File: fcvAdvDiff_bnd.f

package info (click to toggle)
sundials 6.4.1%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 79,368 kB
  • sloc: ansic: 218,700; f90: 62,503; cpp: 61,511; fortran: 5,166; python: 4,642; sh: 4,114; makefile: 562; perl: 123
file content (316 lines) | stat: -rw-r--r-- 9,400 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
C     --------------------------------------------------------------------
C     SUNDIALS Copyright Start
C     Copyright (c) 2002-2022, Lawrence Livermore National Security
C     and Southern Methodist University.
C     All rights reserved.
C
C     See the top-level LICENSE and NOTICE files for details.
C
C     SPDX-License-Identifier: BSD-3-Clause
C     SUNDIALS Copyright End
C     --------------------------------------------------------------------
C     FCVODE Example Problem: Advection-diffusion, band linear solver
C                             with banded user Jacobian.
C
C     The following is a simple example problem with a banded
C     Jacobian. The problem is the semi-discrete form of the
C     advection-diffusion equation in 2D:
C     du/dt = d^2 u / dx^2 + .5 du/dx + d^2 u / dy^2
C     on the rectangle 0 <= x <= 2, 0 <= y <= 1, and the time
C     interval 0 <= t <= 1. Homogeneous Dirichlet boundary conditions
C     are posed, and the initial condition is the following:
C     u(x,y,t=0) = x(2-x)y(1-y)exp(5xy) .
C     The PDE is discretized on a uniform MX+2 by MY+2 grid with
C     central differencing, and with boundary values eliminated,
C     leaving an ODE system of size NEQ = MX*MY.
C     This program solves this problem with CVODE, using the Fortran/C 
C     interface routine package. This solution uses the BDF method,
C     a user-supplied banded Jacobian routine, and scalar relative and
C     absolute tolerances. It prints results at t = .1, .2, ..., 1.0.
C     At the end of the run, various counters of interest are printed.
C     --------------------------------------------------------------------
C
      IMPLICIT NONE
C
      INTEGER*4 MX, MY, MXMY
      PARAMETER (MX=10, MY=5)
      PARAMETER (MXMY=MX*MY)
C     
      DOUBLE PRECISION XMAX, YMAX
      DATA XMAX/2.0D0/, YMAX/1.0D0/
C
      INTEGER*4 LNST, LNFE, LNSETUP, LNNI, LNCF, LNETF, LNJE
      INTEGER*4 IER, METH, IATOL, ITASK, JOUT
C The following declaration specification should match C type long int.
      INTEGER*8 NEQ, IOUT(25), IPAR(2), MU, ML
      DOUBLE PRECISION RTOL, ATOL, T0, T, TOUT, DTOUT, UNORM 
      DOUBLE PRECISION U(MXMY), ROUT(10), RPAR(5)
C
      DATA LNST/3/, LNFE/4/, LNETF/5/,  LNCF/6/, LNNI/7/, LNSETUP/8/, 
     1     LNJE/17/
C
      CALL INITBX(XMAX, YMAX, MX, MY, U, IPAR, RPAR)
C
      NEQ = MX*MY
      T0 = 0.0D0
      METH = 2
      IATOL = 1
      RTOL = 0.0D0
      ATOL = 1.0D-5
      MU = MY
      ML = MY
      DTOUT = 0.1D0
      ITASK = 1
C
      WRITE(6,10) NEQ
 10   FORMAT('Band example problem:'//
     1       ' Advection-diffusion, NEQ = ', I2//)
C
      CALL FNVINITS(1, NEQ, IER)
      IF (IER .NE. 0) THEN
        WRITE(6,20) IER
 20     FORMAT(///' SUNDIALS_ERROR: FNVINITS returned IER = ', I5)
        STOP
      ENDIF
C
C     initialize banded matrix module
      call FSUNBANDMATINIT(1, NEQ, MU, ML, MU+ML, IER)
      IF (IER .NE. 0) THEN
        WRITE(6,25) IER
 25     FORMAT(///' SUNDIALS_ERROR: FSUNBANDEMATINIT IER = ', I5)
        STOP
      ENDIF
C
C     initialize banded linear solver module
      call FSUNBANDLINSOLINIT(1, IER)
      IF (IER .NE. 0) THEN
        WRITE(6,28) IER
 28     FORMAT(///' SUNDIALS_ERROR: FSUNBANDLINSOLINIT IER = ', I5)
        STOP
      ENDIF
C
      CALL FCVMALLOC(T0, U, METH, IATOL, RTOL, ATOL,
     1               IOUT, ROUT, IPAR, RPAR, IER)
      IF (IER .NE. 0) THEN
        WRITE(6,30) IER
 30     FORMAT(///' SUNDIALS_ERROR: FCVMALLOC returned IER = ', I5)
        STOP
      ENDIF
C
C     attach matrix and linear solver modules to CVLs interface
      CALL FCVLSINIT(IER)
      IF (IER .NE. 0) THEN
        WRITE(6,40) IER
 40     FORMAT(///' SUNDIALS_ERROR: FCVLSINIT returned IER = ',I5)
        CALL FCVFREE
        STOP
      ENDIF
C
      CALL FCVBANDSETJAC(1, IER)
      IF (IER .NE. 0) THEN
        WRITE(6,45) IER
 45     FORMAT(///' SUNDIALS_ERROR: FCVDENSESETJAC returned IER = ',I5)
        CALL FCVFREE
        STOP
      ENDIF
C
      CALL MAXNORM(NEQ, U, UNORM)
      WRITE(6,48) T0, UNORM
 48   FORMAT(' At t = ', F6.2, '  max.norm(u) = ', E14.6)
C
      TOUT = DTOUT
      DO 70 JOUT = 1, 10
C
        CALL FCVODE(TOUT, T, U, ITASK, IER)
C
        CALL MAXNORM(NEQ, U, UNORM)
        WRITE(6,50) T, UNORM, IOUT(LNST)
 50     FORMAT(' At t = ', F6.2, '  max.norm(u) = ', E14.6,
     1         '  NST = ', I4)
C
        IF (IER .NE. 0) THEN
          WRITE(6,60) IER, IOUT(15)
 60       FORMAT(///' SUNDIALS_ERROR: FCVODE returned IER = ', I5, /,
     1           '                 Linear Solver returned IER = ', I5)
          CALL FCVFREE
          STOP
          ENDIF
C
          TOUT = TOUT + DTOUT
 70    CONTINUE
C
      WRITE(6,80) IOUT(LNST), IOUT(LNFE), IOUT(LNJE), IOUT(LNSETUP),
     1            IOUT(LNNI), IOUT(LNCF), IOUT(LNETF)
 80   FORMAT(//'Final statistics:'//
     1       ' No. steps = ', I4, '  No. f-s = ', I4,
     2       '  No. J-s = ', I4, '   No. LU-s = ', I4/
     3       ' No. nonlinear iterations = ', I4/
     4       ' No. nonlinear convergence failures = ', I4/
     5       ' No. error test failures = ', I4)
C
      CALL FCVFREE
C
      STOP
      END

C     ----------------------------------------------------------------

      SUBROUTINE INITBX(XMAX, YMAX, MX, MY, U0, IPAR, RPAR)
C Load IPAR and RPAR with problem constants and U0 with initial values
      IMPLICIT NONE
C
C The following declaration specification should match C type long int.
      INTEGER*8 IPAR(*)
      INTEGER*4 MX, MY
      DOUBLE PRECISION XMAX, YMAX, U0(MY,MX), RPAR(*)
C
      INTEGER*4 I, J
      DOUBLE PRECISION DX, DY, X, Y, HDCOEF, HACOEF, VDCOEF
C
C Problem constants
      DX = XMAX / (MX + 1)
      DY = YMAX / (MY + 1)
      HDCOEF = 1.0D0 / (DX * DX)
      HACOEF = 0.5D0 / (2.0D0 * DX)
      VDCOEF = 1.0D0 / (DY * DY)
C Load constants in IPAR and RPAR
      IPAR(1) = MX
      IPAR(2) = MY
      RPAR(1) = DX
      RPAR(2) = DY
      RPAR(3) = HDCOEF
      RPAR(4) = HACOEF
      RPAR(5) = VDCOEF
C
C Loop over grid and load initial values.
      DO 20 I = 1, MX
        X = I * DX
        DO 10 J = 1, MY
          Y = J * DY
          U0(J,I) = X * (XMAX - X) * Y * (YMAX - Y) *
     *              EXP(5.0D0 * X * Y)
 10       CONTINUE
 20     CONTINUE
C
      RETURN
      END

      SUBROUTINE MAXNORM(N, U, UNORM)
C Compute max-norm of array U
      IMPLICIT NONE
C
      INTEGER*8 I, N
      DOUBLE PRECISION U(*), UNORM, TEMP
C
      TEMP = 0.0D0
      DO 10 I = 1, N
         TEMP = MAX(ABS(U(I)), TEMP)
 10   CONTINUE
      UNORM = TEMP
      RETURN
      END

C     ----------------------------------------------------------------

      SUBROUTINE FCVFUN(T, U, UDOT, IPAR, RPAR, IER)
C Right-hand side routine
      IMPLICIT NONE
C
      DOUBLE PRECISION T, U(*), UDOT(*), RPAR(*)
C The following declaration specification should match C type long int.
      INTEGER*8 IPAR(*)
      INTEGER*4 IER
C
      INTEGER*4 I, MX, IOFF, MY, J, IJ
      DOUBLE PRECISION UIJ, UDN, UUP, ULT, URT, HDIFF, HADV, VDIFF
      DOUBLE PRECISION DX, DY, HDCOEF, HACOEF, VDCOEF
C
C Extract constants from IPAR and RPAR
      MX     = IPAR(1)
      MY     = IPAR(2)
      DX     = RPAR(1)
      DY     = RPAR(2)
      HDCOEF = RPAR(3)
      HACOEF = RPAR(4)
      VDCOEF = RPAR(5)
C
C Loop over all grid points.
      DO 20 I = 1, MX
        IOFF = (I - 1) * MY
        DO 10 J = 1, MY
C
C Extract u at x_i, y_j and four neighboring points.
          IJ = J + IOFF
          UIJ = U(IJ)
          UDN = 0.0D0
          IF (J .NE. 1)  UDN = U(IJ - 1)
          UUP = 0.0D0
          IF (J .NE. MY) UUP = U(IJ + 1)
          ULT = 0.0D0
          IF (I .NE. 1)  ULT = U(IJ - MY)
          URT = 0.0D0
          IF (I .NE. MX) URT = U(IJ + MY)
C
C Set diffusion and advection terms and load into UDOT.
          HDIFF = HDCOEF * (ULT - 2.0D0 * UIJ + URT)
          HADV = HACOEF * (URT - ULT)
          VDIFF = VDCOEF * (UUP - 2.0D0 * UIJ + UDN)
          UDOT(IJ) = HDIFF + HADV + VDIFF
 10       CONTINUE
 20     CONTINUE
C
        IER = 0
C
      RETURN
      END

C     ----------------------------------------------------------------

      SUBROUTINE FCVBJAC(N, MU, ML, MDIM, T, U, FU,
     1                   BJAC, H, IPAR, RPAR, V1, V2, V3, IER)
C Load banded Jacobian
      IMPLICIT NONE
C
C The following declaration specification should match C type long int.
      INTEGER*8 N, MU, ML, MDIM, IPAR(*)
      INTEGER*4 IER
      DOUBLE PRECISION T, U(*), FU(*), BJAC(MDIM,*), H, RPAR(*)
      DOUBLE PRECISION V1(*), V2(*), V3(*)
C
      INTEGER*4 MBAND, MX, MY
      INTEGER*4 I, J, K, IOFF, MU1, MU2
      DOUBLE PRECISION DX, DY, HDCOEF, HACOEF, VDCOEF
C
C Extract constants from IPAR and RPAR
      MX     = IPAR(1)
      MY     = IPAR(2)
      DX     = RPAR(1)
      DY     = RPAR(2)
      HDCOEF = RPAR(3)
      HACOEF = RPAR(4)
      VDCOEF = RPAR(5)
C
      MU1 = MU + 1
      MU2 = MU + 2
      MBAND = MU + 1 + ML
C
C Loop over all grid points.
      DO 20 I = 1, MX
        IOFF = (I - 1) * MY
        DO 10 J = 1, MY
          K = J + IOFF
C
C Set Jacobian elements in column k of Jb.
          BJAC(MU1,K) = -2.0D0 * (VDCOEF + HDCOEF)
          IF (I .NE. 1)  BJAC(1,K) = HDCOEF + HACOEF
          IF (I .NE. MX) BJAC(MBAND,K) = HDCOEF - HACOEF
          IF (J .NE. 1)  BJAC(MU,K) = VDCOEF
          IF (J .NE. MY) BJAC(MU2,K) = VDCOEF
C
 10       CONTINUE
 20     CONTINUE
C
        IER = 0
C     
      RETURN
      END