File: cv_bruss_batched_kokkos.cpp

package info (click to toggle)
sundials 6.4.1%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 79,368 kB
  • sloc: ansic: 218,700; f90: 62,503; cpp: 61,511; fortran: 5,166; python: 4,642; sh: 4,114; makefile: 562; perl: 123
file content (416 lines) | stat: -rw-r--r-- 14,315 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
/* -----------------------------------------------------------------------------
 * Programmer(s): David J. Gardner and Cody J. Balos @ LLNL
 * -----------------------------------------------------------------------------
 * SUNDIALS Copyright Start
 * Copyright (c) 2002-2022, Lawrence Livermore National Security
 * and Southern Methodist University.
 * All rights reserved.
 *
 * See the top-level LICENSE and NOTICE files for details.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 * SUNDIALS Copyright End
 * -----------------------------------------------------------------------------
 * The following is a simple example problem based off of ark_brusselator.c.
 *
 * We simulate a scenario where a set of independent ODEs are batched together
 * to form a larger system. Each independent ODE system has 3 components,
 * Y = [u, v, w], satisfying the equations,
 *
 *   du/dt = a - (w + 1) * u + v * u^2
 *   dv/dt = w * u - v * u^2
 *   dw/dt = (b - w) / ep - w * u
 *
 * for t in the interval [0, 10], with initial conditions Y0 = [u0, v0, w0].
 * The problem is stiff and there are 3 testing scenarios:
 *
 * Reactor 0: u0 = 3.9, v0 = 1.1, w0 = 2.8, a = 1.2, b = 2.5, ep = 1.0e-5
 *   Here, all three components exhibit a rapid transient change during the
 *   first 0.2 time units, followed by a slow and smooth evolution.
 *
 * Reactor 1: u0 = 3, v0 = 3, w0 = 3.5, a = 0.5, b = 3, ep = 5.0e-4
 *   Here, all components undergo very rapid initial transients during the first
 *   0.3 time units, and all then proceed very smoothly for the remainder of the
 *   simulation.
 *
 * Reactor 2: u0 = 1.2, v0 = 3.1, w0 = 3, a = 1, b = 3.5, ep = 5.0e-6
 *   Here, w experiences a fast initial transient, jumping 0.5 within a few
 *   steps. All values proceed smoothly until around t=6.5, when both u and v
 *   undergo a sharp transition, with u increasing from around 0.5 to 5 and v
 *   decreasing from around 6 to 1 in less than 0.5 time units. After this
 *   transition, both u and v continue to evolve somewhat rapidly for another
 *   1.4 time units, and finish off smoothly.
 *
 * This program solves the problem with the BDF method, Newton iteration, a
 * user-supplied Jacobian routine, and, since the grouping of the independent
 * systems results in a block diagonal linear system, the dense KOKKOS
 * SUNLinearSolver which supports batched systems. 100 outputs are printed at
 * equal intervals, and run statistics are printed at the end.
 *
 * The program takes three optional arguments, the number of independent ODE
 * systems (i.e., number of batches), the linear solver type (KOKKOS batched LU
 * or non-batched GMRES with the Jacobian computed by difference quotients)
 * the test type (uniform_0, uniform_1, or  uniform_2).
 *
 *   ./cv_bruss_batched_kokkos [num_batches] [solver_type] [test_type]
 *
 * Options:
 *   num_batches <int>
 *   solver_type:
 *     0 - KOKKOS batched LU (default)
 *     1 - SUNDIALS non-batched GMRES with difference quotients Jacobian
 *   test_type:
 *     0 - uniform_0, all batches are Reactor 0
 *     1 - uniform 1, all batches are Reactor 1
 *     2 - uniform 2, all batches are Reactor 2 (default)
 * ---------------------------------------------------------------------------*/

#include <cstdio>
#include <cvode/cvode.h>
#include <memory>
#include <nvector/nvector_kokkos.hpp>
#include <sunlinsol/sunlinsol_kokkosdense.hpp>
#include <sunlinsol/sunlinsol_spgmr.h>
#include <sunmatrix/sunmatrix_kokkosdense.hpp>
#include <vector>

// Common utility functions
#include <example_utilities.hpp>

// Execution space
#if defined(USE_CUDA)
using ExecSpace = Kokkos::Cuda;
#elif defined(USE_HIP)
#if KOKKOS_VERSION / 10000 > 3
using ExecSpace = Kokkos::HIP;
#else
using ExecSpace = Kokkos::Experimental::HIP;
#endif
#elif defined(USE_OPENMP)
using ExecSpace = Kokkos::OpenMP;
#else
using ExecSpace = Kokkos::Serial;
#endif

using VecType  = sundials::kokkos::Vector<ExecSpace>;
using MatType  = sundials::kokkos::DenseMatrix<ExecSpace>;
using LSType   = sundials::kokkos::DenseLinearSolver<ExecSpace>;
using SizeType = VecType::size_type;

// Constants
#define ZERO SUN_RCONST(0.0)
#define ONE  SUN_RCONST(1.0)
#define TWO  SUN_RCONST(2.0)

// User-supplied functions called by CVODE
static int f(sunrealtype t, N_Vector y, N_Vector ydot, void* user_data);

static int Jac(sunrealtype t, N_Vector y, N_Vector fy, SUNMatrix J,
               void* user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);

// User data structure available in user-supplied callback functions
struct UserData
{
  int nbatches  = 100; // number of chemical networks
  int batchSize = 3;   // size of each network
  sunrealtype a, b;    // chemical concentrations that are constant
  sunrealtype ep;      // stiffness parameter
};

/* -----------------------------------------------------------------------------
 * Main Program
 * ---------------------------------------------------------------------------*/

int main(int argc, char* argv[])
{
  // Create the SUNDIALS context
  sundials::Context sunctx;

  Kokkos::initialize(argc, argv);
  {
    // Create UserData
    UserData udata;

    // Parse command line options
    int argi = 0;

    // Total number of batch systems
    if (argc > 1) udata.nbatches = atoi(argv[++argi]);

    // Linear solver type
    int solver_type = 0;
    if (argc > 2) solver_type = atoi(argv[++argi]);

    // Problem setup
    int test_type = 2;
    if (argc > 3) test_type = atoi(argv[++argi]);

    // Shortcuts
    int nbatches  = udata.nbatches;
    int batchSize = udata.batchSize;

    std::cout << "\nBatch of independent 3-species kinetics problems\n"
              << "  number of batches = " << nbatches << "\n"
              << "  linear solver     = "
              << (solver_type ? "GMRES" : "KokkosKernels") << "\n"
              << "  test type         = " << test_type << "\n"
              << "  execution space   = " << ExecSpace().name() << "\n\n";

    sunrealtype u0, v0, w0;
    if (test_type == 0)
    {
      u0 = SUN_RCONST(3.9);
      v0 = SUN_RCONST(1.1);
      w0 = SUN_RCONST(2.8);

      udata.a  = SUN_RCONST(1.2);
      udata.b  = SUN_RCONST(2.5);
      udata.ep = SUN_RCONST(1.0e-5);
    }
    else if (test_type == 1)
    {
      u0 = SUN_RCONST(3.0);
      v0 = SUN_RCONST(3.0);
      w0 = SUN_RCONST(3.5);

      udata.a  = SUN_RCONST(0.5);
      udata.b  = SUN_RCONST(3.0);
      udata.ep = SUN_RCONST(5.0e-4);
    }
    else if (test_type == 2)
    {
      u0 = SUN_RCONST(1.2);
      v0 = SUN_RCONST(3.1);
      w0 = SUN_RCONST(3.0);

      udata.a  = SUN_RCONST(1.0);
      udata.b  = SUN_RCONST(3.5);
      udata.ep = SUN_RCONST(5.0e-6);
    }
    else
    {
      std::cerr << "ERROR: Invalid test type option\n";
      return -1;
    }

    // Create vector with the initial condition
    const sunrealtype T0 = SUN_RCONST(0.0);

    SizeType length{static_cast<SizeType>(batchSize * nbatches)};
    VecType y{length, sunctx};

    auto y_data_d = y.View();
    Kokkos::parallel_for(
      "fill_y", Kokkos::RangePolicy<ExecSpace>(0, nbatches),
      KOKKOS_LAMBDA(const SizeType i) {
        auto idx          = batchSize * i;
        y_data_d(idx)     = u0;
        y_data_d(idx + 1) = v0;
        y_data_d(idx + 2) = w0;
      });

    // Create vector of absolute tolerances
    VecType abstol{length, sunctx};
    N_VConst(SUN_RCONST(1.0e-10), abstol);

    // Create CVODE using Backward Differentiation Formula methods
    void* cvode_mem = CVodeCreate(CV_BDF, sunctx);
    if (check_ptr(cvode_mem, "CVodeCreate")) { return 1; }

    // Initialize the integrator and set the ODE right-hand side function
    int retval = CVodeInit(cvode_mem, f, T0, y);
    if (check_flag(retval, "CVodeInit")) { return 1; }

    // Attach the user data structure
    retval = CVodeSetUserData(cvode_mem, &udata);
    if (check_flag(retval, "CVodeSetUserData")) { return 1; }

    // Specify the scalar relative tolerance and vector absolute tolerances
    retval = CVodeSVtolerances(cvode_mem, SUN_RCONST(1.0e-6), abstol);
    if (check_flag(retval, "CVodeSVtolerances")) { return 1; }

    // Create the matrix and linear solver objects
    std::unique_ptr<sundials::ConvertibleTo<SUNMatrix>> A;
    std::unique_ptr<sundials::ConvertibleTo<SUNLinearSolver>> LS;

    if (solver_type == 0)
    {
      // Create Kokkos dense block diagonal matrix
      A = std::make_unique<MatType>(nbatches, batchSize, batchSize, sunctx);

      // Create Kokkos batched dense linear solver
      LS = std::make_unique<LSType>(sunctx);

      // Attach the matrix and linear solver to CVODE
      retval = CVodeSetLinearSolver(cvode_mem, LS->Convert(), A->Convert());
      if (check_flag(retval, "CVodeSetLinearSolver")) return 1;

      // Set the user-supplied Jacobian function
      retval = CVodeSetJacFn(cvode_mem, Jac);
      if (check_flag(retval, "CVodeSetJacFn")) return 1;
    }
    else
    {
      // Create matrix-free GMRES linear solver
      LS = std::make_unique<sundials::experimental::SUNLinearSolverView>(
        SUNLinSol_SPGMR(y, SUN_PREC_NONE, 0, sunctx));

      // Attach the linear solver to CVODE
      retval = CVodeSetLinearSolver(cvode_mem, LS->Convert(), nullptr);
      if (check_flag(retval, "CVodeSetLinearSolver")) return 1;
    }

    // Final time and time between outputs
    const sunrealtype Tf    = SUN_RCONST(10.0);
    const sunrealtype dTout = SUN_RCONST(1.0);

    // Number of output times
    const int Nt = static_cast<int>(ceil(Tf / dTout));

    // Current time and first output time
    sunrealtype t    = T0;
    sunrealtype tout = T0 + dTout;

    // Initial output
    auto y_data_h = y.HostView();
    sundials::kokkos::CopyFromDevice(y);
    Kokkos::fence();
    std::cout << "At t = " << t << std::endl;
    for (int batchj = 0; batchj < nbatches; batchj += 10)
    {
      auto idx = batchj * batchSize;
      std::cout << "  batch " << batchj << ": y = " << y_data_h(idx) << " "
                << y_data_h(idx + 1) << " " << y_data_h(idx + 2) << std::endl;
    }

    // Loop over output times
    for (int iout = 0; iout < Nt; iout++)
    {
      // Advance in time
      retval = CVode(cvode_mem, tout, y, &t, CV_NORMAL);
      if (check_flag(retval, "CVode")) break;

      // Output solution from some batches
      sundials::kokkos::CopyFromDevice(y);
      Kokkos::fence();
      std::cout << "At t = " << t << std::endl;
      for (int batchj = 0; batchj < nbatches; batchj += 10)
      {
        auto idx = batchj * batchSize;
        std::cout << "  batch " << batchj << ": y = " << y_data_h(idx) << " "
                  << y_data_h(idx + 1) << " " << y_data_h(idx + 2) << std::endl;
      }

      tout += dTout;
      tout = (tout > Tf) ? Tf : tout;
    }

    // Print some final statistics
    long int nst, nfe, nsetups, nje, nni, ncfn, netf;

    retval = CVodeGetNumSteps(cvode_mem, &nst);
    check_flag(retval, "CVodeGetNumSteps");
    retval = CVodeGetNumRhsEvals(cvode_mem, &nfe);
    check_flag(retval, "CVodeGetNumRhsEvals");
    retval = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);
    check_flag(retval, "CVodeGetNumLinSolvSetups");
    retval = CVodeGetNumErrTestFails(cvode_mem, &netf);
    check_flag(retval, "CVodeGetNumErrTestFails");
    retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
    check_flag(retval, "CVodeGetNumNonlinSolvIters");
    retval = CVodeGetNumNonlinSolvConvFails(cvode_mem, &ncfn);
    check_flag(retval, "CVodeGetNumNonlinSolvConvFails");
    retval = CVodeGetNumJacEvals(cvode_mem, &nje);
    check_flag(retval, "CVodeGetNumJacEvals");

    std::cout << "\nFinal Statistics:\n"
              << "  Steps            = " << nst << "\n"
              << "  RHS evals        = " << nfe << "\n"
              << "  LS setups        = " << nsetups << "\n"
              << "  Jac evals        = " << nje << "\n"
              << "  NLS iters        = " << nni << "\n"
              << "  NLS fails        = " << ncfn << "\n"
              << "  Error test fails = " << netf << "\n";

    // Free objects
    CVodeFree(&cvode_mem);
  }
  Kokkos::finalize();

  return 0;
}

/* -----------------------------------------------------------------------------
 * User-supplied functions called by CVODE
 * ---------------------------------------------------------------------------*/

// Right hand side function dy/dt = f(t,y)
int f(sunrealtype t, N_Vector y, N_Vector ydot, void* user_data)
{
  auto udata     = static_cast<UserData*>(user_data);
  auto y_data    = sundials::kokkos::GetVec<VecType>(y)->View();
  auto ydot_data = sundials::kokkos::GetVec<VecType>(ydot)->View();

  const auto nbatches  = udata->nbatches;
  const auto batchSize = udata->batchSize;

  const auto a  = udata->a;
  const auto b  = udata->b;
  const auto ep = udata->ep;

  Kokkos::parallel_for(
    "RHS", Kokkos::RangePolicy<ExecSpace>(0, nbatches),
    KOKKOS_LAMBDA(const SizeType i) {
      auto idx = batchSize * i;
      auto u   = y_data(idx);
      auto v   = y_data(idx + 1);
      auto w   = y_data(idx + 2);

      ydot_data(idx)     = a - (w + ONE) * u + v * u * u;
      ydot_data(idx + 1) = w * u - v * u * u;
      ydot_data(idx + 2) = (b - w) / ep - w * u;
    });

  return 0;
}

// Jacobian of f(t,y)
int Jac(sunrealtype t, N_Vector y, N_Vector fy, SUNMatrix J, void* user_data,
        N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
  auto udata  = static_cast<UserData*>(user_data);
  auto y_data = sundials::kokkos::GetVec<VecType>(y)->View();
  auto J_data = sundials::kokkos::GetDenseMat<MatType>(J)->View();

  const auto nbatches  = udata->nbatches;
  const auto batchSize = udata->batchSize;

  const auto ep = udata->ep;

  Kokkos::parallel_for(
    "Jac", Kokkos::RangePolicy<ExecSpace>(0, nbatches),
    KOKKOS_LAMBDA(const SizeType i) {
      // get y values
      auto idx = batchSize * i;
      auto u   = y_data(idx);
      auto v   = y_data(idx + 1);
      auto w   = y_data(idx + 2);

      // first col of block
      J_data(i, 0, 0) = -(w + ONE) + TWO * u * v;
      J_data(i, 1, 0) = u * u;
      J_data(i, 2, 0) = -u;

      // second col of block
      J_data(i, 0, 1) = u * u;
      J_data(i, 1, 1) = -u * u;
      J_data(i, 2, 1) = u;

      // third col of block
      J_data(i, 0, 2) = -w;
      J_data(i, 1, 2) = ZERO;
      J_data(i, 2, 2) = -ONE / ep - u;
    });

  return 0;
}