File: cv_kpr_ginkgo.cpp

package info (click to toggle)
sundials 6.4.1%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 79,368 kB
  • sloc: ansic: 218,700; f90: 62,503; cpp: 61,511; fortran: 5,166; python: 4,642; sh: 4,114; makefile: 562; perl: 123
file content (228 lines) | stat: -rw-r--r-- 8,138 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/* -----------------------------------------------------------------------------
 * Programmer(s): David J. Gardner @ LLNL
 * -----------------------------------------------------------------------------
 * SUNDIALS Copyright Start
 * Copyright (c) 2002-2022, Lawrence Livermore National Security
 * and Southern Methodist University.
 * All rights reserved.
 *
 * See the top-level LICENSE and NOTICE files for details.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 * SUNDIALS Copyright End
 * -----------------------------------------------------------------------------
 * Kvaerno-Prothero-Robinson ODE test problem:
 *
 *   [u]' = [ a  b ] [ (-1 + u^2 - r(t)) / (2u) ] + [ r'(t) / (2u) ]
 *   [v]    [ c  d ] [ (-2 + v^2 - s(t)) / (2v) ]   [ s'(t) / (2v) ]
 *
 * This problem has analytical solution given by
 *
 *   u(t) = sqrt(1 + r(t))
 *   v(t) = sqrt(2 + s(t))
 *
 * where, in this test, we use the functions
 *
 *   r(t) = 0.5 * cos(t)
 *   s(t) = cos(2t)
 * ---------------------------------------------------------------------------*/

#include "cv_kpr_ginkgo.hpp"

// Include integrator, matrix, linear solver, and vector headers
#include <cvode/cvode.h>
#include <nvector/nvector_serial.h>
#include <sunlinsol/sunlinsol_ginkgo.hpp>
#include <sunmatrix/sunmatrix_ginkgo.hpp>

using GkoMatrixType = gko::matrix::Dense<sunrealtype>;
using GkoSolverType = gko::solver::Gmres<sunrealtype>;

using SUNGkoMatrixType = sundials::ginkgo::Matrix<GkoMatrixType>;
using SUNGkoSolverType = sundials::ginkgo::LinearSolver<GkoSolverType, GkoMatrixType>;

// -----------------------------------------------------------------------------
// Functions provided to the SUNDIALS integrators
// -----------------------------------------------------------------------------

// ODE right-hand side function
int f(realtype t, N_Vector y, N_Vector ydot, void* user_data);

// Jacobian of RHS function
int J(realtype t, N_Vector y, N_Vector fy, SUNMatrix J, void* user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);

// -----------------------------------------------------------------------------
// Main Program
// -----------------------------------------------------------------------------

int main(int argc, char* argv[])
{
  // SUNDIALS context object for this simulation
  sundials::Context sunctx;

  // Read input options
  Options opts;
  std::vector<std::string> args(argv + 1, argv + argc);

  int flag = ReadInputs(args, opts);
  if (check_flag(flag, "ReadInputs")) return 1;

  // Create initial condition vector
  N_Vector y = N_VNew_Serial(2, sunctx);
  if (check_ptr(y, "N_VNew_Serial")) return 1;

  realtype utrue, vtrue;
  flag = true_sol(ZERO, &utrue, &vtrue);
  if (check_flag(flag, "true_sol")) return 1;

  realtype* ydata = N_VGetArrayPointer(y);
  ydata[0]        = utrue;
  ydata[1]        = vtrue;

  // Create Ginkgo dense matrix and linear solver
#if defined(USE_OMP)
  auto gko_exec{gko::OmpExecutor::create()};
#else
  auto gko_exec{gko::ReferenceExecutor::create()};
#endif

  auto gko_matrix = gko::share(GkoMatrixType::create(gko_exec, gko::dim<2>(2, 2)));
  SUNGkoMatrixType A{gko_matrix, sunctx};

  // Use default stopping criteria
  auto crit{sundials::ginkgo::DefaultStop::build().with_max_iters(gko::uint64{2}).on(gko_exec)};

  auto gko_solver_factory = gko::share(GkoSolverType::build().with_criteria(std::move(crit)).on(gko_exec));

  SUNGkoSolverType LS{gko_solver_factory, sunctx};

  // Create CVODE memory structure
  void* cvode_mem = CVodeCreate(CV_BDF, sunctx);
  if (check_ptr(cvode_mem, "CVodeCreate")) return 1;

  // Attach RHS function and set initial condition
  flag = CVodeInit(cvode_mem, f, ZERO, y);
  if (check_flag(flag, "CVodeInit")) return 1;

  // Set integraton tolerances
  flag = CVodeSStolerances(cvode_mem, opts.rtol, opts.atol);
  if (check_flag(flag, "CVodeSStolerances")) return 1;

  // Attach matrix and linear solver
  flag = CVodeSetLinearSolver(cvode_mem, LS, A);
  if (check_flag(flag, "CVodeSetLinearSolver")) return 1;

  // Set Jacobian function
  flag = CVodeSetJacFn(cvode_mem, J);
  if (check_flag(flag, "CVodeSetJacFn")) return 1;

  // Attach user data pointer
  realtype udata[4] = {-TWO, HALF, HALF, -ONE};
  flag              = CVodeSetUserData(cvode_mem, udata);
  if (check_flag(flag, "CVodeSetUserData")) return 1;

  // Initial time and fist output time
  realtype tret = ZERO;
  realtype tout = tret + opts.dtout;

  // Output initial contion
  std::cout << std::scientific;
  std::cout << std::setprecision(std::numeric_limits<realtype>::digits10);
  std::cout << "           t              ";
  std::cout << "          u              ";
  std::cout << "          v              ";
  std::cout << "        u err            ";
  std::cout << "        v err" << std::endl;
  for (int i = 0; i < 9; i++) std::cout << "--------------";
  std::cout << std::endl;

  std::cout << std::setw(22) << tret << std::setw(25) << ydata[0] << std::setw(25) << ydata[1] << std::setw(25)
            << std::abs(ydata[0] - utrue) << std::setw(25) << std::abs(ydata[1] - vtrue) << std::endl;

  // Advance in time
  for (int i = 0; i < opts.nout; i++) {
    flag = CVode(cvode_mem, tout, y, &tret, CV_NORMAL);
    if (check_flag(flag, "CVode")) return 1;

    flag = true_sol(tret, &utrue, &vtrue);
    if (check_flag(flag, "true_sol")) return 1;

    std::cout << std::setw(22) << tret << std::setw(25) << ydata[0] << std::setw(25) << ydata[1] << std::setw(25)
              << std::abs(ydata[0] - utrue) << std::setw(25) << std::abs(ydata[1] - vtrue) << std::endl;

    // update output time
    tout += opts.dtout;
  }
  for (int i = 0; i < 9; i++) std::cout << "--------------";
  std::cout << std::endl;

  // Print some final statistics
  flag = CVodePrintAllStats(cvode_mem, stdout, SUN_OUTPUTFORMAT_TABLE);
  if (check_flag(flag, "CVodePrintAllStats")) return 1;

  // Clean up and return with successful completion
  N_VDestroy(y);
  CVodeFree(&cvode_mem);

  return 0;
}

/* -----------------------------------------------------------------------------
 * Compute the ODE RHS function:
 *   [a  b] * [ (-1 + u^2 - r(t)) / (2*u) ] + [ r'(t) / (2u) ]
 *   [c  d]   [ (-2 + v^2 - s(t)) / (2*v) ]   [ s'(t) / (2v) ]
 * ---------------------------------------------------------------------------*/

int f(realtype t, N_Vector y, N_Vector ydot, void* user_data)
{
  realtype* udata  = (realtype*)user_data;
  const realtype a = udata[0];
  const realtype b = udata[1];
  const realtype c = udata[2];
  const realtype d = udata[3];

  realtype* ydata  = N_VGetArrayPointer(y);
  const realtype u = ydata[0];
  const realtype v = ydata[1];

  const realtype tmp1 = (-ONE + u * u - r(t)) / (TWO * u);
  const realtype tmp2 = (-TWO + v * v - s(t)) / (TWO * v);

  realtype* fdata = N_VGetArrayPointer(ydot);
  fdata[0]        = a * tmp1 + b * tmp2 + rdot(t) / (TWO * u);
  fdata[1]        = c * tmp1 + d * tmp2 + sdot(t) / (TWO * v);

  return 0;
}

/* -----------------------------------------------------------------------------
 * Compute the ODE RHS Jacobin:
 *   [a/2 + (a(1+r(t))-rdot(t))/(2u^2)     b/2 + b*(2+s(t))/(2*v^2)         ]
 *   [c/2 + c(1+r(t))/(2u^2)               d/2 + (d(2+s(t))-sdot(t))/(2u^2) ]
 * ---------------------------------------------------------------------------*/

int J(realtype t, N_Vector y, N_Vector fy, SUNMatrix J, void* user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
  realtype* udata  = (realtype*)user_data;
  const realtype a = udata[0];
  const realtype b = udata[1];
  const realtype c = udata[2];
  const realtype d = udata[3];

  realtype* ydata = N_VGetArrayPointer(y);
  auto J_gko      = static_cast<SUNGkoMatrixType*>(J->content)->GkoMtx();
  auto J_data     = J_gko->get_values();

  const realtype u = ydata[0];
  const realtype v = ydata[1];

  // Ginkgo dense matrix is stored in row-major format
  J_data[0] = a / TWO + (a * (ONE + r(t)) - rdot(t)) / (TWO * u * u);
  J_data[1] = b / TWO + b * (TWO + s(t)) / (TWO * v * v);
  J_data[2] = c / TWO + c * (ONE + r(t)) / (TWO * u * u);
  J_data[4] = d / TWO + (d * (TWO + s(t)) - sdot(t)) / (TWO * v * v);

  return 0;
}

/*---- end of file ----*/