File: cvAdvDiff_bnd_omp.c

package info (click to toggle)
sundials 6.4.1%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 79,368 kB
  • sloc: ansic: 218,700; f90: 62,503; cpp: 61,511; fortran: 5,166; python: 4,642; sh: 4,114; makefile: 562; perl: 123
file content (486 lines) | stat: -rw-r--r-- 15,975 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
/* -----------------------------------------------------------------
 * Programmer(s): Daniel Reynolds and Ting Yan @ SMU
 *     Based on cvAdvDiff_bnd.c and parallelized with OpenMP
 * -----------------------------------------------------------------
 * SUNDIALS Copyright Start
 * Copyright (c) 2002-2022, Lawrence Livermore National Security
 * and Southern Methodist University.
 * All rights reserved.
 *
 * See the top-level LICENSE and NOTICE files for details.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 * SUNDIALS Copyright End
 * -----------------------------------------------------------------
 * Example problem:
 *
 * The following is a simple example problem with a banded Jacobian,
 * solved using CVODE.
 * The problem is the semi-discrete form of the advection-diffusion
 * equation in 2-D:
 *   du/dt = d^2 u / dx^2 + .5 du/dx + d^2 u / dy^2
 * on the rectangle 0 <= x <= 2, 0 <= y <= 1, and the time
 * interval 0 <= t <= 1. Homogeneous Dirichlet boundary conditions
 * are posed, and the initial condition is
 *   u(x,y,t=0) = x(2-x)y(1-y)exp(5xy).
 * The PDE is discretized on a uniform MX+2 by MY+2 grid with
 * central differencing, and with boundary values eliminated,
 * leaving an ODE system of size NEQ = MX*MY.
 * This program solves the problem with the BDF method, Newton
 * iteration with the SUNBAND linear solver, and a user-supplied
 * Jacobian routine.
 * It uses scalar relative and absolute tolerances.
 * Output is printed at t = .1, .2, ..., 1.
 * Run statistics (optional outputs) are printed at the end.
 *
 * Optionally, we can set the number of threads from environment
 * variable or command line. To check the current value for number
 * of threads from environment:
 *      % echo $OMP_NUM_THREADS
 *
 * Execution:
 *
 * To use the default value or the number of threads from the
 * environment value, run without arguments:
 *      % ./cvAdvDiff_bnd_omp
 * The environment variable can be over-ridden with a command line
 * argument specifying the number of threads to use, e.g:
 *      % ./cvAdvDiff_bnd_omp 5
 * ----------------------------------------------------------------- */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* Header files with a description of contents */

#include <cvode/cvode.h>               /* prototypes for CVODE fcts., consts. */
#include <nvector/nvector_openmp.h>    /* serial N_Vector types, fcts., macros */
#include <sunmatrix/sunmatrix_band.h>  /* access to band SUNMatrix */
#include <sunlinsol/sunlinsol_band.h>  /* access to band SUNLinearSolver */
#include <sundials/sundials_types.h>   /* definition of type realtype */

#ifdef _OPENMP
#include <omp.h>
#endif

/* Problem Constants */

#define XMAX  RCONST(2.0)    /* domain boundaries         */
#define YMAX  RCONST(1.0)
#define MX    10             /* mesh dimensions           */
#define MY    5
#define NEQ   MX*MY          /* number of equations       */
#define ATOL  RCONST(1.0e-5) /* scalar absolute tolerance */
#define T0    RCONST(0.0)    /* initial time              */
#define T1    RCONST(0.1)    /* first output time         */
#define DTOUT RCONST(0.1)    /* output time increment     */
#define NOUT  10             /* number of output times    */

#define ZERO RCONST(0.0)
#define HALF RCONST(0.5)
#define ONE  RCONST(1.0)
#define TWO  RCONST(2.0)
#define FIVE RCONST(5.0)

/* User-defined vector access macro IJth */

/* IJth is defined in order to isolate the translation from the
   mathematical 2-dimensional structure of the dependent variable vector
   to the underlying 1-dimensional storage.
   IJth(vdata,i,j) references the element in the vdata array for
   u at mesh point (i,j), where 1 <= i <= MX, 1 <= j <= MY.
   The vdata array is obtained via the macro call vdata = NV_DATA_S(v),
   where v is an N_Vector.
   The variables are ordered by the y index j, then by the x index i. */

#define IJth(vdata,i,j) (vdata[(j-1) + (i-1)*MY])

/* Type : UserData (contains grid constants) */

typedef struct {
  realtype dx, dy, hdcoef, hacoef, vdcoef;
  int nthreads;
} *UserData;

/* Private Helper Functions */

static void SetIC(N_Vector u, UserData data);
static void PrintHeader(realtype reltol, realtype abstol, realtype umax);
static void PrintOutput(realtype t, realtype umax, long int nst);
static void PrintFinalStats(void *cvode_mem);

/* Private function to check function return values */

static int check_retval(void *returnvalue, const char *funcname, int opt);

/* Functions Called by the Solver */

static int f(realtype t, N_Vector u, N_Vector udot, void *user_data);
static int Jac(realtype t, N_Vector u, N_Vector fu, SUNMatrix J,
               void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);

/*
 *-------------------------------
 * Main Program
 *-------------------------------
 */

int main(int argc, char *argv[])
{
  SUNContext sunctx;
  realtype dx, dy, reltol, abstol, t, tout, umax;
  N_Vector u;
  UserData data;
  SUNMatrix A;
  SUNLinearSolver LS;
  void *cvode_mem;
  int iout, retval;
  long int nst;
  int num_threads;

  u = NULL;
  data = NULL;
  A = NULL;
  LS = NULL;
  cvode_mem = NULL;

  /* Create the SUNDIALS context */
  retval = SUNContext_Create(NULL, &sunctx);
  if(check_retval(&retval, "SUNContext_Create", 1)) return(1);

  /* Set the number of threads to use */
  num_threads = 1;     /* default value */
#ifdef _OPENMP
  num_threads = omp_get_max_threads();  /* Overwrite with OMP_NUM_THREADS environment variable */
#endif
  if (argc > 1)        /* overwrite with command line value, if supplied */
    num_threads = (int) strtol(argv[1], NULL, 0);

  /* Create an OpenMP vector */
  u = N_VNew_OpenMP(NEQ, num_threads, sunctx);  /* Allocate u vector */
  if(check_retval((void*)u, "N_VNew_OpenMP", 0)) return(1);

  reltol = ZERO;  /* Set the tolerances */
  abstol = ATOL;

  data = (UserData) malloc(sizeof *data);  /* Allocate data memory */
  if(check_retval((void *)data, "malloc", 2)) return(1);
  dx = data->dx = XMAX/(MX+1);  /* Set grid coefficients in data */
  dy = data->dy = YMAX/(MY+1);
  data->hdcoef = ONE/(dx*dx);
  data->hacoef = HALF/(TWO*dx);
  data->vdcoef = ONE/(dy*dy);
  data->nthreads = num_threads;

  SetIC(u, data);  /* Initialize u vector */

  /* Call CVodeCreate to create the solver memory and specify the
   * Backward Differentiation Formula */
  cvode_mem = CVodeCreate(CV_BDF, sunctx);
  if(check_retval((void *)cvode_mem, "CVodeCreate", 0)) return(1);

  /* Call CVodeInit to initialize the integrator memory and specify the
   * user's right hand side function in u'=f(t,u), the inital time T0, and
   * the initial dependent variable vector u. */
  retval = CVodeInit(cvode_mem, f, T0, u);
  if(check_retval(&retval, "CVodeInit", 1)) return(1);

  /* Call CVodeSStolerances to specify the scalar relative tolerance
   * and scalar absolute tolerance */
  retval = CVodeSStolerances(cvode_mem, reltol, abstol);
  if (check_retval(&retval, "CVodeSStolerances", 1)) return(1);

  /* Set the pointer to user-defined data */
  retval = CVodeSetUserData(cvode_mem, data);
  if(check_retval(&retval, "CVodeSetUserData", 1)) return(1);

  /* Create banded SUNMatrix for use in linear solves -- since this will be factored,
     set the storage bandwidth to be the sum of upper and lower bandwidths */
  A = SUNBandMatrix(NEQ, MY, MY, sunctx);
  if(check_retval((void *)A, "SUNBandMatrix", 0)) return(1);

  /* Create banded SUNLinearSolver object for use by CVode */
  LS = SUNLinSol_Band(u, A, sunctx);
  if(check_retval((void *)LS, "SUNLinSol_Band", 0)) return(1);

  /* Call CVodeSetLinearSolver to attach the matrix and linear solver to CVode */
  retval = CVodeSetLinearSolver(cvode_mem, LS, A);
  if(check_retval(&retval, "CVodeSetLinearSolver", 1)) return(1);

  /* Set the user-supplied Jacobian routine Jac */
  retval = CVodeSetJacFn(cvode_mem, Jac);
  if(check_retval(&retval, "CVodeSetJacFn", 1)) return(1);

  /* In loop over output points: call CVode, print results, test for errors */

  umax = N_VMaxNorm(u);
  PrintHeader(reltol, abstol, umax);
  for(iout=1, tout=T1; iout <= NOUT; iout++, tout += DTOUT) {
    retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
    if(check_retval(&retval, "CVode", 1)) break;
    umax = N_VMaxNorm(u);
    retval = CVodeGetNumSteps(cvode_mem, &nst);
    check_retval(&retval, "CVodeGetNumSteps", 1);
    PrintOutput(t, umax, nst);
  }

  PrintFinalStats(cvode_mem);  /* Print some final statistics   */
  printf("num_threads = %i\n\n", num_threads);


  N_VDestroy(u);          /* Free the u vector */
  CVodeFree(&cvode_mem);  /* Free the integrator memory */
  SUNLinSolFree(LS);      /* Free the linear solver memory */
  SUNMatDestroy(A);       /* Free the matrix memory */
  free(data);             /* Free the user data */

  SUNContext_Free(&sunctx);

  return(0);
}

/*
 *-------------------------------
 * Functions called by the solver
 *-------------------------------
 */

/* f routine. Compute f(t,u). */

static int f(realtype t, N_Vector u,N_Vector udot, void *user_data)
{
  realtype uij, udn, uup, ult, urt, hordc, horac, verdc, hdiff, hadv, vdiff;
  realtype *udata, *dudata;
  sunindextype i, j;
  UserData data;

  i = j = 0;

  udata  = NV_DATA_OMP(u);
  dudata = NV_DATA_OMP(udot);

  /* Extract needed constants from data */

  data = (UserData) user_data;
  hordc = data->hdcoef;
  horac = data->hacoef;
  verdc = data->vdcoef;

  /* Loop over all grid points. */
#pragma omp parallel for default(shared) private(j, i, uij, udn, uup, ult, urt, hdiff, hadv, vdiff) num_threads(data->nthreads)
  for (j=1; j <= MY; j++) {

    for (i=1; i <= MX; i++) {

      /* Extract u at x_i, y_j and four neighboring points */

      uij = IJth(udata, i, j);
      udn = (j == 1)  ? ZERO : IJth(udata, i, j-1);
      uup = (j == MY) ? ZERO : IJth(udata, i, j+1);
      ult = (i == 1)  ? ZERO : IJth(udata, i-1, j);
      urt = (i == MX) ? ZERO : IJth(udata, i+1, j);

      /* Set diffusion and advection terms and load into udot */

      hdiff = hordc*(ult - TWO*uij + urt);
      hadv = horac*(urt - ult);
      vdiff = verdc*(uup - TWO*uij + udn);
      IJth(dudata, i, j) = hdiff + hadv + vdiff;
    }
  }

  return(0);
}

/* Jacobian routine. Compute J(t,u). */

static int Jac(realtype t, N_Vector u, N_Vector fu,
               SUNMatrix J, void *user_data,
               N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
  sunindextype i, j, k;
  realtype *kthCol, hordc, horac, verdc;
  UserData data;

  /*
    The components of f = udot that depend on u(i,j) are
    f(i,j), f(i-1,j), f(i+1,j), f(i,j-1), f(i,j+1), with
      df(i,j)/du(i,j) = -2 (1/dx^2 + 1/dy^2)
      df(i-1,j)/du(i,j) = 1/dx^2 + .25/dx  (if i > 1)
      df(i+1,j)/du(i,j) = 1/dx^2 - .25/dx  (if i < MX)
      df(i,j-1)/du(i,j) = 1/dy^2           (if j > 1)
      df(i,j+1)/du(i,j) = 1/dy^2           (if j < MY)
  */

  i = j = 0;

  data  = (UserData) user_data;
  hordc = data->hdcoef;
  horac = data->hacoef;
  verdc = data->vdcoef;

#pragma omp parallel for collapse(2) default(shared) private(i, j, k, kthCol) num_threads(data->nthreads)
  for (j=1; j <= MY; j++) {
    for (i=1; i <= MX; i++) {
      k = j-1 + (i-1)*MY;
      kthCol = SUNBandMatrix_Column(J,k);

      /* set the kth column of J */

      SM_COLUMN_ELEMENT_B(kthCol,k,k) = -TWO*(verdc+hordc);
      if (i != 1)  SM_COLUMN_ELEMENT_B(kthCol,k-MY,k) = hordc + horac;
      if (i != MX) SM_COLUMN_ELEMENT_B(kthCol,k+MY,k) = hordc - horac;
      if (j != 1)  SM_COLUMN_ELEMENT_B(kthCol,k-1,k)  = verdc;
      if (j != MY) SM_COLUMN_ELEMENT_B(kthCol,k+1,k)  = verdc;
    }
  }

  return(0);
}

/*
 *-------------------------------
 * Private helper functions
 *-------------------------------
 */

/* Set initial conditions in u vector */

static void SetIC(N_Vector u, UserData data)
{
  sunindextype i, j;
  realtype x, y, dx, dy;
  realtype *udata;

  i = j = 0;

  /* Extract needed constants from data */

  dx = data->dx;
  dy = data->dy;

  /* Set pointer to data array in vector u. */

  udata = NV_DATA_OMP(u);

  /* Load initial profile into u vector */
#pragma omp parallel for default(shared) private(j, i, y, x)
  for (j=1; j <= MY; j++) {
    y = j*dy;
    for (i=1; i <= MX; i++) {
      x = i*dx;
      IJth(udata,i,j) = x*(XMAX - x)*y*(YMAX - y)*exp(FIVE*x*y);
    }
  }
}

/* Print first lines of output (problem description) */

static void PrintHeader(realtype reltol, realtype abstol, realtype umax)
{
  printf("\n2-D Advection-Diffusion Equation\n");
  printf("Mesh dimensions = %d X %d\n", MX, MY);
  printf("Total system size = %d\n", NEQ);
#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("Tolerance parameters: reltol = %Lg   abstol = %Lg\n\n",
         reltol, abstol);
  printf("At t = %Lg      max.norm(u) =%14.6Le \n", T0, umax);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("Tolerance parameters: reltol = %g   abstol = %g\n\n",
         reltol, abstol);
  printf("At t = %g      max.norm(u) =%14.6e \n", T0, umax);
#else
  printf("Tolerance parameters: reltol = %g   abstol = %g\n\n", reltol, abstol);
  printf("At t = %g      max.norm(u) =%14.6e \n", T0, umax);
#endif

  return;
}

/* Print current value */

static void PrintOutput(realtype t, realtype umax, long int nst)
{
#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("At t = %4.2Lf   max.norm(u) =%14.6Le   nst = %4ld\n", t, umax, nst);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("At t = %4.2f   max.norm(u) =%14.6e   nst = %4ld\n", t, umax, nst);
#else
  printf("At t = %4.2f   max.norm(u) =%14.6e   nst = %4ld\n", t, umax, nst);
#endif

  return;
}

/* Get and print some final statistics */

static void PrintFinalStats(void *cvode_mem)
{
  int retval;
  long int nst, nfe, nsetups, netf, nni, ncfn, nje, nfeLS;

  retval = CVodeGetNumSteps(cvode_mem, &nst);
  check_retval(&retval, "CVodeGetNumSteps", 1);
  retval = CVodeGetNumRhsEvals(cvode_mem, &nfe);
  check_retval(&retval, "CVodeGetNumRhsEvals", 1);
  retval = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);
  check_retval(&retval, "CVodeGetNumLinSolvSetups", 1);
  retval = CVodeGetNumErrTestFails(cvode_mem, &netf);
  check_retval(&retval, "CVodeGetNumErrTestFails", 1);
  retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
  check_retval(&retval, "CVodeGetNumNonlinSolvIters", 1);
  retval = CVodeGetNumNonlinSolvConvFails(cvode_mem, &ncfn);
  check_retval(&retval, "CVodeGetNumNonlinSolvConvFails", 1);

  retval = CVodeGetNumJacEvals(cvode_mem, &nje);
  check_retval(&retval, "CVodeGetNumJacEvals", 1);
  retval = CVodeGetNumLinRhsEvals(cvode_mem, &nfeLS);
  check_retval(&retval, "CVodeGetNumLinRhsEvals", 1);

  printf("\nFinal Statistics:\n");
  printf("nst = %-6ld nfe  = %-6ld nsetups = %-6ld nfeLS = %-6ld nje = %ld\n",
	 nst, nfe, nsetups, nfeLS, nje);
  printf("nni = %-6ld ncfn = %-6ld netf = %ld\n",
	 nni, ncfn, netf);

  return;
}

/* Check function return value...
     opt == 0 means SUNDIALS function allocates memory so check if
              returned NULL pointer
     opt == 1 means SUNDIALS function returns an integer value so check if
              retval < 0
     opt == 2 means function allocates memory so check if returned
              NULL pointer */

static int check_retval(void *returnvalue, const char *funcname, int opt)
{
  int *retval;

  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */

  if (opt == 0 && returnvalue == NULL) {
    fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return(1); }

  /* Check if retval < 0 */

  else if (opt == 1) {
    retval = (int *) returnvalue;
    if (*retval < 0) {
      fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with retval = %d\n\n",
              funcname, *retval);
      return(1); }}

  /* Check if function returned NULL pointer - no memory allocated */

  else if (opt == 2 && returnvalue == NULL) {
    fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return(1); }

  return(0);
}