File: cv_bruss_batched_magma.cpp

package info (click to toggle)
sundials 6.4.1%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 79,368 kB
  • sloc: ansic: 218,700; f90: 62,503; cpp: 61,511; fortran: 5,166; python: 4,642; sh: 4,114; makefile: 562; perl: 123
file content (575 lines) | stat: -rw-r--r-- 20,668 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/* ----------------------------------------------------------------------------
 * Programmer(s): Cody J. Balos @ LLNL
 * ----------------------------------------------------------------------------
 * SUNDIALS Copyright Start
 * Copyright (c) 2002-2022, Lawrence Livermore National Security
 * and Southern Methodist University.
 * All rights reserved.
 *
 * See the top-level LICENSE and NOTICE files for details.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 * SUNDIALS Copyright End
 * ----------------------------------------------------------------------------
 * The following is a simple example problem based off of ark_brusselator.c.
 *
 * We simulate a scenario where a set of independent ODEs are batched together
 * to form a larger system. Each independent ODE system has 3 components,
 * Y = [u,v,w], satisfying the equations,
 *    du/dt = a - (w+1)*u + v*u^2
 *    dv/dt = w*u - v*u^2
 *    dw/dt = (b-w)/ep - w*u
 * for t in the interval [0.0, 10.0], with initial conditions Y0 = [u0,v0,w0].
 * The problem is stiff. We have 3 different testing scenarios:
 *
 * Reactor 0:  u0=3.9,  v0=1.1,  w0=2.8,  a=1.2,  b=2.5,  ep=1.0e-5
 *    Here, all three components exhibit a rapid transient change
 *    during the first 0.2 time units, followed by a slow and
 *    smooth evolution.
 *
 * Reactor 1:  u0=3,  v0=3,  w0=3.5,  a=0.5,  b=3,  ep=5.0e-4
 *    Here, all components undergo very rapid initial transients
 *    during the first 0.3 time units, and all then proceed very
 *    smoothly for the remainder of the simulation.

 * Reactor 2:  u0=1.2,  v0=3.1,  w0=3,  a=1,  b=3.5,  ep=5.0e-6
 *    Here, w experiences a fast initial transient, jumping 0.5
 *    within a few steps.  All values proceed smoothly until
 *    around t=6.5, when both u and v undergo a sharp transition,
 *    with u increaseing from around 0.5 to 5 and v decreasing
 *    from around 6 to 1 in less than 0.5 time units.  After this
 *    transition, both u and v continue to evolve somewhat
 *    rapidly for another 1.4 time units, and finish off smoothly.
 *
 * This program solves the problem with the BDF method, Newton iteration, a
 * user-supplied Jacobian routine, and since the grouping of the independent
 * systems results in a block diagonal linear system, with the MAGMA
 * SUNLinearSolver which supports batched iterative methods. 100 outputs are
 * printed at equal intervals, and run statistics are printed at the end.
 *
 * The program takes three optional arguments, the number of independent ODE
 * systems (i.e. number of batches), the linear solver type
 * (MAGMA batched LU, non-batched GMRES with the Jacobian computed by
 * difference quotients, or non-batched GMRES with analytical Jacobian), and
 * the test type (uniform_1, uniform_2, uniform_3, or random).
 *
 *    ./cv_bruss_batched_magma [num_batches] [solver_type] [test_type]
 *
 * Options:
 *    num_batches <int>
 *    solver_type:
 *       0 - MAGMA batched GMRES
 *       1 - SUNDIALS non-batched GMRES with difference quotients Jacobian
 *    test_type:
 *       0 - all batches are the same reactor type 0
 *       1 - all batches are the same reactor type 1
 *       2 - all batches are the same reactor type 2
 *       3 - random distribution of reactors
 *       4 - all reactor type 0 but with random distribution of ep (stiffness)
 *       5 - all reactor type 1 but with random distribution of ep (stiffness)
 *       6 - all reactor type 2 but with random distribution of ep (stiffness)
 *       7 - random distribution of reactors and ep (stiffness)
 * --------------------------------------------------------------------------*/

#include <memory>
#include <vector>
#include <cstdio>

#include <cvode/cvode.h>                              /* prototypes for CVODE fcts., consts.           */
#include <sunmatrix/sunmatrix_magmadense.h>           /* access to the MAGMA dense SUNMatrix           */
#include <sunlinsol/sunlinsol_magmadense.h>           /* access to MAGMA dense SUNLinearSolver         */
#include <sunlinsol/sunlinsol_spgmr.h>                /* access to GMRES SUNLinearSolver               */

/* Convenience macro to help support both HIP and CUDA */
#if defined(SUNDIALS_MAGMA_BACKENDS_HIP)
#define HIP_OR_CUDA(a,b) a
#elif defined(SUNDIALS_MAGMA_BACKENDS_CUDA)
#define HIP_OR_CUDA(a,b) b
#else
#define HIP_OR_CUDA(a,b) ((void)0);
#endif

/* Include the appropriate vector and memory helper based on the GPU target */
#if defined(SUNDIALS_MAGMA_BACKENDS_CUDA)
#include <nvector/nvector_cuda.h>
#include <sunmemory/sunmemory_cuda.h>
#elif defined(SUNDIALS_MAGMA_BACKENDS_HIP)
#include <nvector/nvector_hip.h>
#include <sunmemory/sunmemory_hip.h>
#else
#error SUNDIALS_MAGMA_BACKENDS value is not recognized
#endif

/* Functions Called by the Solver */
static int f(sunrealtype t, N_Vector y, N_Vector ydot, void *user_data);

__global__
static void f_kernel(sunrealtype t, sunrealtype* y, sunrealtype* ydot,
                     sunrealtype* A, sunrealtype* B, sunrealtype* Ep,
                     int nbatches, int batchSize);

static int Jac(sunrealtype t, N_Vector y, N_Vector fy, SUNMatrix J,
               void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);

__global__
static void j_kernel(sunrealtype* ydata, sunrealtype *Jdata, sunrealtype* A, sunrealtype* B,
                     sunrealtype* Ep, int nbatches, int batchSize);

/* Private function to output results */
static void PrintOutput(sunrealtype t, sunrealtype y1, sunrealtype y2, sunrealtype y3);

/* Private function to print final statistics */
static void PrintFinalStats(void *cvode_mem, SUNLinearSolver LS);

/* Private function to check function return values */
static int check_retval(void *returnvalue, const char *funcname, int opt);

/* Helper class for Arrays. Built on top of the SUNMemoryHelper. */
template<typename T, typename I>
class Array {
public:
  Array(I size, SUNMemoryHelper helper) : helper_(helper), mem_(nullptr) { SUNMemoryHelper_Alloc(helper, &mem_, size*sizeof(T), SUNMEMTYPE_UVM, NULL ); }
  Array(SUNMemory mem, SUNMemoryHelper helper) : helper_(helper), mem_(mem) { }
  T& operator[](int index) { return static_cast<T*>(mem_->ptr)[index]; }
  T* get() { return static_cast<T*>(mem_->ptr); }
private:
  SUNMemory mem_;
  SUNMemoryHelper helper_;
};

using RealArray = Array<sunrealtype, int>;

/* User data structure. This will be available
   in SUNDIALS callback functions. */
struct UserData {
  UserData(int nbatches, int batchSize, SUNMemoryHelper h)
    : nbatches(nbatches), batchSize(batchSize),
      u0{nbatches, h}, v0{nbatches, h}, w0{nbatches, h},
      a{nbatches, h}, b{nbatches, h}, ep{nbatches, h}
  { }

  int nbatches;         /* number of chemical networks */
  int batchSize;        /* size of each network        */
  RealArray u0, v0, w0; /* initial conditions */
  RealArray a, b;       /* chemical concentrations that are constant */
  RealArray ep;
};

/*
 *-------------------------------
 * Main Program
 *-------------------------------
 */

int main(int argc, char *argv[])
{
  const sunrealtype T0 = RCONST(0.0);     /* initial time                   */
  const sunrealtype Tf = RCONST(10.0);    /* final time                    */
  const sunrealtype dTout = RCONST(1.0);  /* time between outputs          */
  const int Nt = (int) ceil(Tf/dTout);    /* number of output times        */
  const sunrealtype reltol = 1.0e-6;      /* relative integrator tolerance */
  int retval;
  N_Vector y, abstol;
  SUNMatrix A;
  SUNLinearSolver LS;
  void *cvode_mem;

  y = abstol = NULL;
  A = NULL;
  LS = NULL;
  cvode_mem = NULL;

  /* Create the SUNDIALS context */
  sundials::Context sunctx;

  /* Create a SUNMemoryHelper for HIP or CUDA depending on the target.
     This will be used underneath the Arrays and the Magma solver. */
  SUNMemoryHelper memhelper = HIP_OR_CUDA( SUNMemoryHelper_Hip(sunctx);,
                                           SUNMemoryHelper_Cuda(sunctx); )
  /* Set defaults */
  int batchSize = 3;
  int nbatches  = 100;
  int test_type = 3;
  int solver_type = 0;

  /* Parse command line arguments and setup UserData */
  int argi = 0;
  if (argc > 1) {
    nbatches = atoi(argv[++argi]);
  }
  if (argc > 2) {
    solver_type = atoi(argv[++argi]);
  }
  if (argc > 3) {
    test_type = atoi(argv[++argi]);
  }

  UserData udata{ nbatches, batchSize, memhelper };

  /* Set the Reaction parameters according to test_type_type */
  for (int batchj = 0; batchj < udata.nbatches; ++batchj) {
    if (test_type == 1) {
      udata.u0[batchj] = RCONST(3.9);
      udata.v0[batchj] = RCONST(1.1);
      udata.w0[batchj] = RCONST(2.8);
      udata.a[batchj]  = RCONST(1.2);
      udata.b[batchj]  = RCONST(2.5);
      udata.ep[batchj] = RCONST(1.0e-5);
    } else if (test_type == 2) {
      udata.u0[batchj] = RCONST(3.0);
      udata.v0[batchj] = RCONST(3.0);
      udata.w0[batchj] = RCONST(3.5);
      udata.a[batchj]  = RCONST(0.5);
      udata.b[batchj]  = RCONST(3.0);
      udata.ep[batchj] = RCONST(5.0e-4);
    } else if (test_type == 3) {
      udata.u0[batchj] = RCONST(1.2);
      udata.v0[batchj] = RCONST(3.1);
      udata.w0[batchj] = RCONST(3.0);
      udata.a[batchj]  = RCONST(1.0);
      udata.b[batchj]  = RCONST(3.5);
      udata.ep[batchj] = RCONST(5.0e-6);
    }
  }

  /* Create CUDA or HIP vector for I.C. and abstol vector */
  y = HIP_OR_CUDA( N_VNew_Hip(batchSize * nbatches, sunctx);,
                   N_VNew_Cuda(batchSize * nbatches, sunctx); )
  if (check_retval((void *)y, "N_VNew", 0)) { return(1); }
  abstol = N_VClone(y);
  if (check_retval((void *)abstol, "N_VClone", 0)) { return(1); }

  /* Initialize y */
  sunrealtype* ydata = N_VGetArrayPointer(y);
  for (int batchj = 0; batchj < udata.nbatches; ++batchj) {
    ydata[batchj*udata.batchSize]   = udata.u0[batchj];
    ydata[batchj*udata.batchSize+1] = udata.v0[batchj];
    ydata[batchj*udata.batchSize+2] = udata.w0[batchj];
  }
  HIP_OR_CUDA( N_VCopyToDevice_Hip(y);,
               N_VCopyToDevice_Cuda(y); )

  /* Set the vector absolute tolerance */
  sunrealtype* abstol_data = N_VGetArrayPointer(abstol);
  for (int batchj = 0; batchj < udata.nbatches; ++batchj) {
    abstol_data[batchj*udata.batchSize]   = 1.0e-10;
    abstol_data[batchj*udata.batchSize+1] = 1.0e-10;
    abstol_data[batchj*udata.batchSize+2] = 1.0e-10;
  }
  HIP_OR_CUDA( N_VCopyToDevice_Hip(abstol);,
               N_VCopyToDevice_Cuda(abstol); )

  /* Call CVodeCreate to create the solver memory and specify the
   * Backward Differentiation Formula */
  cvode_mem = CVodeCreate(CV_BDF, sunctx);
  if (check_retval((void *)cvode_mem, "CVodeCreate", 0)) { return(1); }

  /* Call CVodeInit to initialize the integrator memory and specify the
   * user's right hand side function in y'=f(t,y), the inital time T0, and
   * the initial dependent variable vector y. */
  retval = CVodeInit(cvode_mem, f, T0, y);
  if (check_retval(&retval, "CVodeInit", 1)) { return(1); }

  /* Call CVodeSetUserData to attach the user data structure */
  retval = CVodeSetUserData(cvode_mem, &udata);
  if (check_retval(&retval, "CVodeSetUserData", 1)) { return(1); }

  /* Call CVodeSVtolerances to specify the scalar relative tolerance
   * and vector absolute tolerances */
  retval = CVodeSVtolerances(cvode_mem, reltol, abstol);
  if (check_retval(&retval, "CVodeSVtolerances", 1)) { return(1); }

  /* Create the SUNLinearSolver object for use by CVode */
  if (solver_type == 0) {
    /* Create SUNMatrix for use in linear solves */
    A = SUNMatrix_MagmaDenseBlock(udata.nbatches, udata.batchSize, udata.batchSize, SUNMEMTYPE_DEVICE,
                                  memhelper, NULL, sunctx);
    if(check_retval((void *)A, "SUNMatrix_MagmaDenseBlock", 0)) return(1);

    LS = SUNLinSol_MagmaDense(y, A, sunctx);
    if(check_retval((void *)LS, "SUNLinSol_MagmaDense", 0)) return(1);

    /* Call CVodeSetLinearSolver to attach the matrix and linear solver to CVode */
    retval = CVodeSetLinearSolver(cvode_mem, LS, A);
    if(check_retval(&retval, "CVodeSetLinearSolver", 1)) return(1);

    /* Set the user-supplied Jacobian routine Jac */
    retval = CVodeSetJacFn(cvode_mem, Jac);
    if(check_retval(&retval, "CVodeSetJacFn", 1)) return(1);
  } else {
    LS = SUNLinSol_SPGMR(y, SUN_PREC_NONE, 0, sunctx);
    if(check_retval((void *)LS, "SUNLinSol_MagmaDense", 0)) return(1);

    /* Call CVodeSetLinearSolver to attach the matrix and linear solver to CVode */
    retval = CVodeSetLinearSolver(cvode_mem, LS, NULL);
    if(check_retval(&retval, "CVodeSetLinearSolver", 1)) return(1);
  }


  /* In loop, call CVode, print results, and test_type for error.
     Break out of loop when preset output times have been reached.  */
  printf(" \nBatch of independent 3-species kinetics problems\n\n");
  printf("number of batches = %d\n\n", udata.nbatches);

  sunrealtype t = T0;
  sunrealtype tout = T0+dTout;
  for (int iout=0; iout<Nt; iout++) {
    retval = CVode(cvode_mem, tout, y, &t, CV_NORMAL);

    HIP_OR_CUDA( N_VCopyFromDevice_Hip(y);,
                 N_VCopyFromDevice_Cuda(y); )
    for (int batchj = 0; batchj < udata.nbatches; batchj += 10) {
      printf("batch_%d: ", batchj);
      PrintOutput(t, ydata[batchj*udata.batchSize],
                     ydata[batchj*udata.batchSize+1],
                     ydata[batchj*udata.batchSize+2]);
    }

    if (check_retval(&retval, "CVode", 1)) break;
    if (retval == CV_SUCCESS) {
      tout += dTout;
      tout = (tout > Tf) ? Tf : tout;
    }
  }

  /* Print some final statistics */
  PrintFinalStats(cvode_mem, LS);

  /* Free y and abstol vectors */
  N_VDestroy(y);
  N_VDestroy(abstol);

  /* Free integrator memory */
  CVodeFree(&cvode_mem);

  /* Free the linear solver memory */
  SUNLinSolFree(LS);

  /* Free the matrix memory */
  if (A) { SUNMatDestroy(A); }

  return(0);
}


/*
 *-------------------------------
 * Functions called by the solver
 *-------------------------------
 */

/* Right hand side function. This just launches the CUDA or HIP kernel
   to do the actual computation. At the very least, doing this
   saves moving the vector data in y and ydot to/from the device
   every evaluation of f. */
int f(sunrealtype t, N_Vector y, N_Vector ydot, void *user_data)
{
  UserData *udata;
  sunrealtype *ydata, *ydotdata;

  udata = (UserData*) user_data;
  ydata = N_VGetDeviceArrayPointer(y);
  ydotdata = N_VGetDeviceArrayPointer(ydot);

  unsigned threads_per_block = 256;
  unsigned num_blocks = (udata->nbatches + threads_per_block - 1) / threads_per_block;
  f_kernel<<<num_blocks, threads_per_block>>>
    (t, ydata, ydotdata, udata->a.get(), udata->b.get(), udata->ep.get(),
     udata->nbatches, udata->batchSize);

  HIP_OR_CUDA( hipDeviceSynchronize();, cudaDeviceSynchronize(); )
  HIP_OR_CUDA( hipError_t cuerr = hipGetLastError();,
               cudaError_t cuerr = cudaGetLastError(); )
  if (cuerr != HIP_OR_CUDA( hipSuccess, cudaSuccess )) {
    fprintf(stderr,
            ">>> ERROR in f: cudaGetLastError returned %s\n",
            HIP_OR_CUDA( hipGetErrorName(cuerr), cudaGetErrorName(cuerr) ));
    return(-1);
  }

  return(0);
}

/* Right hand side function evalutation kernel.
   This kernel needs threads >= nbatches. */
__global__
void f_kernel(sunrealtype t, sunrealtype* ydata, sunrealtype* ydotdata,
              sunrealtype* A, sunrealtype* B, sunrealtype* Ep,
              int nbatches, int batchSize)
{
  sunrealtype u, v, w, a, b, ep;

  for (int batchj = blockIdx.x * blockDim.x + threadIdx.x;
       batchj < nbatches;
       batchj += blockDim.x * gridDim.x)
  {
    a = A[batchj]; b = B[batchj], ep = Ep[batchj];

    u = ydata[batchj*batchSize];
    v = ydata[batchj*batchSize+1];
    w = ydata[batchj*batchSize+2];

    ydotdata[batchj*batchSize]   = a - (w+1.0)*u + v*u*u;
    ydotdata[batchj*batchSize+1] = w*u - v*u*u;
    ydotdata[batchj*batchSize+2] = (b-w)/ep - w*u;
  }
}

/*
 * Jacobian routine. Compute J(t,y) = df/dy.
 * This is done on the GPU.
 */

int Jac(sunrealtype t, N_Vector y, N_Vector fy, SUNMatrix J,
        void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
  UserData *udata = (UserData*) user_data;

  sunrealtype* Jdata = SUNMatrix_MagmaDense_Data(J);
  sunrealtype* ydata = N_VGetDeviceArrayPointer(y);

  unsigned block_size = HIP_OR_CUDA( 64, 32 );
  unsigned grid_size  = (udata->nbatches + block_size - 1) / block_size;

  j_kernel<<<grid_size, block_size>>>
    (ydata, Jdata, udata->a.get(), udata->b.get(), udata->ep.get(),
     udata->nbatches, udata->batchSize);

  HIP_OR_CUDA( hipDeviceSynchronize();, cudaDeviceSynchronize(); )
  HIP_OR_CUDA( hipError_t cuerr = hipGetLastError();,
               cudaError_t cuerr = cudaGetLastError(); )
  if (cuerr != HIP_OR_CUDA( hipSuccess, cudaSuccess )) {
    fprintf(stderr,
            ">>> ERROR in Jac: cudaGetLastError returned %s\n",
            HIP_OR_CUDA( hipGetErrorName(cuerr), cudaGetErrorName(cuerr) ));
    return(-1);
  }

  return(0);
}

/* Jacobian evaluation GPU kernel */
__global__
void j_kernel(sunrealtype* ydata, sunrealtype *Jdata, sunrealtype* A, sunrealtype* B,
              sunrealtype* Ep, int nbatches, int batchSize)
{
  int N  = batchSize;
  int NN = N*N;
  sunrealtype u, v, w, ep;

  for (int batchj = blockIdx.x*blockDim.x + threadIdx.x;
       batchj < nbatches;
       batchj += blockDim.x * gridDim.x)
  {
    ep = Ep[batchj];

    /* get y values */
    u = ydata[N*batchj];
    v = ydata[N*batchj + 1];
    w = ydata[N*batchj + 2];

    /* first col of block */
    Jdata[NN*batchj]       = -(w+1.0) + 2.0*u*v;
    Jdata[NN*batchj + 1]   = u*u;
    Jdata[NN*batchj + 2]   = -u;

    /* second col of block */
    Jdata[NN*batchj + 3]   = u*u;
    Jdata[NN*batchj + 4]   = -u*u;
    Jdata[NN*batchj + 5]   = u;

    /* third col of block */
    Jdata[NN*batchj + 6]   = -w;
    Jdata[NN*batchj + 7]   = 0.0;
    Jdata[NN*batchj + 8]   = -1.0/ep - u;
  }
}

/*
 *-------------------------------
 * Private helper functions
 *-------------------------------
 */

void PrintOutput(sunrealtype t, sunrealtype y1, sunrealtype y2, sunrealtype y3)
{
#if defined(SUNDIALS_DOUBLE_PRECISION)
  printf("At t = %0.4e      y =%14.6e  %14.6e  %14.6e\n", t, y1, y2, y3);
#else
  printf("At t = %0.4e      y =%14.6e  %14.6e  %14.6e\n", t, y1, y2, y3);
#endif

  return;
}

/*
 * Get and print some final statistics
 */

void PrintFinalStats(void *cvode_mem, SUNLinearSolver LS)
{
  long int nst, nfe, nsetups, nje, nni, ncfn, netf, nge;
  int retval;

  retval = CVodeGetNumSteps(cvode_mem, &nst);
  check_retval(&retval, "CVodeGetNumSteps", 1);
  retval = CVodeGetNumRhsEvals(cvode_mem, &nfe);
  check_retval(&retval, "CVodeGetNumRhsEvals", 1);
  retval = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);
  check_retval(&retval, "CVodeGetNumLinSolvSetups", 1);
  retval = CVodeGetNumErrTestFails(cvode_mem, &netf);
  check_retval(&retval, "CVodeGetNumErrTestFails", 1);
  retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
  check_retval(&retval, "CVodeGetNumNonlinSolvIters", 1);
  retval = CVodeGetNumNonlinSolvConvFails(cvode_mem, &ncfn);
  check_retval(&retval, "CVodeGetNumNonlinSolvConvFails", 1);

  retval = CVodeGetNumJacEvals(cvode_mem, &nje);
  check_retval(&retval, "CVodeGetNumJacEvals", 1);

  retval = CVodeGetNumGEvals(cvode_mem, &nge);
  check_retval(&retval, "CVodeGetNumGEvals", 1);

  printf("\nFinal Statistics:\n");
  printf("nst = %-6ld nfe  = %-6ld nsetups = %-6ld nje = %ld\n",
	 nst, nfe, nsetups, nje);
  printf("nni = %-6ld ncfn = %-6ld netf = %-6ld    nge = %ld\n \n",
   nni, ncfn, netf, nge);
}

/*
 * Check function return value...
 *   opt == 0 means SUNDIALS function allocates memory so check if
 *            returned NULL pointer
 *   opt == 1 means SUNDIALS function returns an integer value so check if
 *            retval < 0
 *   opt == 2 means function allocates memory so check if returned
 *            NULL pointer
 */

int check_retval(void *returnvalue, const char *funcname, int opt)
{
  int *retval;

  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */
  if (opt == 0 && returnvalue == NULL) {
    fprintf(stderr, "\nSUNDIALS_ERROR: %s(failed - returned NULL pointer\n\n",
	    funcname);
    return(1); }

  /* Check if retval < 0 */
  else if (opt == 1) {
    retval = (int *) returnvalue;
    if (*retval < 0) {
      fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with retval = %d\n\n",
	      funcname, *retval);
      return(1); }}

  /* Check if function returned NULL pointer - no memory allocated */
  else if (opt == 2 && returnvalue == NULL) {
    fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
	    funcname);
    return(1); }

  return(0);
}