1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
|
/* ----------------------------------------------------------------------------
* Programmer(s): Cody J. Balos @ LLNL
* ----------------------------------------------------------------------------
* SUNDIALS Copyright Start
* Copyright (c) 2002-2022, Lawrence Livermore National Security
* and Southern Methodist University.
* All rights reserved.
*
* See the top-level LICENSE and NOTICE files for details.
*
* SPDX-License-Identifier: BSD-3-Clause
* SUNDIALS Copyright End
* ----------------------------------------------------------------------------
* The following is a simple example problem based off of ark_brusselator.c.
*
* We simulate a scenario where a set of independent ODEs are batched together
* to form a larger system. Each independent ODE system has 3 components,
* Y = [u,v,w], satisfying the equations,
* du/dt = a - (w+1)*u + v*u^2
* dv/dt = w*u - v*u^2
* dw/dt = (b-w)/ep - w*u
* for t in the interval [0.0, 10.0], with initial conditions Y0 = [u0,v0,w0].
* The problem is stiff. We have 3 different testing scenarios:
*
* Reactor 0: u0=3.9, v0=1.1, w0=2.8, a=1.2, b=2.5, ep=1.0e-5
* Here, all three components exhibit a rapid transient change
* during the first 0.2 time units, followed by a slow and
* smooth evolution.
*
* Reactor 1: u0=3, v0=3, w0=3.5, a=0.5, b=3, ep=5.0e-4
* Here, all components undergo very rapid initial transients
* during the first 0.3 time units, and all then proceed very
* smoothly for the remainder of the simulation.
* Reactor 2: u0=1.2, v0=3.1, w0=3, a=1, b=3.5, ep=5.0e-6
* Here, w experiences a fast initial transient, jumping 0.5
* within a few steps. All values proceed smoothly until
* around t=6.5, when both u and v undergo a sharp transition,
* with u increaseing from around 0.5 to 5 and v decreasing
* from around 6 to 1 in less than 0.5 time units. After this
* transition, both u and v continue to evolve somewhat
* rapidly for another 1.4 time units, and finish off smoothly.
*
* This program solves the problem with the BDF method, Newton iteration, a
* user-supplied Jacobian routine, and since the grouping of the independent
* systems results in a block diagonal linear system, with the MAGMA
* SUNLinearSolver which supports batched iterative methods. 100 outputs are
* printed at equal intervals, and run statistics are printed at the end.
*
* The program takes three optional arguments, the number of independent ODE
* systems (i.e. number of batches), the linear solver type
* (MAGMA batched LU, non-batched GMRES with the Jacobian computed by
* difference quotients, or non-batched GMRES with analytical Jacobian), and
* the test type (uniform_1, uniform_2, uniform_3, or random).
*
* ./cv_bruss_batched_magma [num_batches] [solver_type] [test_type]
*
* Options:
* num_batches <int>
* solver_type:
* 0 - MAGMA batched GMRES
* 1 - SUNDIALS non-batched GMRES with difference quotients Jacobian
* test_type:
* 0 - all batches are the same reactor type 0
* 1 - all batches are the same reactor type 1
* 2 - all batches are the same reactor type 2
* 3 - random distribution of reactors
* 4 - all reactor type 0 but with random distribution of ep (stiffness)
* 5 - all reactor type 1 but with random distribution of ep (stiffness)
* 6 - all reactor type 2 but with random distribution of ep (stiffness)
* 7 - random distribution of reactors and ep (stiffness)
* --------------------------------------------------------------------------*/
#include <memory>
#include <vector>
#include <cstdio>
#include <cvode/cvode.h> /* prototypes for CVODE fcts., consts. */
#include <sunmatrix/sunmatrix_magmadense.h> /* access to the MAGMA dense SUNMatrix */
#include <sunlinsol/sunlinsol_magmadense.h> /* access to MAGMA dense SUNLinearSolver */
#include <sunlinsol/sunlinsol_spgmr.h> /* access to GMRES SUNLinearSolver */
/* Convenience macro to help support both HIP and CUDA */
#if defined(SUNDIALS_MAGMA_BACKENDS_HIP)
#define HIP_OR_CUDA(a,b) a
#elif defined(SUNDIALS_MAGMA_BACKENDS_CUDA)
#define HIP_OR_CUDA(a,b) b
#else
#define HIP_OR_CUDA(a,b) ((void)0);
#endif
/* Include the appropriate vector and memory helper based on the GPU target */
#if defined(SUNDIALS_MAGMA_BACKENDS_CUDA)
#include <nvector/nvector_cuda.h>
#include <sunmemory/sunmemory_cuda.h>
#elif defined(SUNDIALS_MAGMA_BACKENDS_HIP)
#include <nvector/nvector_hip.h>
#include <sunmemory/sunmemory_hip.h>
#else
#error SUNDIALS_MAGMA_BACKENDS value is not recognized
#endif
/* Functions Called by the Solver */
static int f(sunrealtype t, N_Vector y, N_Vector ydot, void *user_data);
__global__
static void f_kernel(sunrealtype t, sunrealtype* y, sunrealtype* ydot,
sunrealtype* A, sunrealtype* B, sunrealtype* Ep,
int nbatches, int batchSize);
static int Jac(sunrealtype t, N_Vector y, N_Vector fy, SUNMatrix J,
void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
__global__
static void j_kernel(sunrealtype* ydata, sunrealtype *Jdata, sunrealtype* A, sunrealtype* B,
sunrealtype* Ep, int nbatches, int batchSize);
/* Private function to output results */
static void PrintOutput(sunrealtype t, sunrealtype y1, sunrealtype y2, sunrealtype y3);
/* Private function to print final statistics */
static void PrintFinalStats(void *cvode_mem, SUNLinearSolver LS);
/* Private function to check function return values */
static int check_retval(void *returnvalue, const char *funcname, int opt);
/* Helper class for Arrays. Built on top of the SUNMemoryHelper. */
template<typename T, typename I>
class Array {
public:
Array(I size, SUNMemoryHelper helper) : helper_(helper), mem_(nullptr) { SUNMemoryHelper_Alloc(helper, &mem_, size*sizeof(T), SUNMEMTYPE_UVM, NULL ); }
Array(SUNMemory mem, SUNMemoryHelper helper) : helper_(helper), mem_(mem) { }
T& operator[](int index) { return static_cast<T*>(mem_->ptr)[index]; }
T* get() { return static_cast<T*>(mem_->ptr); }
private:
SUNMemory mem_;
SUNMemoryHelper helper_;
};
using RealArray = Array<sunrealtype, int>;
/* User data structure. This will be available
in SUNDIALS callback functions. */
struct UserData {
UserData(int nbatches, int batchSize, SUNMemoryHelper h)
: nbatches(nbatches), batchSize(batchSize),
u0{nbatches, h}, v0{nbatches, h}, w0{nbatches, h},
a{nbatches, h}, b{nbatches, h}, ep{nbatches, h}
{ }
int nbatches; /* number of chemical networks */
int batchSize; /* size of each network */
RealArray u0, v0, w0; /* initial conditions */
RealArray a, b; /* chemical concentrations that are constant */
RealArray ep;
};
/*
*-------------------------------
* Main Program
*-------------------------------
*/
int main(int argc, char *argv[])
{
const sunrealtype T0 = RCONST(0.0); /* initial time */
const sunrealtype Tf = RCONST(10.0); /* final time */
const sunrealtype dTout = RCONST(1.0); /* time between outputs */
const int Nt = (int) ceil(Tf/dTout); /* number of output times */
const sunrealtype reltol = 1.0e-6; /* relative integrator tolerance */
int retval;
N_Vector y, abstol;
SUNMatrix A;
SUNLinearSolver LS;
void *cvode_mem;
y = abstol = NULL;
A = NULL;
LS = NULL;
cvode_mem = NULL;
/* Create the SUNDIALS context */
sundials::Context sunctx;
/* Create a SUNMemoryHelper for HIP or CUDA depending on the target.
This will be used underneath the Arrays and the Magma solver. */
SUNMemoryHelper memhelper = HIP_OR_CUDA( SUNMemoryHelper_Hip(sunctx);,
SUNMemoryHelper_Cuda(sunctx); )
/* Set defaults */
int batchSize = 3;
int nbatches = 100;
int test_type = 3;
int solver_type = 0;
/* Parse command line arguments and setup UserData */
int argi = 0;
if (argc > 1) {
nbatches = atoi(argv[++argi]);
}
if (argc > 2) {
solver_type = atoi(argv[++argi]);
}
if (argc > 3) {
test_type = atoi(argv[++argi]);
}
UserData udata{ nbatches, batchSize, memhelper };
/* Set the Reaction parameters according to test_type_type */
for (int batchj = 0; batchj < udata.nbatches; ++batchj) {
if (test_type == 1) {
udata.u0[batchj] = RCONST(3.9);
udata.v0[batchj] = RCONST(1.1);
udata.w0[batchj] = RCONST(2.8);
udata.a[batchj] = RCONST(1.2);
udata.b[batchj] = RCONST(2.5);
udata.ep[batchj] = RCONST(1.0e-5);
} else if (test_type == 2) {
udata.u0[batchj] = RCONST(3.0);
udata.v0[batchj] = RCONST(3.0);
udata.w0[batchj] = RCONST(3.5);
udata.a[batchj] = RCONST(0.5);
udata.b[batchj] = RCONST(3.0);
udata.ep[batchj] = RCONST(5.0e-4);
} else if (test_type == 3) {
udata.u0[batchj] = RCONST(1.2);
udata.v0[batchj] = RCONST(3.1);
udata.w0[batchj] = RCONST(3.0);
udata.a[batchj] = RCONST(1.0);
udata.b[batchj] = RCONST(3.5);
udata.ep[batchj] = RCONST(5.0e-6);
}
}
/* Create CUDA or HIP vector for I.C. and abstol vector */
y = HIP_OR_CUDA( N_VNew_Hip(batchSize * nbatches, sunctx);,
N_VNew_Cuda(batchSize * nbatches, sunctx); )
if (check_retval((void *)y, "N_VNew", 0)) { return(1); }
abstol = N_VClone(y);
if (check_retval((void *)abstol, "N_VClone", 0)) { return(1); }
/* Initialize y */
sunrealtype* ydata = N_VGetArrayPointer(y);
for (int batchj = 0; batchj < udata.nbatches; ++batchj) {
ydata[batchj*udata.batchSize] = udata.u0[batchj];
ydata[batchj*udata.batchSize+1] = udata.v0[batchj];
ydata[batchj*udata.batchSize+2] = udata.w0[batchj];
}
HIP_OR_CUDA( N_VCopyToDevice_Hip(y);,
N_VCopyToDevice_Cuda(y); )
/* Set the vector absolute tolerance */
sunrealtype* abstol_data = N_VGetArrayPointer(abstol);
for (int batchj = 0; batchj < udata.nbatches; ++batchj) {
abstol_data[batchj*udata.batchSize] = 1.0e-10;
abstol_data[batchj*udata.batchSize+1] = 1.0e-10;
abstol_data[batchj*udata.batchSize+2] = 1.0e-10;
}
HIP_OR_CUDA( N_VCopyToDevice_Hip(abstol);,
N_VCopyToDevice_Cuda(abstol); )
/* Call CVodeCreate to create the solver memory and specify the
* Backward Differentiation Formula */
cvode_mem = CVodeCreate(CV_BDF, sunctx);
if (check_retval((void *)cvode_mem, "CVodeCreate", 0)) { return(1); }
/* Call CVodeInit to initialize the integrator memory and specify the
* user's right hand side function in y'=f(t,y), the inital time T0, and
* the initial dependent variable vector y. */
retval = CVodeInit(cvode_mem, f, T0, y);
if (check_retval(&retval, "CVodeInit", 1)) { return(1); }
/* Call CVodeSetUserData to attach the user data structure */
retval = CVodeSetUserData(cvode_mem, &udata);
if (check_retval(&retval, "CVodeSetUserData", 1)) { return(1); }
/* Call CVodeSVtolerances to specify the scalar relative tolerance
* and vector absolute tolerances */
retval = CVodeSVtolerances(cvode_mem, reltol, abstol);
if (check_retval(&retval, "CVodeSVtolerances", 1)) { return(1); }
/* Create the SUNLinearSolver object for use by CVode */
if (solver_type == 0) {
/* Create SUNMatrix for use in linear solves */
A = SUNMatrix_MagmaDenseBlock(udata.nbatches, udata.batchSize, udata.batchSize, SUNMEMTYPE_DEVICE,
memhelper, NULL, sunctx);
if(check_retval((void *)A, "SUNMatrix_MagmaDenseBlock", 0)) return(1);
LS = SUNLinSol_MagmaDense(y, A, sunctx);
if(check_retval((void *)LS, "SUNLinSol_MagmaDense", 0)) return(1);
/* Call CVodeSetLinearSolver to attach the matrix and linear solver to CVode */
retval = CVodeSetLinearSolver(cvode_mem, LS, A);
if(check_retval(&retval, "CVodeSetLinearSolver", 1)) return(1);
/* Set the user-supplied Jacobian routine Jac */
retval = CVodeSetJacFn(cvode_mem, Jac);
if(check_retval(&retval, "CVodeSetJacFn", 1)) return(1);
} else {
LS = SUNLinSol_SPGMR(y, SUN_PREC_NONE, 0, sunctx);
if(check_retval((void *)LS, "SUNLinSol_MagmaDense", 0)) return(1);
/* Call CVodeSetLinearSolver to attach the matrix and linear solver to CVode */
retval = CVodeSetLinearSolver(cvode_mem, LS, NULL);
if(check_retval(&retval, "CVodeSetLinearSolver", 1)) return(1);
}
/* In loop, call CVode, print results, and test_type for error.
Break out of loop when preset output times have been reached. */
printf(" \nBatch of independent 3-species kinetics problems\n\n");
printf("number of batches = %d\n\n", udata.nbatches);
sunrealtype t = T0;
sunrealtype tout = T0+dTout;
for (int iout=0; iout<Nt; iout++) {
retval = CVode(cvode_mem, tout, y, &t, CV_NORMAL);
HIP_OR_CUDA( N_VCopyFromDevice_Hip(y);,
N_VCopyFromDevice_Cuda(y); )
for (int batchj = 0; batchj < udata.nbatches; batchj += 10) {
printf("batch_%d: ", batchj);
PrintOutput(t, ydata[batchj*udata.batchSize],
ydata[batchj*udata.batchSize+1],
ydata[batchj*udata.batchSize+2]);
}
if (check_retval(&retval, "CVode", 1)) break;
if (retval == CV_SUCCESS) {
tout += dTout;
tout = (tout > Tf) ? Tf : tout;
}
}
/* Print some final statistics */
PrintFinalStats(cvode_mem, LS);
/* Free y and abstol vectors */
N_VDestroy(y);
N_VDestroy(abstol);
/* Free integrator memory */
CVodeFree(&cvode_mem);
/* Free the linear solver memory */
SUNLinSolFree(LS);
/* Free the matrix memory */
if (A) { SUNMatDestroy(A); }
return(0);
}
/*
*-------------------------------
* Functions called by the solver
*-------------------------------
*/
/* Right hand side function. This just launches the CUDA or HIP kernel
to do the actual computation. At the very least, doing this
saves moving the vector data in y and ydot to/from the device
every evaluation of f. */
int f(sunrealtype t, N_Vector y, N_Vector ydot, void *user_data)
{
UserData *udata;
sunrealtype *ydata, *ydotdata;
udata = (UserData*) user_data;
ydata = N_VGetDeviceArrayPointer(y);
ydotdata = N_VGetDeviceArrayPointer(ydot);
unsigned threads_per_block = 256;
unsigned num_blocks = (udata->nbatches + threads_per_block - 1) / threads_per_block;
f_kernel<<<num_blocks, threads_per_block>>>
(t, ydata, ydotdata, udata->a.get(), udata->b.get(), udata->ep.get(),
udata->nbatches, udata->batchSize);
HIP_OR_CUDA( hipDeviceSynchronize();, cudaDeviceSynchronize(); )
HIP_OR_CUDA( hipError_t cuerr = hipGetLastError();,
cudaError_t cuerr = cudaGetLastError(); )
if (cuerr != HIP_OR_CUDA( hipSuccess, cudaSuccess )) {
fprintf(stderr,
">>> ERROR in f: cudaGetLastError returned %s\n",
HIP_OR_CUDA( hipGetErrorName(cuerr), cudaGetErrorName(cuerr) ));
return(-1);
}
return(0);
}
/* Right hand side function evalutation kernel.
This kernel needs threads >= nbatches. */
__global__
void f_kernel(sunrealtype t, sunrealtype* ydata, sunrealtype* ydotdata,
sunrealtype* A, sunrealtype* B, sunrealtype* Ep,
int nbatches, int batchSize)
{
sunrealtype u, v, w, a, b, ep;
for (int batchj = blockIdx.x * blockDim.x + threadIdx.x;
batchj < nbatches;
batchj += blockDim.x * gridDim.x)
{
a = A[batchj]; b = B[batchj], ep = Ep[batchj];
u = ydata[batchj*batchSize];
v = ydata[batchj*batchSize+1];
w = ydata[batchj*batchSize+2];
ydotdata[batchj*batchSize] = a - (w+1.0)*u + v*u*u;
ydotdata[batchj*batchSize+1] = w*u - v*u*u;
ydotdata[batchj*batchSize+2] = (b-w)/ep - w*u;
}
}
/*
* Jacobian routine. Compute J(t,y) = df/dy.
* This is done on the GPU.
*/
int Jac(sunrealtype t, N_Vector y, N_Vector fy, SUNMatrix J,
void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
UserData *udata = (UserData*) user_data;
sunrealtype* Jdata = SUNMatrix_MagmaDense_Data(J);
sunrealtype* ydata = N_VGetDeviceArrayPointer(y);
unsigned block_size = HIP_OR_CUDA( 64, 32 );
unsigned grid_size = (udata->nbatches + block_size - 1) / block_size;
j_kernel<<<grid_size, block_size>>>
(ydata, Jdata, udata->a.get(), udata->b.get(), udata->ep.get(),
udata->nbatches, udata->batchSize);
HIP_OR_CUDA( hipDeviceSynchronize();, cudaDeviceSynchronize(); )
HIP_OR_CUDA( hipError_t cuerr = hipGetLastError();,
cudaError_t cuerr = cudaGetLastError(); )
if (cuerr != HIP_OR_CUDA( hipSuccess, cudaSuccess )) {
fprintf(stderr,
">>> ERROR in Jac: cudaGetLastError returned %s\n",
HIP_OR_CUDA( hipGetErrorName(cuerr), cudaGetErrorName(cuerr) ));
return(-1);
}
return(0);
}
/* Jacobian evaluation GPU kernel */
__global__
void j_kernel(sunrealtype* ydata, sunrealtype *Jdata, sunrealtype* A, sunrealtype* B,
sunrealtype* Ep, int nbatches, int batchSize)
{
int N = batchSize;
int NN = N*N;
sunrealtype u, v, w, ep;
for (int batchj = blockIdx.x*blockDim.x + threadIdx.x;
batchj < nbatches;
batchj += blockDim.x * gridDim.x)
{
ep = Ep[batchj];
/* get y values */
u = ydata[N*batchj];
v = ydata[N*batchj + 1];
w = ydata[N*batchj + 2];
/* first col of block */
Jdata[NN*batchj] = -(w+1.0) + 2.0*u*v;
Jdata[NN*batchj + 1] = u*u;
Jdata[NN*batchj + 2] = -u;
/* second col of block */
Jdata[NN*batchj + 3] = u*u;
Jdata[NN*batchj + 4] = -u*u;
Jdata[NN*batchj + 5] = u;
/* third col of block */
Jdata[NN*batchj + 6] = -w;
Jdata[NN*batchj + 7] = 0.0;
Jdata[NN*batchj + 8] = -1.0/ep - u;
}
}
/*
*-------------------------------
* Private helper functions
*-------------------------------
*/
void PrintOutput(sunrealtype t, sunrealtype y1, sunrealtype y2, sunrealtype y3)
{
#if defined(SUNDIALS_DOUBLE_PRECISION)
printf("At t = %0.4e y =%14.6e %14.6e %14.6e\n", t, y1, y2, y3);
#else
printf("At t = %0.4e y =%14.6e %14.6e %14.6e\n", t, y1, y2, y3);
#endif
return;
}
/*
* Get and print some final statistics
*/
void PrintFinalStats(void *cvode_mem, SUNLinearSolver LS)
{
long int nst, nfe, nsetups, nje, nni, ncfn, netf, nge;
int retval;
retval = CVodeGetNumSteps(cvode_mem, &nst);
check_retval(&retval, "CVodeGetNumSteps", 1);
retval = CVodeGetNumRhsEvals(cvode_mem, &nfe);
check_retval(&retval, "CVodeGetNumRhsEvals", 1);
retval = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);
check_retval(&retval, "CVodeGetNumLinSolvSetups", 1);
retval = CVodeGetNumErrTestFails(cvode_mem, &netf);
check_retval(&retval, "CVodeGetNumErrTestFails", 1);
retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
check_retval(&retval, "CVodeGetNumNonlinSolvIters", 1);
retval = CVodeGetNumNonlinSolvConvFails(cvode_mem, &ncfn);
check_retval(&retval, "CVodeGetNumNonlinSolvConvFails", 1);
retval = CVodeGetNumJacEvals(cvode_mem, &nje);
check_retval(&retval, "CVodeGetNumJacEvals", 1);
retval = CVodeGetNumGEvals(cvode_mem, &nge);
check_retval(&retval, "CVodeGetNumGEvals", 1);
printf("\nFinal Statistics:\n");
printf("nst = %-6ld nfe = %-6ld nsetups = %-6ld nje = %ld\n",
nst, nfe, nsetups, nje);
printf("nni = %-6ld ncfn = %-6ld netf = %-6ld nge = %ld\n \n",
nni, ncfn, netf, nge);
}
/*
* Check function return value...
* opt == 0 means SUNDIALS function allocates memory so check if
* returned NULL pointer
* opt == 1 means SUNDIALS function returns an integer value so check if
* retval < 0
* opt == 2 means function allocates memory so check if returned
* NULL pointer
*/
int check_retval(void *returnvalue, const char *funcname, int opt)
{
int *retval;
/* Check if SUNDIALS function returned NULL pointer - no memory allocated */
if (opt == 0 && returnvalue == NULL) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s(failed - returned NULL pointer\n\n",
funcname);
return(1); }
/* Check if retval < 0 */
else if (opt == 1) {
retval = (int *) returnvalue;
if (*retval < 0) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with retval = %d\n\n",
funcname, *retval);
return(1); }}
/* Check if function returned NULL pointer - no memory allocated */
else if (opt == 2 && returnvalue == NULL) {
fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return(1); }
return(0);
}
|