File: cvAdvDiff_kry_cuda.cu

package info (click to toggle)
sundials 6.4.1%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 79,368 kB
  • sloc: ansic: 218,700; f90: 62,503; cpp: 61,511; fortran: 5,166; python: 4,642; sh: 4,114; makefile: 562; perl: 123
file content (531 lines) | stat: -rw-r--r-- 16,825 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
/* -----------------------------------------------------------------
 * Programmer(s): Slaven Peles @ LLNL
 * -----------------------------------------------------------------
 * Acknowledgements: This example is based on cvAdvDiff_bnd
 *                   example by Scott D. Cohen, Alan C.
 *                   Hindmarsh and Radu Serban @ LLNL
 * -----------------------------------------------------------------
 * SUNDIALS Copyright Start
 * Copyright (c) 2002-2022, Lawrence Livermore National Security
 * and Southern Methodist University.
 * All rights reserved.
 *
 * See the top-level LICENSE and NOTICE files for details.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 * SUNDIALS Copyright End
 * -----------------------------------------------------------------
 * Example problem:
 *
 * The following is a simple example problem with a banded Jacobian,
 * with the program for its solution by CVODE.
 * The problem is the semi-discrete form of the advection-diffusion
 * equation in 2-D:
 *   du/dt = d^2 u / dx^2 + .5 du/dx + d^2 u / dy^2
 * on the rectangle 0 <= x <= 2, 0 <= y <= 1, and the time
 * interval 0 <= t <= 1. Homogeneous Dirichlet boundary conditions
 * are posed, and the initial condition is
 *   u(x,y,t=0) = x(2-x)y(1-y)exp(5xy).
 * The PDE is discretized on a uniform MX+2 by MY+2 grid with
 * central differencing, and with boundary values eliminated,
 * leaving an ODE system of size NEQ = MX*MY.
 * This program solves the problem with the BDF method, Newton
 * iteration with the GMRES linear solver, and a user-supplied
 * Jacobian routine.
 * It uses scalar relative and absolute tolerances.
 * Output is printed at t = .1, .2, ..., 1.
 * Run statistics (optional outputs) are printed at the end.
 * -----------------------------------------------------------------*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <cuda_runtime.h>

#include <cvode/cvode.h>               /* prototypes for CVODE fcts., consts. */
#include <sunlinsol/sunlinsol_spgmr.h> /* access to SPGMR SUNLinearSolver     */
#include <sundials/sundials_types.h>   /* definition of type realtype */
#include <sundials/sundials_math.h>    /* definition of ABS and EXP   */

#include <nvector/nvector_cuda.h>

/* Real Constants */

#define ATOL  RCONST(1.0e-5) /* scalar absolute tolerance */
#define T0    RCONST(0.0)    /* initial time              */
#define T1    RCONST(0.1)    /* first output time         */
#define DTOUT RCONST(0.1)    /* output time increment     */
#define NOUT  10             /* number of output times    */

#define ZERO RCONST(0.0)
#define HALF RCONST(0.5)
#define ONE  RCONST(1.0)
#define TWO  RCONST(2.0)
#define FIVE RCONST(5.0)

#if defined(SUNDIALS_EXTENDED_PRECISION)
#define GSYM "Lg"
#define ESYM "Le"
#define FSYM "Lf"
#else
#define GSYM "g"
#define ESYM "e"
#define FSYM "f"
#endif

#if defined(SUNDIALS_INT64_T)
#define DSYM "ld"
#else
#define DSYM "d"
#endif


/*
 * CUDA kernels
 */

__global__ void fKernel(const realtype *u, realtype *udot,
                               sunindextype MX, sunindextype MY,
                               realtype hordc, realtype horac, realtype verdc)
{
  realtype uij, udn, uup, ult, urt, hdiff, hadv, vdiff;
  sunindextype i, j, tid;

  /* Loop over all grid points. */
  tid = blockDim.x * blockIdx.x + threadIdx.x;

  if (tid < MX*MY) {
    i = tid/MY;
    j = tid%MY;

    uij = u[tid];
    udn = (j ==    0) ? ZERO : u[tid - 1];
    uup = (j == MY-1) ? ZERO : u[tid + 1];
    ult = (i ==    0) ? ZERO : u[tid - MY];
    urt = (i == MX-1) ? ZERO : u[tid + MY];

    /* Set diffusion and advection terms and load into udot */

    hdiff = hordc*(ult - TWO*uij + urt);
    hadv  = horac*(urt - ult);
    vdiff = verdc*(uup - TWO*uij + udn);
    udot[tid] = hdiff + hadv + vdiff;
  }

}

__global__ void jtvKernel(const realtype *vdata, realtype *Jvdata,
                          sunindextype MX, sunindextype MY,
                          realtype hordc, realtype horac, realtype verdc)
{
  sunindextype i, j, tid;

  /* Loop over all grid points. */
  tid = blockDim.x * blockIdx.x + threadIdx.x;

  if (tid < MX*MY) {

    i = tid/MY;
    j = tid%MY;


    /* set the tid-th element of Jv */

    Jvdata[tid] = -TWO*(verdc+hordc) * vdata[tid];
    if (i !=    0) Jvdata[tid] += (hordc - horac) * vdata[tid-MY];
    if (i != MX-1) Jvdata[tid] += (hordc + horac) * vdata[tid+MY];
    if (j !=    0) Jvdata[tid] += verdc * vdata[tid-1];
    if (j != MY-1) Jvdata[tid] += verdc * vdata[tid+1];

  }

}

/* Type : _UserData (contains model and discretization parameters) */
struct _UserData {
  sunindextype MX, MY, NEQ;
  realtype dx, dy, XMAX, YMAX;
  realtype hdcoef, hacoef, vdcoef;
};

typedef _UserData *UserData;

/* Problem setup and initialization functions */
static UserData SetUserData(int argc, char** argv);
static void SetIC(N_Vector u, UserData data);

/* Functions Called by the Solver */
static int f(realtype t, N_Vector u, N_Vector udot, void *user_data);
static int jtv(N_Vector v, N_Vector Jv, realtype t,
               N_Vector u, N_Vector fu,
               void *user_data, N_Vector tmp);

/* Private Helper Functions */
static void PrintHeader(realtype reltol, realtype abstol, realtype umax, UserData data);
static void PrintOutput(realtype t, realtype umax, long int nst);
static void PrintFinalStats(void *cvode_mem);

/* Private function to check function return values */
static int check_retval(void *returnvalue, const char *funcname, int opt);


/*
 *-------------------------------
 * Main Program
 *-------------------------------
 */

int main(int argc, char** argv)
{
  realtype reltol, abstol, t, tout, umax;
  N_Vector u;
  UserData data;
  SUNLinearSolver LS;
  void *cvode_mem;
  int iout, retval;
  long int nst;
  cudaStream_t stream;
  cudaError_t cuerr;

  u = NULL;
  data = NULL;
  LS = NULL;
  cvode_mem = NULL;

  /* optional: create a cudaStream to use with the CUDA NVector
     (otherwise the default stream is used) and creating kernel
     execution policies */
  cuerr = cudaStreamCreate(&stream);
  if (cuerr != cudaSuccess) {
    printf("Error in cudaStreamCreate(): %s\n", cudaGetErrorString(cuerr));
    return(1);
  }

  /* Create the SUNDIALS context */
  sundials::Context sunctx;

  SUNCudaThreadDirectExecPolicy stream_exec_policy(256, stream);
  SUNCudaBlockReduceExecPolicy reduce_exec_policy(256, 0, stream);

  /* Set model parameters */
  data = SetUserData(argc, argv);
  if(check_retval((void *)data, "malloc", 2)) return(1);

  reltol = ZERO;  /* Set the tolerances */
  abstol = ATOL;

  /* Create a CUDA vector with initial values */
  u = N_VNew_Cuda(data->NEQ, sunctx);  /* Allocate u vector */
  if(check_retval((void*)u, "N_VNew_Cuda", 0)) return(1);

  /* Use a non-default cuda stream for kernel execution */
  retval = N_VSetKernelExecPolicy_Cuda(u, &stream_exec_policy, &reduce_exec_policy);
  if(check_retval(&retval, "N_VSetKernelExecPolicy_Cuda", 0)) return(1);

  SetIC(u, data);  /* Initialize u vector */

  /* Call CVodeCreate to create the solver memory and specify the
   * Backward Differentiation Formula */
  cvode_mem = CVodeCreate(CV_BDF, sunctx);
  if(check_retval((void *)cvode_mem, "CVodeCreate", 0)) return(1);

  /* Call CVodeInit to initialize the integrator memory and specify the
   * user's right hand side function in u'=f(t,u), the initial time T0, and
   * the initial dependent variable vector u. */
  retval = CVodeInit(cvode_mem, f, T0, u);
  if(check_retval(&retval, "CVodeInit", 1)) return(1);

  /* Call CVodeSStolerances to specify the scalar relative tolerance
   * and scalar absolute tolerance */
  retval = CVodeSStolerances(cvode_mem, reltol, abstol);
  if (check_retval(&retval, "CVodeSStolerances", 1)) return(1);

  /* Set the pointer to user-defined data */
  retval = CVodeSetUserData(cvode_mem, data);
  if(check_retval(&retval, "CVodeSetUserData", 1)) return(1);

  /* Create SPGMR solver structure without preconditioning
   * and the maximum Krylov dimension maxl */
  LS = SUNLinSol_SPGMR(u, SUN_PREC_NONE, 0, sunctx);
  if(check_retval(&retval, "SUNLinSol_SPGMR", 1)) return(1);

  /* Set CVode linear solver to LS */
  retval = CVodeSetLinearSolver(cvode_mem, LS, NULL);
  if(check_retval(&retval, "CVodeSetLinearSolver", 1)) return(1);

  /* Set the Jacobian-times-vector function */
  retval = CVodeSetJacTimes(cvode_mem, NULL, jtv);
  if(check_retval(&retval, "CVodeSetJacTimesVecFn", 1)) return(1);

  /* In loop over output points: call CVode, print results, test for errors */

  umax = N_VMaxNorm(u);
  PrintHeader(reltol, abstol, umax, data);
  for(iout=1, tout=T1; iout <= NOUT; iout++, tout += DTOUT) {
    retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
    if(check_retval(&retval, "CVode", 1)) break;
    umax = N_VMaxNorm(u);
    retval = CVodeGetNumSteps(cvode_mem, &nst);
    check_retval(&retval, "CVodeGetNumSteps", 1);
    PrintOutput(t, umax, nst);
  }

  PrintFinalStats(cvode_mem);  /* Print some final statistics   */

  N_VDestroy(u);          /* Free the u vector */
  CVodeFree(&cvode_mem);  /* Free the integrator memory */
  SUNLinSolFree(LS);      /* Free linear solver memory */
  free(data);             /* Free the user data */

  cuerr = cudaStreamDestroy(stream); /* Free and cleanup the CUDA stream */
  if(cuerr != cudaSuccess) { printf("Error: cudaStreamDestroy() failed\n"); return(1); }

  return(0);
}

/*
 *-------------------------------------------
 * Problem setup and initialization functions
 *-------------------------------------------
 */

/* Set model and discretization parameters */

UserData SetUserData(int argc, char *argv[])
{
  const sunindextype MX = 10;
  const sunindextype MY = 5;
  const realtype XMAX = RCONST(2.0);    /* domain boundaries         */
  const realtype YMAX = RCONST(1.0);

  /* Allocate user data structure */
  UserData ud = (UserData) malloc(sizeof *ud);
  if(check_retval((void*) ud, "AllocUserData", 2)) return(NULL);

  ud->MX  = MX;
  ud->MY  = MY;
  ud->NEQ = MX*MY;
  ud->XMAX = XMAX;
  ud->YMAX = YMAX;
  ud->dx = XMAX/(MX+1);  /* Set grid coefficients in data */
  ud->dy = YMAX/(MY+1);
  ud->hdcoef = ONE/(ud->dx*ud->dx);
  ud->hacoef = HALF/(TWO*ud->dx);
  ud->vdcoef = ONE/(ud->dy*ud->dy);

  return ud;
}

/* Set initial conditions in u vector */

static void SetIC(N_Vector u, UserData data)
{
  /* Extract needed constants from data */

  const realtype dx = data->dx;
  const realtype dy = data->dy;
  const realtype xmax = data->XMAX;
  const realtype ymax = data->YMAX;
  const sunindextype MY = data->MY;
  const sunindextype NEQ = data->NEQ;

  /* Extract pointer to solution vector data on the host */
  realtype *udata = N_VGetHostArrayPointer_Cuda(u);

  sunindextype i, j, tid;
  realtype x, y;


  /* Load initial profile into u vector */

  for (tid=0; tid < NEQ; tid++) {
    i = tid / MY;
    j = tid % MY;

    x = (i+1)*dx;
    y = (j+1)*dy;

    udata[tid] = x*(xmax - x)*y*(ymax - y)*SUNRexp(FIVE*x*y);
  }
  N_VCopyToDevice_Cuda(u);
}


/*
 *-------------------------------
 * Functions called by the solver
 *-------------------------------
 */

/* f routine. Compute f(t,u). */

static int f(realtype t, N_Vector u, N_Vector udot, void *user_data)
{
  UserData data = (UserData) user_data;

  /* Extract needed constants from data */
  const sunindextype MX  = data->MX;
  const sunindextype MY  = data->MY;
  const realtype hordc   = data->hdcoef;
  const realtype horac   = data->hacoef;
  const realtype verdc   = data->vdcoef;

  /* Extract pointers to vector data */
  const realtype *udata = N_VGetDeviceArrayPointer_Cuda(u);
  realtype *dudata      = N_VGetDeviceArrayPointer_Cuda(udot);

  unsigned block = 256;
  unsigned grid = (MX*MY + block - 1) / block;

  fKernel<<<grid,block>>>(udata, dudata, MX, MY, hordc, horac, verdc);

  return(0);
}


/* Jacobian-times-vector routine. */

static int jtv(N_Vector v, N_Vector Jv, realtype t,
               N_Vector u, N_Vector fu,
               void *user_data, N_Vector tmp)
{
  UserData data = (UserData) user_data;

  /* Extract needed constants from data */
  const sunindextype MX  = data->MX;
  const sunindextype MY  = data->MY;
  const realtype hordc   = data->hdcoef;
  const realtype horac   = data->hacoef;
  const realtype verdc   = data->vdcoef;

  /* Extract pointers to vector data */
  const realtype *vdata = N_VGetDeviceArrayPointer_Cuda(v);
  realtype *Jvdata      = N_VGetDeviceArrayPointer_Cuda(Jv);

  unsigned block = 256;
  unsigned grid = (MX*MY + block - 1) / block;

  N_VConst(ZERO, Jv);

  jtvKernel<<<grid,block>>>(vdata, Jvdata, MX, MY, hordc, horac, verdc);

  return(0);
}

/*
 *-------------------------------
 * Private helper functions
 *-------------------------------
 */

/* Print first lines of output (problem description) */

static void PrintHeader(realtype reltol, realtype abstol, realtype umax,
                        UserData data)
{
  printf("\n2-D Advection-Diffusion Equation\n");
  printf("Mesh dimensions = %" DSYM " X %" DSYM "\n", data->MX, data->MY);
  printf("Total system size = %" DSYM "\n", data->NEQ);
  printf("Tolerance parameters: reltol = %" GSYM "   abstol = %" GSYM "\n\n",
         reltol, abstol);
  printf("At t = %" GSYM "      max.norm(u) =%14.6" ESYM " \n", T0, umax);
  return;
}

/* Print current value */

static void PrintOutput(realtype t, realtype umax, long int nst)
{
  printf("At t = %4.2" FSYM "   max.norm(u) =%14.6" ESYM "   nst = %4ld\n", t, umax, nst);
  return;
}

/* Get and print some final statistics */

static void PrintFinalStats(void *cvode_mem)
{
  long lenrw, leniw ;
  long lenrwLS, leniwLS;
  long int nst, nfe, nsetups, nni, ncfn, netf;
  long int nli, npe, nps, ncfl, nfeLS;
  int retval;

  retval = CVodeGetWorkSpace(cvode_mem, &lenrw, &leniw);
  check_retval(&retval, "CVodeGetWorkSpace", 1);
  retval = CVodeGetNumSteps(cvode_mem, &nst);
  check_retval(&retval, "CVodeGetNumSteps", 1);
  retval = CVodeGetNumRhsEvals(cvode_mem, &nfe);
  check_retval(&retval, "CVodeGetNumRhsEvals", 1);
  retval = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);
  check_retval(&retval, "CVodeGetNumLinSolvSetups", 1);
  retval = CVodeGetNumErrTestFails(cvode_mem, &netf);
  check_retval(&retval, "CVodeGetNumErrTestFails", 1);
  retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
  check_retval(&retval, "CVodeGetNumNonlinSolvIters", 1);
  retval = CVodeGetNumNonlinSolvConvFails(cvode_mem, &ncfn);
  check_retval(&retval, "CVodeGetNumNonlinSolvConvFails", 1);

  retval = CVodeGetLinWorkSpace(cvode_mem, &lenrwLS, &leniwLS);
  check_retval(&retval, "CVodeGetLinWorkSpace", 1);
  retval = CVodeGetNumLinIters(cvode_mem, &nli);
  check_retval(&retval, "CVodeGetNumLinIters", 1);
  retval = CVodeGetNumPrecEvals(cvode_mem, &npe);
  check_retval(&retval, "CVodeGetNumPrecEvals", 1);
  retval = CVodeGetNumPrecSolves(cvode_mem, &nps);
  check_retval(&retval, "CVodeGetNumPrecSolves", 1);
  retval = CVodeGetNumLinConvFails(cvode_mem, &ncfl);
  check_retval(&retval, "CVodeGetNumLinConvFails", 1);
  retval = CVodeGetNumLinRhsEvals(cvode_mem, &nfeLS);
  check_retval(&retval, "CVodeGetNumLinRhsEvals", 1);

  printf("\nFinal Statistics.. \n\n");
  printf("lenrw   = %5ld     leniw   = %5ld\n"  , lenrw, leniw);
  printf("lenrwLS = %5ld     leniwLS = %5ld\n"  , lenrwLS, leniwLS);
  printf("nst     = %5ld\n"                     , nst);
  printf("nfe     = %5ld     nfeLS   = %5ld\n"  , nfe, nfeLS);
  printf("nni     = %5ld     nli     = %5ld\n"  , nni, nli);
  printf("nsetups = %5ld     netf    = %5ld\n"  , nsetups, netf);
  printf("npe     = %5ld     nps     = %5ld\n"  , npe, nps);
  printf("ncfn    = %5ld     ncfl    = %5ld\n\n", ncfn, ncfl);

  return;
}

/* Check function return value...
     opt == 0 means SUNDIALS function allocates memory so check if
              returned NULL pointer
     opt == 1 means SUNDIALS function returns an integer value so check if
              retval >= 0
     opt == 2 means function allocates memory so check if returned
              NULL pointer */

static int check_retval(void *returnvalue, const char *funcname, int opt)
{
  int *retval;

  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */

  if (opt == 0 && returnvalue == NULL) {
    fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return(1); }

  /* Check if retval < 0 */

  else if (opt == 1) {
    retval = (int *) returnvalue;
    if (*retval < 0) {
      fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with retval = %d\n\n",
              funcname, *retval);
      return(1); }}

  /* Check if function returned NULL pointer - no memory allocated */

  else if (opt == 2 && returnvalue == NULL) {
    fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return(1); }

  return(0);
}