1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
/*
* -----------------------------------------------------------------
* Programmer(s): Jean M. Sexton @ SMU
* Slaven Peles @ LLNL
* -----------------------------------------------------------------
* Based on work by Scott D. Cohen, Alan C. Hindmarsh, George Byrne,
* and Radu Serban @ LLNL
* -----------------------------------------------------------------
* SUNDIALS Copyright Start
* Copyright (c) 2002-2022, Lawrence Livermore National Security
* and Southern Methodist University.
* All rights reserved.
*
* See the top-level LICENSE and NOTICE files for details.
*
* SPDX-License-Identifier: BSD-3-Clause
* SUNDIALS Copyright End
* -----------------------------------------------------------------
* Example problem:
*
* The following is a simple example problem, with the program for
* its solution by CVODE. The problem is the semi-discrete
* form of the advection-diffusion equation in 1-D:
* du/dt = d^2 u / dx^2 + .5 du/dx
* on the interval 0 <= x <= 2, and the time interval 0 <= t <= 5.
* Homogeneous Dirichlet boundary conditions are posed, and the
* initial condition is the following:
* u(x,t=0) = x(2-x)exp(2x) .
* The PDE is discretized on a uniform grid of size MX+2 with
* central differencing, and with boundary values eliminated,
* leaving an ODE system of size NEQ = MX.
* This program solves the problem with the option for nonstiff
* systems: ADAMS method and fixed-point iteration.
* It uses scalar relative and absolute tolerances.
* Output is printed at t = .5, 1.0, ..., 5.
* Run statistics (optional outputs) are printed at the end.
*
* This example uses Hypre vector with "IJ" interface and MPI
* parallelization. User is expected to be familiar with the Hypre
* library.
*
* Execute with Number of Processors = N, with 1 <= N <= MX.
* -----------------------------------------------------------------
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <cvode/cvode.h> /* prototypes for CVODE fcts. */
#include <sundials/sundials_types.h> /* definition of realtype */
#include <sundials/sundials_math.h> /* definition of EXP */
#include <nvector/nvector_parhyp.h> /* nvector implementation */
#include "sunnonlinsol/sunnonlinsol_fixedpoint.h" /* access to the fixed point SUNNonlinearSolver */
#include <HYPRE.h>
#include <HYPRE_IJ_mv.h>
#include <mpi.h> /* MPI constants and types */
/* Problem Constants */
#define ZERO RCONST(0.0)
#define XMAX RCONST(2.0) /* domain boundary */
#define MX 10 /* mesh dimension */
#define NEQ MX /* number of equations */
#define ATOL RCONST(1.0e-5) /* scalar absolute tolerance */
#define T0 ZERO /* initial time */
#define T1 RCONST(0.5) /* first output time */
#define DTOUT RCONST(0.5) /* output time increment */
#define NOUT 10 /* number of output times */
/* Type : UserData
contains grid constants, parhyp machine parameters, work array. */
typedef struct {
realtype dx, hdcoef, hacoef;
int npes, my_pe;
MPI_Comm comm;
realtype z[100];
} *UserData;
/* Private Helper Functions */
static void SetIC(HYPRE_IJVector Uij, realtype dx, sunindextype my_length,
sunindextype my_base);
static void PrintIntro(int npes);
static void PrintData(realtype t, realtype umax, long int nst);
static void PrintFinalStats(void *cvode_mem);
/* Functions Called by the Solver */
static int f(realtype t, N_Vector u, N_Vector udot, void *user_data);
/* Private function to check function return values */
static int check_retval(void *returnvalue, const char *funcname, int opt, int id);
/***************************** Main Program ******************************/
int main(int argc, char *argv[])
{
realtype dx, reltol, abstol, t, tout, umax;
N_Vector u;
UserData data;
void *cvode_mem;
int iout, retval, my_pe, npes;
long int nst;
HYPRE_Int local_N, nperpe, nrem, my_base;
HYPRE_ParVector Upar; /* Declare HYPRE parallel vector */
HYPRE_IJVector Uij; /* Declare "IJ" interface to HYPRE vector */
SUNNonlinearSolver NLS;
SUNContext sunctx;
MPI_Comm comm;
u = NULL;
data = NULL;
cvode_mem = NULL;
/* Get processor number, total number of pe's, and my_pe. */
MPI_Init(&argc, &argv);
comm = MPI_COMM_WORLD;
MPI_Comm_size(comm, &npes);
MPI_Comm_rank(comm, &my_pe);
/* Create SUNDIALS context */
retval = SUNContext_Create(&comm, &sunctx);
if (check_retval(&retval, "SUNContex_Create", 1, my_pe)) MPI_Abort(comm, 1);
/* Set partitioning. */
nperpe = NEQ/npes;
nrem = NEQ - npes*nperpe;
local_N = (my_pe < nrem) ? nperpe+1 : nperpe;
my_base = (my_pe < nrem) ? my_pe*local_N : my_pe*nperpe + nrem;
/* Allocate hypre vector */
HYPRE_IJVectorCreate(comm, my_base, my_base + local_N - 1, &Uij);
HYPRE_IJVectorSetObjectType(Uij, HYPRE_PARCSR);
HYPRE_IJVectorInitialize(Uij);
/* Allocate user defined data */
data = (UserData) malloc(sizeof *data); /* Allocate data memory */
if(check_retval((void *)data, "malloc", 2, my_pe)) MPI_Abort(comm, 1);
data->comm = comm;
data->npes = npes;
data->my_pe = my_pe;
reltol = ZERO; /* Set the tolerances */
abstol = ATOL;
dx = data->dx = XMAX/((realtype)(MX+1)); /* Set grid coefficients in data */
data->hdcoef = RCONST(1.0)/(dx*dx);
data->hacoef = RCONST(0.5)/(RCONST(2.0)*dx);
/* Initialize solution vector. */
SetIC(Uij, dx, local_N, my_base);
HYPRE_IJVectorAssemble(Uij);
HYPRE_IJVectorGetObject(Uij, (void**) &Upar);
u = N_VMake_ParHyp(Upar, sunctx); /* Create wrapper u around hypre vector */
if(check_retval((void *)u, "N_VNew", 0, my_pe)) MPI_Abort(comm, 1);
/* Call CVodeCreate to create the solver memory and specify the
* Adams-Moulton LMM */
cvode_mem = CVodeCreate(CV_ADAMS, sunctx);
if(check_retval((void *)cvode_mem, "CVodeCreate", 0, my_pe)) MPI_Abort(comm, 1);
retval = CVodeSetUserData(cvode_mem, data);
if(check_retval(&retval, "CVodeSetUserData", 1, my_pe)) MPI_Abort(comm, 1);
/* Call CVodeInit to initialize the integrator memory and specify the
* user's right hand side function in u'=f(t,u), the inital time T0, and
* the initial dependent variable vector u. */
retval = CVodeInit(cvode_mem, f, T0, u);
if(check_retval(&retval, "CVodeInit", 1, my_pe)) return(1);
/* Call CVodeSStolerances to specify the scalar relative tolerance
* and scalar absolute tolerances */
retval = CVodeSStolerances(cvode_mem, reltol, abstol);
if (check_retval(&retval, "CVodeSStolerances", 1, my_pe)) return(1);
/* create fixed point nonlinear solver object */
NLS = SUNNonlinSol_FixedPoint(u, 0, sunctx);
if(check_retval((void *)NLS, "SUNNonlinSol_FixedPoint", 0, my_pe)) return(1);
/* attach nonlinear solver object to CVode */
retval = CVodeSetNonlinearSolver(cvode_mem, NLS);
if(check_retval(&retval, "CVodeSetNonlinearSolver", 1, my_pe)) return(1);
if (my_pe == 0) PrintIntro(npes);
umax = N_VMaxNorm(u);
if (my_pe == 0) {
t = T0;
PrintData(t, umax, 0);
}
/* In loop over output points, call CVode, print results, test for error */
for (iout=1, tout=T1; iout <= NOUT; iout++, tout += DTOUT) {
retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
if(check_retval(&retval, "CVode", 1, my_pe)) break;
umax = N_VMaxNorm(u);
retval = CVodeGetNumSteps(cvode_mem, &nst);
check_retval(&retval, "CVodeGetNumSteps", 1, my_pe);
if (my_pe == 0) PrintData(t, umax, nst);
}
if (my_pe == 0)
PrintFinalStats(cvode_mem); /* Print some final statistics */
N_VDestroy(u); /* Free hypre vector wrapper */
HYPRE_IJVectorDestroy(Uij); /* Free the underlying hypre vector */
CVodeFree(&cvode_mem); /* Free the integrator memory */
SUNNonlinSolFree(NLS); /* Free the nonlinear solver */
free(data); /* Free user data */
SUNContext_Free(&sunctx); /* Free context */
MPI_Finalize();
return(0);
}
/************************ Private Helper Functions ***********************/
/* Set initial conditions in u vector */
static void SetIC(HYPRE_IJVector Uij, realtype dx, sunindextype my_length,
sunindextype my_base)
{
int i;
HYPRE_Int *iglobal;
realtype x;
realtype *udata;
/* Set pointer to data array and get local length of u. */
udata = (realtype*) malloc(my_length*sizeof(realtype));
iglobal = (HYPRE_Int*) malloc(my_length*sizeof(HYPRE_Int));
/* Load initial profile into u vector */
for (i = 0; i < my_length; i++) {
iglobal[i] = my_base + i;
x = (iglobal[i] + 1)*dx;
udata[i] = x*(XMAX - x)*SUNRexp(RCONST(2.0)*x);
}
HYPRE_IJVectorSetValues(Uij, my_length, iglobal, udata);
free(iglobal);
free(udata);
}
/* Print problem introduction */
static void PrintIntro(int npes)
{
printf("\n 1-D advection-diffusion equation, mesh size =%3d \n", MX);
printf("\n Number of PEs = %3d \n\n", npes);
return;
}
/* Print data */
static void PrintData(realtype t, realtype umax, long int nst)
{
#if defined(SUNDIALS_EXTENDED_PRECISION)
printf("At t = %4.2Lf max.norm(u) =%14.6Le nst =%4ld \n", t, umax, nst);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
printf("At t = %4.2f max.norm(u) =%14.6e nst =%4ld \n", t, umax, nst);
#else
printf("At t = %4.2f max.norm(u) =%14.6e nst =%4ld \n", t, umax, nst);
#endif
return;
}
/* Print some final statistics located in the iopt array */
static void PrintFinalStats(void *cvode_mem)
{
long int nst, nfe, nni, ncfn, netf;
int retval;
retval = CVodeGetNumSteps(cvode_mem, &nst);
check_retval(&retval, "CVodeGetNumSteps", 1, 0);
retval = CVodeGetNumRhsEvals(cvode_mem, &nfe);
check_retval(&retval, "CVodeGetNumRhsEvals", 1, 0);
retval = CVodeGetNumErrTestFails(cvode_mem, &netf);
check_retval(&retval, "CVodeGetNumErrTestFails", 1, 0);
retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
check_retval(&retval, "CVodeGetNumNonlinSolvIters", 1, 0);
retval = CVodeGetNumNonlinSolvConvFails(cvode_mem, &ncfn);
check_retval(&retval, "CVodeGetNumNonlinSolvConvFails", 1, 0);
printf("\nFinal Statistics: \n\n");
printf("nst = %-6ld nfe = %-6ld ", nst, nfe);
printf("nni = %-6ld ncfn = %-6ld netf = %ld\n \n", nni, ncfn, netf);
}
/***************** Function Called by the Solver ***********************/
/* f routine. Compute f(t,u). */
static int f(realtype t, N_Vector u, N_Vector udot, void *user_data)
{
realtype ui, ult, urt, hordc, horac, hdiff, hadv;
realtype *udata, *udotdata, *z;
int i;
int npes, my_pe, my_length, my_pe_m1, my_pe_p1, last_pe;
UserData data;
MPI_Status status;
MPI_Comm comm;
HYPRE_ParVector uhyp;
HYPRE_ParVector udothyp;
/* Extract hypre vectors */
uhyp = N_VGetVector_ParHyp(u);
udothyp = N_VGetVector_ParHyp(udot);
/* Access hypre vectors local data */
udata = hypre_VectorData(hypre_ParVectorLocalVector(uhyp));
udotdata = hypre_VectorData(hypre_ParVectorLocalVector(udothyp));
/* Extract needed problem constants from data */
data = (UserData) user_data;
hordc = data->hdcoef;
horac = data->hacoef;
/* Extract parameters for parhyp computation. */
comm = data->comm;
npes = data->npes; /* Number of processes */
my_pe = data->my_pe; /* Current process number */
my_length = hypre_ParVectorLastIndex(uhyp) /* Local length of uhyp */
- hypre_ParVectorFirstIndex(uhyp) + 1;
z = data->z;
/* Compute related parameters. */
my_pe_m1 = my_pe - 1;
my_pe_p1 = my_pe + 1;
last_pe = npes - 1;
/* Store local segment of u in the working array z. */
for (i = 1; i <= my_length; i++)
z[i] = udata[i - 1];
/* Pass needed data to processes before and after current process. */
if (my_pe != 0)
MPI_Send(&z[1], 1, MPI_SUNREALTYPE, my_pe_m1, 0, comm);
if (my_pe != last_pe)
MPI_Send(&z[my_length], 1, MPI_SUNREALTYPE, my_pe_p1, 0, comm);
/* Receive needed data from processes before and after current process. */
if (my_pe != 0)
MPI_Recv(&z[0], 1, MPI_SUNREALTYPE, my_pe_m1, 0, comm, &status);
else
z[0] = ZERO;
if (my_pe != last_pe)
MPI_Recv(&z[my_length+1], 1, MPI_SUNREALTYPE, my_pe_p1, 0, comm,
&status);
else
z[my_length + 1] = ZERO;
/* Loop over all grid points in current process. */
for (i=1; i<=my_length; i++) {
/* Extract u at x_i and two neighboring points */
ui = z[i];
ult = z[i-1];
urt = z[i+1];
/* Set diffusion and advection terms and load into udot */
hdiff = hordc*(ult - RCONST(2.0)*ui + urt);
hadv = horac*(urt - ult);
udotdata[i-1] = hdiff + hadv;
}
return(0);
}
/* Check function return value...
opt == 0 means SUNDIALS function allocates memory so check if
returned NULL pointer
opt == 1 means SUNDIALS function returns an integer value so check if
retval < 0
opt == 2 means function allocates memory so check if returned
NULL pointer */
static int check_retval(void *returnvalue, const char *funcname, int opt, int id)
{
int *retval;
/* Check if SUNDIALS function returned NULL pointer - no memory allocated */
if (opt == 0 && returnvalue == NULL) {
fprintf(stderr, "\nSUNDIALS_ERROR(%d): %s() failed - returned NULL pointer\n\n",
id, funcname);
return(1); }
/* Check if retval < 0 */
else if (opt == 1) {
retval = (int *) returnvalue;
if (*retval < 0) {
fprintf(stderr, "\nSUNDIALS_ERROR(%d): %s() failed with retval = %d\n\n",
id, funcname, *retval);
return(1); }}
/* Check if function returned NULL pointer - no memory allocated */
else if (opt == 2 && returnvalue == NULL) {
fprintf(stderr, "\nMEMORY_ERROR(%d): %s() failed - returned NULL pointer\n\n",
id, funcname);
return(1); }
return(0);
}
|