vector
to the underlying 1-dimensional storage.
IJth(vdata,i,j) references the element in the vdata array for
u at mesh point (i,j), where 1 <= i <= MX, 1 <= j <= MY.
The vdata array is obtained via the macro call vdata = NV_DATA_S(v),
where v is an N_Vector.
The variables are ordered by the y index j, then by the x index i. */
#define IJth(vdata,i,j) (vdata[(j-1) + (i-1)*MY])
/* Type : UserData (contains grid constants) */
typedef struct {
realtype dx, dy, hdcoef, hacoef, vdcoef;
int nthreads;
} *UserData;
/* Private Helper Functions */
static void SetIC(N_Vector u, UserData data);
static void PrintHeader(realtype reltol, realtype abstol, realtype umax);
static void PrintOutput(realtype t, realtype umax, long int nst);
static void PrintFinalStats(void *cvode_mem);
/* Private function to check function return values */
static int check_retval(void *returnvalue, const char *funcname, int opt);
/* Functions Called by the Solver */
static int f(realtype t, N_Vector u, N_Vector udot, void *user_data);
static int Jac(realtype t, N_Vector u, N_Vector fu, SUNMatrix J,
void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
/*
*-------------------------------
* Main Program
*-------------------------------
*/
int main(int argc, char *argv[])
{
SUNContext sunctx;
realtype dx, dy, reltol, abstol, t, tout, umax;
N_Vector u;
UserData data;
SUNMatrix A;
SUNLinearSolver LS;
void *cvode_mem;
int iout, retval;
long int nst;
int num_threads;
u = NULL;
data = NULL;
A = NULL;
LS = NULL;
cvode_mem = NULL;
/* Create the SUNDIALS context */
retval = SUNContext_Create(NULL, &sunctx);
if(check_retval(&retval, "SUNContext_Create", 1)) return(1);
/* Set the number of threads to use */
num_threads = 1; /* default value */
#ifdef _OPENMP
num_threads = omp_get_max_threads(); /* Overwrite with OMP_NUM_THREADS environment variable */
#endif
if (argc > 1) /* overwrite with command line value, if supplied */
num_threads = (int) strtol(argv[1], NULL, 0);
/* Create an OpenMP vector */
u = N_VNew_OpenMP(NEQ, num_threads, sunctx); /* Allocate u vector */
if(check_retval((void*)u, "N_VNew_OpenMP", 0)) return(1);
reltol = ZERO; /* Set the tolerances */
abstol = ATOL;
data = (UserData) malloc(sizeof *data); /* Allocate data memory */
if(check_retval((void *)data, "malloc", 2)) return(1);
dx = data->dx = XMAX/(MX+1); /* Set grid coefficients in data */
dy = data->dy = YMAX/(MY+1);
data->hdcoef = ONE/(dx*dx);
data->hacoef = HALF/(TWO*dx);
data->vdcoef = ONE/(dy*dy);
data->nthreads = num_threads;
SetIC(u, data); /* Initialize u vector */
/* Call CVodeCreate to create the solver memory and specify the
* Backward Differentiation Formula */
cvode_mem = CVodeCreate(CV_BDF, sunctx);
if(check_retval((void *)cvode_mem, "CVodeCreate", 0)) return(1);
/* Call CVodeInit to initialize the integrator memory and specify the
* user's right hand side function in u'=f(t,u), the inital time T0, and
* the initial dependent variable vector u. */
retval = CVodeInit(cvode_mem, f, T0, u);
if(check_retval(&retval, "CVodeInit", 1)) return(1);
/* Call CVodeSStolerances to specify the scalar relative tolerance
* and scalar absolute tolerance */
retval = CVodeSStolerances(cvode_mem, reltol, abstol);
if (check_retval(&retval, "CVodeSStolerances", 1)) return(1);
/* Set the pointer to user-defined data */
retval = CVodeSetUserData(cvode_mem, data);
if(check_retval(&retval, "CVodeSetUserData", 1)) return(1);
/* Create banded SUNMatrix for use in linear solves -- since this will be factored,
set the storage bandwidth to be the sum of upper and lower bandwidths */
A = SUNBandMatrix(NEQ, MY, MY, sunctx);
if(check_retval((void *)A, "SUNBandMatrix", 0)) return(1);
/* Create banded SUNLinearSolver object for use by CVode */
LS = SUNLinSol_Band(u, A, sunctx);
if(check_retval((void *)LS, "SUNLinSol_Band", 0)) return(1);
/* Call CVodeSetLinearSolver to attach the matrix and linear solver to CVode */
retval = CVodeSetLinearSolver(cvode_mem, LS, A);
if(check_retval(&retval, "CVodeSetLinearSolver", 1)) return(1);
/* Set the user-supplied Jacobian routine Jac */
retval = CVodeSetJacFn(cvode_mem, Jac);
if(check_retval(&retval, "CVodeSetJacFn", 1)) return(1);
/* In loop over output points: call CVode, print results, test for errors */
umax = N_VMaxNorm(u);
PrintHeader(reltol, abstol, umax);
for(iout=1, tout=T1; iout <= NOUT; iout++, tout += DTOUT) {
retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
if(check_retval(&retval, "CVode", 1)) break;
umax = N_VMaxNorm(u);
retval = CVodeGetNumSteps(cvode_mem, &nst);
check_retval(&retval, "CVodeGetNumSteps", 1);
PrintOutput(t, umax, nst);
}
PrintFinalStats(cvode_mem); /* Print some final statistics */
printf("num_threads = %i\n\n", num_threads);
N_VDestroy(u); /* Free the u vector */
CVodeFree(&cvode_mem); /* Free the integrator memory */
SUNLinSolFree(LS); /* Free the linear solver memory */
SUNMatDestroy(A); /* Free the matrix memory */
free(data); /* Free the user data */
SUNContext_Free(&sunctx);
return(0);
}
/*
*-------------------------------
* Functions called by the solver
*-------------------------------
*/
/* f routine. Compute f(t,u). */
static int f(realtype t, N_Vector u,N_Vector udot, void *user_data)
{
realtype uij, udn, uup, ult, urt, hordc, horac, verdc, hdiff, hadv, vdiff;
realtype *udata, *dudata;
sunindextype i, j;
UserData data;
i = j = 0;
udata = NV_DATA_OMP(u);
dudata = NV_DATA_OMP(udot);
/* Extract needed constants from data */
data = (UserData) user_data;
hordc = data->hdcoef;
horac = data->hacoef;
verdc = data->vdcoef;
/* Loop over all grid points. */
#pragma omp parallel for default(shared) private(j, i, uij, udn, uup, ult, urt, hdiff, hadv, vdiff) num_threads(data->nthreads)
for (j=1; j <= MY; j++) {
for (i=1; i <= MX; i++) {
/* Extract u at x_i, y_j and four neighboring points */
uij = IJth(udata, i, j);
udn = (j == 1) ? ZERO : IJth(udata, i, j-1);
uup = (j == MY) ? ZERO : IJth(udata, i, j+1);
ult = (i == 1) ? ZERO : IJth(udata, i-1, j);
urt = (i == MX) ? ZERO : IJth(udata, i+1, j);
/* Set diffusion and advection terms and load into udot */
hdiff = hordc*(ult - TWO*uij + urt);
hadv = horac*(urt - ult);
vdiff = verdc*(uup - TWO*uij + udn);
IJth(dudata, i, j) = hdiff + hadv + vdiff;
}
}
return(0);
}
/* Jacobian routine. Compute J(t,u). */
static int Jac(realtype t, N_Vector u, N_Vector fu,
SUNMatrix J, void *user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
sunindextype i, j, k;
realtype *kthCol, hordc, horac, verdc;
UserData data;
/*
The components of f = udot that depend on u(i,j) are
f(i,j), f(i-1,j), f(i+1,j), f(i,j-1), f(i,j+1), with
df(i,j)/du(i,j) = -2 (1/dx^2 + 1/dy^2)
df(i-1,j)/du(i,j) = 1/dx^2 + .25/dx (if i > 1)
df(i+1,j)/du(i,j) = 1/dx^2 - .25/dx (if i < MX)
df(i,j-1)/du(i,j) = 1/dy^2 (if j > 1)
df(i,j+1)/du(i,j) = 1/dy^2 (if j < MY)
*/
i = j = 0;
data = (UserData) user_data;
hordc = data->hdcoef;
horac = data->hacoef;
verdc = data->vdcoef;
#pragma omp parallel for collapse(2) default(shared) private(i, j, k, kthCol) num_threads(data->nthreads)
for (j=1; j <= MY; j++) {
for (i=1; i <= MX; i++) {
k = j-1 + (i-1)*MY;
kthCol = SUNBandMatrix_Column(J,k);
/* set the kth column of J */
SM_COLUMN_ELEMENT_B(kthCol,k,k) = -TWO*(verdc+hordc);
if (i != 1) SM_COLUMN_ELEMENT_B(kthCol,k-MY,k) = hordc + horac;
if (i != MX) SM_COLUMN_ELEMENT_B(kthCol,k+MY,k) = hordc - horac;
if (j != 1) SM_COLUMN_ELEMENT_B(kthCol,k-1,k) = verdc;
if (j != MY) SM_COLUMN_ELEMENT_B(kthCol,k+1,k) = verdc;
}
}
return(0);
}
/*
*-------------------------------
* Private helper functions
*-------------------------------
*/
/* Set initial conditions in u vector */
static void SetIC(N_Vector u, UserData data)
{
sunindextype i, j;
realtype x, y, dx, dy;
realtype *udata;
i = j = 0;
/* Extract needed constants from data */
dx = data->dx;
dy = data->dy;
/* Set pointer to data array in vector u. */
udata = NV_DATA_OMP(u);
/* Load initial profile into u vector */
#pragma omp parallel for default(shared) private(j, i, y, x)
for (j=1; j <= MY; j++) {
y = j*dy;
for (i=1; i <= MX; i++) {
x = i*dx;
IJth(udata,i,j) = x*(XMAX - x)*y*(YMAX - y)*exp(FIVE*x*y);
}
}
}
/* Print first lines of output (problem description) */
static void PrintHeader(realtype reltol, realtype abstol, realtype umax)
{
printf("\n2-D Advection-Diffusion Equation\n");
printf("Mesh dimensions = %d X %d\n", MX, MY);
printf("Total system size = %d\n", NEQ);
#if defined(SUNDIALS_EXTENDED_PRECISION)
printf("Tolerance parameters: reltol = %Lg abstol = %Lg\n\n",
reltol, abstol);
printf("At t = %Lg max.norm(u) =%14.6Le \n", T0, umax);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
printf("Tolerance parameters: reltol = %g abstol = %g\n\n",
reltol, abstol);
printf("At t = %g max.norm(u) =%14.6e \n", T0, umax);
#else
printf("Tolerance parameters: reltol = %g abstol = %g\n\n", reltol, abstol);
printf("At t = %g max.norm(u) =%14.6e \n", T0, umax);
#endif
return;
}
/* Print current value */
static void PrintOutput(realtype t, realtype umax, long int nst)
{
#if defined(SUNDIALS_EXTENDED_PRECISION)
printf("At t = %4.2Lf max.norm(u) =%14.6Le nst = %4ld\n", t, umax, nst);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
printf("At t = %4.2f max.norm(u) =%14.6e nst = %4ld\n", t, umax, nst);
#else
printf("At t = %4.2f max.norm(u) =%14.6e nst = %4ld\n", t, umax, nst);
#endif
return;
}
/* Get and print some final statistics */
static void PrintFinalStats(void *cvode_mem)
{
int retval;
long int nst, nfe, nsetups, netf, nni, ncfn, nje, nfeLS;
retval = CVodeGetNumSteps(cvode_mem, &nst);
check_retval(&retval, "CVodeGetNumSteps", 1);
retval = CVodeGetNumRhsEvals(cvode_mem, &nfe);
check_retval(&retval, "CVodeGetNumRhsEvals", 1);
retval = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);
check_retval(&retval, "CVodeGetNumLinSolvSetups", 1);
retval = CVodeGetNumErrTestFails(cvode_mem, &netf);
check_retval(&retval, "CVodeGetNumErrTestFails", 1);
retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
check_retval(&retval, "CVodeGetNumNonlinSolvIters", 1);
retval = CVodeGetNumNonlinSolvConvFails(cvode_mem, &ncfn);
check_retval(&retval, "CVodeGetNumNonlinSolvConvFails", 1);
retval = CVodeGetNumJacEvals(cvode_mem, &nje);
check_retval(&retval, "CVodeGetNumJacEvals", 1);
retval = CVodeGetNumLinRhsEvals(cvode_mem, &nfeLS);
check_retval(&retval, "CVodeGetNumLinRhsEvals", 1);
printf("\nFinal Statistics:\n");
printf("nst = %-6ld nfe = %-6ld nsetups = %-6ld nfeLS = %-6ld nje = %ld\n",
nst, nfe, nsetups, nfeLS, nje);
printf("nni = %-6ld ncfn = %-6ld netf = %ld\n",
nni, ncfn, netf);
return;
}
/* Check function return value...
opt == 0 means SUNDIALS function allocates memory so check if
returned NULL pointer
opt == 1 means SUNDIALS function returns an integer value so check if
retval < 0
opt == 2 means function allocates memory so check if returned
NULL pointer */
static int check_retval(void *returnvalue, const char *funcname, int opt)
{
int *retval;
/* Check if SUNDIALS function returned NULL pointer - no memory allocated */
if (opt == 0 && returnvalue == NULL) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return(1); }
/* Check if retval < 0 */
else if (opt == 1) {
retval = (int *) returnvalue;
if (*retval < 0) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with retval = %d\n\n",
funcname, *retval);
return(1); }}
/* Check if function returned NULL pointer - no memory allocated */
else if (opt == 2 && returnvalue == NULL) {
fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return(1); }
return(0);
}
|