File: cvKrylovDemo_prec.c

package info (click to toggle)
sundials 6.4.1%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 79,368 kB
  • sloc: ansic: 218,700; f90: 62,503; cpp: 61,511; fortran: 5,166; python: 4,642; sh: 4,114; makefile: 562; perl: 123
file content (1169 lines) | stat: -rw-r--r-- 37,861 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
/* --------------------------------------------------------------------
 * Programmer(s): Scott D. Cohen, Alan C. Hindmarsh and
 *                Radu Serban @ LLNL
 * --------------------------------------------------------------------
 * SUNDIALS Copyright Start
 * Copyright (c) 2002-2022, Lawrence Livermore National Security
 * and Southern Methodist University.
 * All rights reserved.
 *
 * See the top-level LICENSE and NOTICE files for details.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 * SUNDIALS Copyright End
 * --------------------------------------------------------------------
 * Demonstration program for CVODE - Krylov linear solver.
 * ODE system from ns-species interaction PDE in 2 dimensions.
 *
 * This program solves a stiff ODE system that arises from a system
 * of partial differential equations. The PDE system is a food web
 * population model, with predator-prey interaction and diffusion on
 * the unit square in two dimensions. The dependent variable vector is:
 *
 *        1   2        ns
 *  c = (c , c , ..., c  )
 *
 * and the PDEs are as follows:
 *
 *    i               i      i
 *  dc /dt  =  d(i)*(c    + c   )  +  f (x,y,c)  (i=1,...,ns)
 *                    xx     yy        i
 *
 * where
 *
 *                 i          ns         j
 *  f (x,y,c)  =  c *(b(i) + sum a(i,j)*c )
 *   i                       j=1
 *
 * The number of species is ns = 2*np, with the first np being prey
 * and the last np being predators. The coefficients a(i,j), b(i),
 * d(i) are:
 *
 *  a(i,i) = -a  (all i)
 *  a(i,j) = -g  (i <= np, j > np)
 *  a(i,j) =  e  (i > np, j <= np)
 *  b(i) =  b*(1 + alpha*x*y)  (i <= np)
 *  b(i) = -b*(1 + alpha*x*y)  (i > np)
 *  d(i) = Dprey  (i <= np)
 *  d(i) = Dpred  (i > np)
 *
 * The spatial domain is the unit square. The final time is 10. The
 * boundary conditions are: normal derivative = 0. A polynomial in x
 * and y is used to set the initial conditions.
 *
 * The PDEs are discretized by central differencing on an MX by MY
 * mesh.
 *
 * The resulting ODE system is stiff.
 *
 * The ODE system is solved using Newton iteration and the
 * SUNLinSol_SPGMR linear solver (scaled preconditioned GMRES).
 *
 * The preconditioner matrix used is the product of two matrices:
 * (1) A matrix, only defined implicitly, based on a fixed number of
 * Gauss-Seidel iterations using the diffusion terms only. (2) A
 * block-diagonal matrix based on the partial derivatives of the
 * interaction terms f only, using block-grouping (computing only a
 * subset of the ns by ns blocks).
 *
 * Four different runs are made for this problem. The product
 * preconditoner is applied on the left and on the right. In each
 * case, both the modified and classical Gram-Schmidt options are
 * tested. In the series of runs, CVodeInit, SUNLinSol_SPGMR, and
 * CVSetLinearSolver are called only for the first run, whereas
 * CVodeReInit, SUNLinSol_SPGMRSetPrecType, and
 * SUNLinSol_SPGMRSetGSType are called for each of the remaining
 * three runs.
 *
 * A problem description, performance statistics at selected output
 * times, and final statistics are written to standard output. On
 * the first run, solution values are also printed at output times.
 * Error and warning messages are written to standard error, but
 * there should be no such messages.
 *
 * Note: This program requires the dense linear solver functions
 * SUNDlsMat_newDenseMat, SUNDlsMat_newIndexArray,
 * SUNDlsMat_denseAddIdentity, SUNDlsMat_denseGETRF,
 * SUNDlsMat_denseGETRS, SUNDlsMat_destroyMat and
 * SUNDlsMat_destroyArray.
 *
 * Note: This program assumes the sequential implementation for the
 * type N_Vector and uses the N_VGetArrayPointer function to gain
 * access to the contiguous array of components of an N_Vector.
 * --------------------------------------------------------------------
 * Reference: Peter N. Brown and Alan C. Hindmarsh, Reduced Storage
 * Matrix Methods in Stiff ODE Systems, J. Appl. Math. & Comp., 31
 * (1989), pp. 40-91.  Also available as Lawrence Livermore National
 * Laboratory Report UCRL-95088, Rev. 1, June 1987.
 * --------------------------------------------------------------------
 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <cvode/cvode.h>                /* main integrator header file                 */
#include <sunlinsol/sunlinsol_spgmr.h>  /* access to SPGMR SUNLinearSolver             */
#include <nvector/nvector_serial.h>     /* serial N_Vector types, fct. and macros      */
#include <sundials/sundials_dense.h>    /* use generic DENSE solver in preconditioning */
#include <sundials/sundials_types.h>    /* definition of realtype                      */

/* helpful macros */

#ifndef MAX
#define MAX(A, B) ((A) > (B) ? (A) : (B))
#endif

#ifndef SQR
#define SQR(A) ((A)*(A))
#endif

/* Constants */

#define ZERO RCONST(0.0)
#define ONE  RCONST(1.0)

/* Problem Specification Constants */

#define AA    ONE               /* AA = a */
#define EE    RCONST(1.0e4)     /* EE = e */
#define GG    RCONST(0.5e-6)    /* GG = g */
#define BB    ONE               /* BB = b */
#define DPREY ONE
#define DPRED RCONST(0.5)
#define ALPH  ONE
#define NP    3
#define NS    (2*NP)

/* Method Constants */

#define MX    6
#define MY    6
#define MXNS  (MX*NS)
#define AX    ONE
#define AY    ONE
#define DX    (AX/(realtype)(MX-1))
#define DY    (AY/(realtype)(MY-1))
#define MP    NS
#define MQ    (MX*MY)
#define MXMP  (MX*MP)
#define NGX   2
#define NGY   2
#define NGRP  (NGX*NGY)
#define ITMAX 5

/* CVodeInit Constants */

#define NEQ  (NS*MX*MY)
#define T0   ZERO
#define RTOL RCONST(1.0e-5)
#define ATOL RCONST(1.0e-5)

/* Spgmr/CVLS Constants */

#define MAXL 0     /* => use default = MIN(NEQ, 5)            */
#define DELT ZERO  /* => use default = 0.05                   */

/* Output Constants */

#define T1        RCONST(1.0e-8)
#define TOUT_MULT RCONST(10.0)
#define DTOUT     ONE
#define NOUT      18

/* Note: The value for species i at mesh point (j,k) is stored in */
/* component number (i-1) + j*NS + k*NS*MX of an N_Vector,        */
/* where 1 <= i <= NS, 0 <= j < MX, 0 <= k < MY.                  */

/* Structure for user data */

typedef struct {
  realtype **P[NGRP];
  sunindextype *pivot[NGRP];
  int ns, mxns;
  int mp, mq, mx, my, ngrp, ngx, ngy, mxmp;
  int jgx[NGX+1], jgy[NGY+1], jigx[MX], jigy[MY];
  int jxr[NGX], jyr[NGY];
  realtype acoef[NS][NS], bcoef[NS], diff[NS];
  realtype cox[NS], coy[NS], dx, dy, srur;
  realtype fsave[NEQ];
  N_Vector tmp;
  N_Vector rewt;
  void *cvode_mem;
} *WebData;

/* Private Helper Functions */

static WebData AllocUserData(void);
static void InitUserData(WebData wdata);
static void SetGroups(int m, int ng, int jg[], int jig[], int jr[]);
static void CInit(N_Vector c, WebData wdata);
static void PrintIntro(void);
static void PrintHeader(int jpre, int gstype);
static void PrintAllSpecies(N_Vector c, int ns, int mxns, realtype t);
static void PrintOutput(void *cvode_mem, realtype t);
static void PrintFinalStats(void *cvode_mem);
static void FreeUserData(WebData wdata);
static void WebRates(realtype x, realtype y, realtype t, realtype c[],
		     realtype rate[], WebData wdata);
static void fblock (realtype t, realtype cdata[], int jx, int jy,
		    realtype cdotdata[], WebData wdata);
static void GSIter(realtype gamma, N_Vector z, N_Vector x, WebData wdata);

/* Small Vector Kernels */

static void v_inc_by_prod(realtype u[], realtype v[], realtype w[], int n);
static void v_sum_prods(realtype u[], realtype p[], realtype q[], realtype v[],
                        realtype w[], int n);
static void v_prod(realtype u[], realtype v[], realtype w[], int n);
static void v_zero(realtype u[], int n);

/* Functions Called By The Solver */

static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data);

static int Precond(realtype tn, N_Vector c, N_Vector fc, booleantype jok,
                   booleantype *jcurPtr, realtype gamma, void *user_data);

static int PSolve(realtype tn, N_Vector c, N_Vector fc, N_Vector r, N_Vector z,
                  realtype gamma, realtype delta, int lr, void *user_data);

/* Private function to check function return values */

static int check_retval(void *returnvalue, const char *funcname, int opt);

/* SUNDIALS context */
static SUNContext sunctx = NULL;

/* Implementation */

int main()
{
  realtype abstol=ATOL, reltol=RTOL, t, tout;
  N_Vector c;
  WebData wdata;
  SUNLinearSolver LS;
  void *cvode_mem;
  booleantype firstrun;
  int jpre, gstype, retval;
  int ns, mxns, iout;

  c = NULL;
  wdata = NULL;
  LS = NULL;
  cvode_mem = NULL;

  /* Create the SUNDIALS context */
  retval = SUNContext_Create(NULL, &sunctx);
  if(check_retval(&retval, "SUNContext_Create", 1)) return(1);

  /* Initializations */
  c = N_VNew_Serial(NEQ, sunctx);
  if(check_retval((void *)c, "N_VNew_Serial", 0)) return(1);
  wdata = AllocUserData();
  if(check_retval((void *)wdata, "AllocUserData", 2)) return(1);
  InitUserData(wdata);
  ns = wdata->ns;
  mxns = wdata->mxns;

  /* Print problem description */
  PrintIntro();

  /* Loop over jpre and gstype (four cases) */
  for (jpre = SUN_PREC_LEFT; jpre <= SUN_PREC_RIGHT; jpre++) {
    for (gstype = SUN_MODIFIED_GS; gstype <= SUN_CLASSICAL_GS; gstype++) {

      /* Initialize c and print heading */
      CInit(c, wdata);
      PrintHeader(jpre, gstype);

      /* Call CVodeInit or CVodeReInit, then SUNLinSol_SPGMR to set up problem */

      firstrun = (jpre == SUN_PREC_LEFT) && (gstype == SUN_MODIFIED_GS);
      if (firstrun) {
        cvode_mem = CVodeCreate(CV_BDF, sunctx);
        if(check_retval((void *)cvode_mem, "CVodeCreate", 0)) return(1);

        wdata->cvode_mem = cvode_mem;

        retval = CVodeSetUserData(cvode_mem, wdata);
        if(check_retval(&retval, "CVodeSetUserData", 1)) return(1);

        retval = CVodeInit(cvode_mem, f, T0, c);
        if(check_retval(&retval, "CVodeInit", 1)) return(1);

        retval = CVodeSStolerances(cvode_mem, reltol, abstol);
        if(check_retval(&retval, "CVodeSStolerances", 1)) return(1);

        LS = SUNLinSol_SPGMR(c, jpre, MAXL, sunctx);
        if(check_retval((void *)LS, "SUNLinSol_SPGMR", 0)) return(1);

        retval = CVodeSetLinearSolver(cvode_mem, LS, NULL);
        if(check_retval(&retval, "CVodeSetLinearSolver", 1)) return 1;

        retval = SUNLinSol_SPGMRSetGSType(LS, gstype);
        if(check_retval(&retval, "SUNLinSol_SPGMRSetGSType", 1)) return(1);

        retval = CVodeSetEpsLin(cvode_mem, DELT);
        if(check_retval(&retval, "CVodeSetEpsLin", 1)) return(1);

        retval = CVodeSetPreconditioner(cvode_mem, Precond, PSolve);
        if(check_retval(&retval, "CVodeSetPreconditioner", 1)) return(1);

      } else {

        retval = CVodeReInit(cvode_mem, T0, c);
        if(check_retval(&retval, "CVodeReInit", 1)) return(1);

        retval = SUNLinSol_SPGMRSetPrecType(LS, jpre);
        check_retval(&retval, "SUNLinSol_SPGMRSetPrecType", 1);
        retval = SUNLinSol_SPGMRSetGSType(LS, gstype);
        if(check_retval(&retval, "SUNLinSol_SPGMRSetGSType", 1)) return(1);

      }

      /* Print initial values */
      if (firstrun) PrintAllSpecies(c, ns, mxns, T0);

      /* Loop over output points, call CVode, print sample solution values. */
      tout = T1;
      for (iout = 1; iout <= NOUT; iout++) {
        retval = CVode(cvode_mem, tout, c, &t, CV_NORMAL);
        PrintOutput(cvode_mem, t);
        if (firstrun && (iout % 3 == 0)) PrintAllSpecies(c, ns, mxns, t);
        if(check_retval(&retval, "CVode", 1)) break;
        if (tout > RCONST(0.9)) tout += DTOUT; else tout *= TOUT_MULT;
      }

      /* Print final statistics, and loop for next case */
      PrintFinalStats(cvode_mem);

    }
  }

  /* Free all memory */
  CVodeFree(&cvode_mem);
  N_VDestroy(c);
  SUNLinSolFree(LS);
  FreeUserData(wdata);

  SUNContext_Free(&sunctx);

  return(0);
}

static WebData AllocUserData(void)
{
  int i, ngrp = NGRP;
  sunindextype ns = NS;
  WebData wdata;

  wdata = (WebData) malloc(sizeof *wdata);
  for(i=0; i < ngrp; i++) {
    (wdata->P)[i] = SUNDlsMat_newDenseMat(ns, ns);
    (wdata->pivot)[i] = SUNDlsMat_newIndexArray(ns);
  }
  wdata->rewt = N_VNew_Serial(NEQ, sunctx);
  wdata->tmp = N_VNew_Serial(NEQ, sunctx);
  return(wdata);
}

static void InitUserData(WebData wdata)
{
  int i, j, ns;
  realtype *bcoef, *diff, *cox, *coy, dx, dy;
  realtype (*acoef)[NS];

  acoef = wdata->acoef;
  bcoef = wdata->bcoef;
  diff = wdata->diff;
  cox = wdata->cox;
  coy = wdata->coy;
  ns = wdata->ns = NS;

  for (j = 0; j < NS; j++) { for (i = 0; i < NS; i++) acoef[i][j] = 0.; }
  for (j = 0; j < NP; j++) {
    for (i = 0; i < NP; i++) {
      acoef[NP+i][j] = EE;
      acoef[i][NP+j] = -GG;
    }
    acoef[j][j] = -AA;
    acoef[NP+j][NP+j] = -AA;
    bcoef[j] = BB;
    bcoef[NP+j] = -BB;
    diff[j] = DPREY;
    diff[NP+j] = DPRED;
  }

  /* Set remaining problem parameters */

  wdata->mxns = MXNS;
  dx = wdata->dx = DX;
  dy = wdata->dy = DY;
  for (i = 0; i < ns; i++) {
    cox[i] = diff[i]/SQR(dx);
    coy[i] = diff[i]/SQR(dy);
  }

  /* Set remaining method parameters */

  wdata->mp = MP;
  wdata->mq = MQ;
  wdata->mx = MX;
  wdata->my = MY;
  wdata->srur = sqrt(UNIT_ROUNDOFF);
  wdata->mxmp = MXMP;
  wdata->ngrp = NGRP;
  wdata->ngx = NGX;
  wdata->ngy = NGY;
  SetGroups(MX, NGX, wdata->jgx, wdata->jigx, wdata->jxr);
  SetGroups(MY, NGY, wdata->jgy, wdata->jigy, wdata->jyr);
}

/*
 This routine sets arrays jg, jig, and jr describing
 a uniform partition of (0,1,2,...,m-1) into ng groups.
 The arrays set are:
   jg    = length ng+1 array of group boundaries.
           Group ig has indices j = jg[ig],...,jg[ig+1]-1.
   jig   = length m array of group indices vs node index.
           Node index j is in group jig[j].
   jr    = length ng array of indices representing the groups.
           The index for group ig is j = jr[ig].
*/
static void SetGroups(int m, int ng, int jg[], int jig[], int jr[])
{
  int ig, j, len1, mper, ngm1;

  mper = m/ng; /* does integer division */
  for (ig=0; ig < ng; ig++) jg[ig] = ig*mper;
  jg[ng] = m;

  ngm1 = ng - 1;
  len1 = ngm1*mper;
  for (j = 0; j < len1; j++) jig[j] = j/mper;
  for (j = len1; j < m; j++) jig[j] = ngm1;

  for (ig = 0; ig < ngm1; ig++) jr[ig] = ((2*ig+1)*mper-1)/2;
  jr[ngm1] = (ngm1*mper+m-1)/2;
}

/* This routine computes and loads the vector of initial values. */
static void CInit(N_Vector c, WebData wdata)
{
  int jx, jy, ns, mxns, ioff, iyoff, i, ici;
  realtype argx, argy, x, y, dx, dy, x_factor, y_factor, *cdata;

  cdata = N_VGetArrayPointer(c);
  ns = wdata->ns;
  mxns = wdata->mxns;
  dx = wdata->dx;
  dy = wdata->dy;

  x_factor = RCONST(4.0)/SQR(AX);
  y_factor = RCONST(4.0)/SQR(AY);
  for (jy = 0; jy < MY; jy++) {
    y = jy*dy;
    argy = SQR(y_factor*y*(AY-y));
    iyoff = mxns*jy;
    for (jx = 0; jx < MX; jx++) {
      x = jx*dx;
      argx = SQR(x_factor*x*(AX-x));
      ioff = iyoff + ns*jx;
      for (i = 1; i <= ns; i++) {
        ici = ioff + i-1;
        cdata[ici] = RCONST(10.0) + i*argx*argy;
      }
    }
  }
}

static void PrintIntro(void)
{
  printf("\n\nDemonstration program for CVODE - SPGMR linear solver\n\n");
  printf("Food web problem with ns species, ns = %d\n", NS);
  printf("Predator-prey interaction and diffusion on a 2-D square\n\n");
#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("Matrix parameters: a = %.2Lg   e = %.2Lg   g = %.2Lg\n",
         AA, EE, GG);
  printf("b parameter = %.2Lg\n", BB);
  printf("Diffusion coefficients: Dprey = %.2Lg   Dpred = %.2Lg\n",
         DPREY, DPRED);
  printf("Rate parameter alpha = %.2Lg\n\n", ALPH);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("Matrix parameters: a = %.2g   e = %.2g   g = %.2g\n",
         AA, EE, GG);
  printf("b parameter = %.2g\n", BB);
  printf("Diffusion coefficients: Dprey = %.2g   Dpred = %.2g\n",
         DPREY, DPRED);
  printf("Rate parameter alpha = %.2g\n\n", ALPH);
#else
  printf("Matrix parameters: a = %.2g   e = %.2g   g = %.2g\n",
         AA, EE, GG);
  printf("b parameter = %.2g\n", BB);
  printf("Diffusion coefficients: Dprey = %.2g   Dpred = %.2g\n",
         DPREY, DPRED);
  printf("Rate parameter alpha = %.2g\n\n", ALPH);
#endif
  printf("Mesh dimensions (mx,my) are %d, %d.  ", MX, MY);
  printf("Total system size is neq = %d \n\n", NEQ);
#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("Tolerances: reltol = %.2Lg, abstol = %.2Lg \n\n",
         RTOL, ATOL);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("Tolerances: reltol = %.2g, abstol = %.2g \n\n",
         RTOL, ATOL);
#else
  printf("Tolerances: reltol = %.2g, abstol = %.2g \n\n",
         RTOL, ATOL);
#endif
  printf("Preconditioning uses a product of:\n");
  printf("  (1) Gauss-Seidel iterations with ");
  printf("itmax = %d iterations, and\n", ITMAX);
  printf("  (2) interaction-only block-diagonal matrix ");
  printf("with block-grouping\n");
  printf("  Number of diagonal block groups = ngrp = %d", NGRP);
  printf("  (ngx by ngy, ngx = %d, ngy = %d)\n", NGX, NGY);
  printf("\n\n--------------------------------------------------------------");
  printf("--------------\n");
}

static void PrintHeader(int jpre, int gstype)
{
  if(jpre == SUN_PREC_LEFT)
    printf("\n\nPreconditioner type is           jpre = %s\n", "SUN_PREC_LEFT");
  else
    printf("\n\nPreconditioner type is           jpre = %s\n", "SUN_PREC_RIGHT");

  if(gstype == SUN_MODIFIED_GS)
    printf("\nGram-Schmidt method type is    gstype = %s\n\n\n", "SUN_MODIFIED_GS");
  else
    printf("\nGram-Schmidt method type is    gstype = %s\n\n\n", "SUN_CLASSICAL_GS");
}

static void PrintAllSpecies(N_Vector c, int ns, int mxns, realtype t)
{
  int i, jx ,jy;
  realtype *cdata;

  cdata = N_VGetArrayPointer(c);
#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("c values at t = %Lg:\n\n", t);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("c values at t = %g:\n\n", t);
#else
  printf("c values at t = %g:\n\n", t);
#endif
  for (i=1; i <= ns; i++) {
    printf("Species %d\n", i);
    for (jy=MY-1; jy >= 0; jy--) {
      for (jx=0; jx < MX; jx++) {
#if defined(SUNDIALS_EXTENDED_PRECISION)
        printf("%-10.6Lg", cdata[(i-1) + jx*ns + jy*mxns]);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
        printf("%-10.6g", cdata[(i-1) + jx*ns + jy*mxns]);
#else
        printf("%-10.6g", cdata[(i-1) + jx*ns + jy*mxns]);
#endif
      }
      printf("\n");
    }
    printf("\n");
  }
}

static void PrintOutput(void *cvode_mem, realtype t)
{
  long int nst, nfe, nni;
  int qu, retval;
  realtype hu;

  retval = CVodeGetNumSteps(cvode_mem, &nst);
  check_retval(&retval, "CVodeGetNumSteps", 1);
  retval = CVodeGetNumRhsEvals(cvode_mem, &nfe);
  check_retval(&retval, "CVodeGetNumRhsEvals", 1);
  retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
  check_retval(&retval, "CVodeGetNumNonlinSolvIters", 1);
  retval = CVodeGetLastOrder(cvode_mem, &qu);
  check_retval(&retval, "CVodeGetLastOrder", 1);
  retval = CVodeGetLastStep(cvode_mem, &hu);
  check_retval(&retval, "CVodeGetLastStep", 1);

#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("t = %10.2Le  nst = %ld  nfe = %ld  nni = %ld", t, nst, nfe, nni);
  printf("  qu = %d  hu = %11.2Le\n\n", qu, hu);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("t = %10.2e  nst = %ld  nfe = %ld  nni = %ld", t, nst, nfe, nni);
  printf("  qu = %d  hu = %11.2e\n\n", qu, hu);
#else
  printf("t = %10.2e  nst = %ld  nfe = %ld  nni = %ld", t, nst, nfe, nni);
  printf("  qu = %d  hu = %11.2e\n\n", qu, hu);
#endif
}

static void PrintFinalStats(void *cvode_mem)
{
  long int lenrw, leniw ;
  long int lenrwLS, leniwLS;
  long int nst, nfe, nsetups, nni, ncfn, netf;
  long int nli, npe, nps, ncfl, nfeLS;
  int retval;
  realtype avdim;

  retval = CVodeGetWorkSpace(cvode_mem, &lenrw, &leniw);
  check_retval(&retval, "CVodeGetWorkSpace", 1);
  retval = CVodeGetNumSteps(cvode_mem, &nst);
  check_retval(&retval, "CVodeGetNumSteps", 1);
  retval = CVodeGetNumRhsEvals(cvode_mem, &nfe);
  check_retval(&retval, "CVodeGetNumRhsEvals", 1);
  retval = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);
  check_retval(&retval, "CVodeGetNumLinSolvSetups", 1);
  retval = CVodeGetNumErrTestFails(cvode_mem, &netf);
  check_retval(&retval, "CVodeGetNumErrTestFails", 1);
  retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
  check_retval(&retval, "CVodeGetNumNonlinSolvIters", 1);
  retval = CVodeGetNumNonlinSolvConvFails(cvode_mem, &ncfn);
  check_retval(&retval, "CVodeGetNumNonlinSolvConvFails", 1);

  retval = CVodeGetLinWorkSpace(cvode_mem, &lenrwLS, &leniwLS);
  check_retval(&retval, "CVodeGetLinWorkSpace", 1);
  retval = CVodeGetNumLinIters(cvode_mem, &nli);
  check_retval(&retval, "CVodeGetNumLinIters", 1);
  retval = CVodeGetNumPrecEvals(cvode_mem, &npe);
  check_retval(&retval, "CVodeGetNumPrecEvals", 1);
  retval = CVodeGetNumPrecSolves(cvode_mem, &nps);
  check_retval(&retval, "CVodeGetNumPrecSolves", 1);
  retval = CVodeGetNumLinConvFails(cvode_mem, &ncfl);
  check_retval(&retval, "CVodeGetNumLinConvFails", 1);
  retval = CVodeGetNumLinRhsEvals(cvode_mem, &nfeLS);
  check_retval(&retval, "CVodeGetNumLinRhsEvals", 1);

  printf("\n\n Final statistics for this run:\n\n");
  printf(" CVode real workspace length           = %4ld \n", lenrw);
  printf(" CVode integer workspace length        = %4ld \n", leniw);
  printf(" CVLS real workspace length            = %4ld \n", lenrwLS);
  printf(" CVLS integer workspace length         = %4ld \n", leniwLS);
  printf(" Number of steps                       = %4ld \n", nst);
  printf(" Number of f-s                         = %4ld \n", nfe);
  printf(" Number of f-s (SPGMR)                 = %4ld \n", nfeLS);
  printf(" Number of f-s (TOTAL)                 = %4ld \n", nfe + nfeLS);
  printf(" Number of setups                      = %4ld \n", nsetups);
  printf(" Number of nonlinear iterations        = %4ld \n", nni);
  printf(" Number of linear iterations           = %4ld \n", nli);
  printf(" Number of preconditioner evaluations  = %4ld \n", npe);
  printf(" Number of preconditioner solves       = %4ld \n", nps);
  printf(" Number of error test failures         = %4ld \n", netf);
  printf(" Number of nonlinear conv. failures    = %4ld \n", ncfn);
  printf(" Number of linear convergence failures = %4ld \n", ncfl);
  avdim = (nni > 0) ? ((realtype)nli)/((realtype)nni) : ZERO;
#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf(" Average Krylov subspace dimension     = %.3Lf \n", avdim);
#else
  printf(" Average Krylov subspace dimension     = %.3f \n", avdim);
#endif
  printf("\n\n--------------------------------------------------------------");
  printf("--------------\n");
  printf(    "--------------------------------------------------------------");
  printf("--------------\n");
}

static void FreeUserData(WebData wdata)
{
  int i, ngrp;

  ngrp = wdata->ngrp;
  for(i=0; i < ngrp; i++) {
    SUNDlsMat_destroyMat((wdata->P)[i]);
    SUNDlsMat_destroyArray((wdata->pivot)[i]);
  }
  N_VDestroy(wdata->rewt);
  N_VDestroy(wdata->tmp);
  free(wdata);
}

/*
 This routine computes the right-hand side of the ODE system and
 returns it in cdot. The interaction rates are computed by calls to WebRates,
 and these are saved in fsave for use in preconditioning.
*/
static int f(realtype t, N_Vector c, N_Vector cdot,void *user_data)
{
  int i, ic, ici, idxl, idxu, jx, ns, mxns, iyoff, jy, idyu, idyl;
  realtype dcxli, dcxui, dcyli, dcyui, x, y, *cox, *coy, *fsave, dx, dy;
  realtype *cdata, *cdotdata;
  WebData wdata;

  wdata = (WebData) user_data;
  cdata = N_VGetArrayPointer(c);
  cdotdata = N_VGetArrayPointer(cdot);

  mxns = wdata->mxns;
  ns = wdata->ns;
  fsave = wdata->fsave;
  cox = wdata->cox;
  coy = wdata->coy;
  mxns = wdata->mxns;
  dx = wdata->dx;
  dy = wdata->dy;

  for (jy = 0; jy < MY; jy++) {
    y = jy*dy;
    iyoff = mxns*jy;
    idyu = (jy == MY-1) ? -mxns : mxns;
    idyl = (jy == 0) ? -mxns : mxns;
    for (jx = 0; jx < MX; jx++) {
      x = jx*dx;
      ic = iyoff + ns*jx;
      /* Get interaction rates at one point (x,y). */
      WebRates(x, y, t, cdata+ic, fsave+ic, wdata);
      idxu = (jx == MX-1) ? -ns : ns;
      idxl = (jx == 0) ? -ns : ns;
      for (i = 1; i <= ns; i++) {
        ici = ic + i-1;
        /* Do differencing in y. */
        dcyli = cdata[ici] - cdata[ici-idyl];
        dcyui = cdata[ici+idyu] - cdata[ici];
        /* Do differencing in x. */
        dcxli = cdata[ici] - cdata[ici-idxl];
        dcxui = cdata[ici+idxu] - cdata[ici];
        /* Collect terms and load cdot elements. */
        cdotdata[ici] = coy[i-1]*(dcyui - dcyli) + cox[i-1]*(dcxui - dcxli) +
          fsave[ici];
      }
    }
  }

  return(0);
}

/*
  This routine computes the interaction rates for the species
  c_1, ... ,c_ns (stored in c[0],...,c[ns-1]), at one spatial point
  and at time t.
*/
static void WebRates(realtype x, realtype y, realtype t, realtype c[],
                     realtype rate[], WebData wdata)
{
  int i, j, ns;
  realtype fac, *bcoef;
  realtype (*acoef)[NS];

  ns = wdata->ns;
  acoef = wdata->acoef;
  bcoef = wdata->bcoef;

  for (i = 0; i < ns; i++)
    rate[i] = ZERO;

  for (j = 0; j < ns; j++)
    for (i = 0; i < ns; i++)
      rate[i] += c[j] * acoef[i][j];

  fac = ONE + ALPH*x*y;
  for (i = 0; i < ns; i++)
    rate[i] = c[i]*(bcoef[i]*fac + rate[i]);
}

/*
 This routine generates the block-diagonal part of the Jacobian
 corresponding to the interaction rates, multiplies by -gamma, adds
 the identity matrix, and calls SUNDlsMat_denseGETRF to do the LU decomposition of
 each diagonal block. The computation of the diagonal blocks uses
 the preset block and grouping information. One block per group is
 computed. The Jacobian elements are generated by difference
 quotients using calls to the routine fblock.

 This routine can be regarded as a prototype for the general case
 of a block-diagonal preconditioner. The blocks are of size mp, and
 there are ngrp=ngx*ngy blocks computed in the block-grouping scheme.
*/
static int Precond(realtype t, N_Vector c, N_Vector fc, booleantype jok,
                   booleantype *jcurPtr, realtype gamma, void *user_data)
{
  realtype ***P;
  sunindextype ier;
  sunindextype **pivot;
  int i, if0, if00, ig, igx, igy, j, jj, jx, jy;
  int *jxr, *jyr, ngrp, ngx, ngy, mxmp, mp, retval;
  realtype uround, fac, r, r0, save, srur;
  realtype *f1, *fsave, *cdata, *rewtdata;
  WebData wdata;
  void *cvode_mem;
  N_Vector rewt;

  wdata = (WebData) user_data;
  cvode_mem = wdata->cvode_mem;
  cdata = N_VGetArrayPointer(c);
  rewt = wdata->rewt;
  retval = CVodeGetErrWeights(cvode_mem, rewt);
  if(check_retval(&retval, "CVodeGetErrWeights", 1)) return(1);
  rewtdata = N_VGetArrayPointer(rewt);

  uround = UNIT_ROUNDOFF;

  P = wdata->P;
  pivot = wdata->pivot;
  jxr = wdata->jxr;
  jyr = wdata->jyr;
  mp = wdata->mp;
  srur = wdata->srur;
  ngrp = wdata->ngrp;
  ngx = wdata->ngx;
  ngy = wdata->ngy;
  mxmp = wdata->mxmp;
  fsave = wdata->fsave;

  /* Make mp calls to fblock to approximate each diagonal block of Jacobian.
     Here, fsave contains the base value of the rate vector and
     r0 is a minimum increment factor for the difference quotient. */

  f1 = N_VGetArrayPointer(wdata->tmp);

  fac = N_VWrmsNorm (fc, rewt);
  r0 = RCONST(1000.0)*fabs(gamma)*uround*NEQ*fac;
  if (r0 == ZERO) r0 = ONE;

  for (igy = 0; igy < ngy; igy++) {
    jy = jyr[igy];
    if00 = jy*mxmp;
    for (igx = 0; igx < ngx; igx++) {
      jx = jxr[igx];
      if0 = if00 + jx*mp;
      ig = igx + igy*ngx;
      /* Generate ig-th diagonal block */
      for (j = 0; j < mp; j++) {
        /* Generate the jth column as a difference quotient */
        jj = if0 + j;
        save = cdata[jj];
        r = MAX(srur*fabs(save),r0/rewtdata[jj]);
        cdata[jj] += r;
        fac = -gamma/r;
        fblock (t, cdata, jx, jy, f1, wdata);
        for (i = 0; i < mp; i++) {
          P[ig][j][i] = (f1[i] - fsave[if0+i])*fac;
        }
        cdata[jj] = save;
      }
    }
  }

  /* Add identity matrix and do LU decompositions on blocks. */

  for (ig = 0; ig < ngrp; ig++) {
    SUNDlsMat_denseAddIdentity(P[ig], mp);
    ier = SUNDlsMat_denseGETRF(P[ig], mp, mp, pivot[ig]);
    if (ier != 0) return(1);
  }

  *jcurPtr = SUNTRUE;
  return(0);
}

/*
  This routine computes one block of the interaction terms of the
  system, namely block (jx,jy), for use in preconditioning.
  Here jx and jy count from 0.
*/
static void fblock(realtype t, realtype cdata[], int jx, int jy,
                   realtype cdotdata[], WebData wdata)
{
  int iblok, ic;
  realtype x, y;

  iblok = jx + jy*(wdata->mx);
  y = jy*(wdata->dy);
  x = jx*(wdata->dx);
  ic = (wdata->ns)*(iblok);
  WebRates(x, y, t, cdata+ic, cdotdata, wdata);
}

/*
  This routine applies two inverse preconditioner matrices
  to the vector r, using the interaction-only block-diagonal Jacobian
  with block-grouping, denoted Jr, and Gauss-Seidel applied to the
  diffusion contribution to the Jacobian, denoted Jd.
  It first calls GSIter for a Gauss-Seidel approximation to
  ((I - gamma*Jd)-inverse)*r, and stores the result in z.
  Then it computes ((I - gamma*Jr)-inverse)*z, using LU factors of the
  blocks in P, and pivot information in pivot, and returns the result in z.
*/
static int PSolve(realtype tn, N_Vector c, N_Vector fc, N_Vector r, N_Vector z,
                  realtype gamma, realtype delta, int lr, void *user_data)
{
  realtype   ***P;
  sunindextype **pivot;
  int jx, jy, igx, igy, iv, ig, *jigx, *jigy, mx, my, ngx, mp;
  WebData wdata;

  wdata = (WebData) user_data;

  N_VScale(ONE, r, z);

  /* call GSIter for Gauss-Seidel iterations */

  GSIter(gamma, z, wdata->tmp, wdata);

  /* Do backsolves for inverse of block-diagonal preconditioner factor */

  P = wdata->P;
  pivot = wdata->pivot;
  mx = wdata->mx;
  my = wdata->my;
  ngx = wdata->ngx;
  mp = wdata->mp;
  jigx = wdata->jigx;
  jigy = wdata->jigy;

  iv = 0;
  for (jy = 0; jy < my; jy++) {
    igy = jigy[jy];
    for (jx = 0; jx < mx; jx++) {
      igx = jigx[jx];
      ig = igx + igy*ngx;
      SUNDlsMat_denseGETRS(P[ig], mp, pivot[ig], &(N_VGetArrayPointer(z)[iv]));
      iv += mp;
    }
  }

  return(0);
}

/*
  This routine performs ITMAX=5 Gauss-Seidel iterations to compute an
  approximation to (P-inverse)*z, where P = I - gamma*Jd, and
  Jd represents the diffusion contributions to the Jacobian.
  The answer is stored in z on return, and x is a temporary vector.
  The dimensions below assume a global constant NS >= ns.
  Some inner loops of length ns are implemented with the small
  vector kernels v_sum_prods, v_prod, v_inc_by_prod.
*/
static void GSIter(realtype gamma, N_Vector z, N_Vector x, WebData wdata)
{
  int jx, jy, mx, my, x_loc, y_loc;
  int ns, mxns, i, iyoff, ic, iter;
  realtype beta[NS], beta2[NS], cof1[NS], gam[NS], gam2[NS];
  realtype temp, *cox, *coy, *xd, *zd;

  xd = N_VGetArrayPointer(x);
  zd = N_VGetArrayPointer(z);
  ns = wdata->ns;
  mx = wdata->mx;
  my = wdata->my;
  mxns = wdata->mxns;
  cox = wdata->cox;
  coy = wdata->coy;

  /* Write matrix as P = D - L - U.
     Load local arrays beta, beta2, gam, gam2, and cof1. */

  for (i = 0; i < ns; i++) {
    temp = ONE/(ONE + RCONST(2.0)*gamma*(cox[i] + coy[i]));
    beta[i] = gamma*cox[i]*temp;
    beta2[i] = RCONST(2.0)*beta[i];
    gam[i] = gamma*coy[i]*temp;
    gam2[i] = RCONST(2.0)*gam[i];
    cof1[i] = temp;
  }

  /* Begin iteration loop.
     Load vector x with (D-inverse)*z for first iteration. */

  for (jy = 0; jy < my; jy++) {
    iyoff = mxns*jy;
    for (jx = 0; jx < mx; jx++) {
      ic = iyoff + ns*jx;
      v_prod(xd+ic, cof1, zd+ic, ns); /* x[ic+i] = cof1[i]z[ic+i] */
    }
  }
  N_VConst(ZERO, z);

  /* Looping point for iterations. */

  for (iter=1; iter <= ITMAX; iter++) {

    /* Calculate (D-inverse)*U*x if not the first iteration. */

    if (iter > 1) {
      for (jy=0; jy < my; jy++) {
        iyoff = mxns*jy;
        for (jx=0; jx < mx; jx++) { /* order of loops matters */
          ic = iyoff + ns*jx;
          x_loc = (jx == 0) ? 0 : ((jx == mx-1) ? 2 : 1);
          y_loc = (jy == 0) ? 0 : ((jy == my-1) ? 2 : 1);
          switch (3*y_loc+x_loc) {
          case 0 :
            /* jx == 0, jy == 0 */
            /* x[ic+i] = beta2[i]x[ic+ns+i] + gam2[i]x[ic+mxns+i] */
            v_sum_prods(xd+ic, beta2, xd+ic+ns, gam2, xd+ic+mxns, ns);
            break;
          case 1 :
            /* 1 <= jx <= mx-2, jy == 0 */
            /* x[ic+i] = beta[i]x[ic+ns+i] + gam2[i]x[ic+mxns+i] */
            v_sum_prods(xd+ic, beta, xd+ic+ns, gam2, xd+ic+mxns, ns);
            break;
          case 2 :
            /* jx == mx-1, jy == 0 */
            /* x[ic+i] = gam2[i]x[ic+mxns+i] */
            v_prod(xd+ic, gam2, xd+ic+mxns, ns);
            break;
          case 3 :
            /* jx == 0, 1 <= jy <= my-2 */
            /* x[ic+i] = beta2[i]x[ic+ns+i] + gam[i]x[ic+mxns+i] */
            v_sum_prods(xd+ic, beta2, xd+ic+ns, gam, xd+ic+mxns, ns);
            break;
          case 4 :
            /* 1 <= jx <= mx-2, 1 <= jy <= my-2 */
            /* x[ic+i] = beta[i]x[ic+ns+i] + gam[i]x[ic+mxns+i] */
            v_sum_prods(xd+ic, beta, xd+ic+ns, gam, xd+ic+mxns, ns);
            break;
          case 5 :
            /* jx == mx-1, 1 <= jy <= my-2 */
            /* x[ic+i] = gam[i]x[ic+mxns+i] */
            v_prod(xd+ic, gam, xd+ic+mxns, ns);
            break;
          case 6 :
            /* jx == 0, jy == my-1 */
            /* x[ic+i] = beta2[i]x[ic+ns+i] */
            v_prod(xd+ic, beta2, xd+ic+ns, ns);
            break;
          case 7 :
            /* 1 <= jx <= mx-2, jy == my-1 */
            /* x[ic+i] = beta[i]x[ic+ns+i] */
            v_prod(xd+ic, beta, xd+ic+ns, ns);
            break;
          case 8 :
            /* jx == mx-1, jy == my-1 */
            /* x[ic+i] = 0.0 */
            v_zero(xd+ic, ns);
            break;
          }
        }
      }
    }  /* end if (iter > 1) */

    /* Overwrite x with [(I - (D-inverse)*L)-inverse]*x. */

    for (jy=0; jy < my; jy++) {
      iyoff = mxns*jy;
      for (jx=0; jx < mx; jx++) { /* order of loops matters */
        ic = iyoff + ns*jx;
        x_loc = (jx == 0) ? 0 : ((jx == mx-1) ? 2 : 1);
        y_loc = (jy == 0) ? 0 : ((jy == my-1) ? 2 : 1);
        switch (3*y_loc+x_loc) {
        case 0 :
          /* jx == 0, jy == 0 */
          break;
        case 1 :
          /* 1 <= jx <= mx-2, jy == 0 */
          /* x[ic+i] += beta[i]x[ic-ns+i] */
          v_inc_by_prod(xd+ic, beta, xd+ic-ns, ns);
          break;
        case 2 :
          /* jx == mx-1, jy == 0 */
          /* x[ic+i] += beta2[i]x[ic-ns+i] */
          v_inc_by_prod(xd+ic, beta2, xd+ic-ns, ns);
          break;
        case 3 :
          /* jx == 0, 1 <= jy <= my-2 */
          /* x[ic+i] += gam[i]x[ic-mxns+i] */
          v_inc_by_prod(xd+ic, gam, xd+ic-mxns, ns);
          break;
        case 4 :
          /* 1 <= jx <= mx-2, 1 <= jy <= my-2 */
          /* x[ic+i] += beta[i]x[ic-ns+i] + gam[i]x[ic-mxns+i] */
          v_inc_by_prod(xd+ic, beta, xd+ic-ns, ns);
          v_inc_by_prod(xd+ic, gam, xd+ic-mxns, ns);
          break;
        case 5 :
          /* jx == mx-1, 1 <= jy <= my-2 */
          /* x[ic+i] += beta2[i]x[ic-ns+i] + gam[i]x[ic-mxns+i] */
          v_inc_by_prod(xd+ic, beta2, xd+ic-ns, ns);
          v_inc_by_prod(xd+ic, gam, xd+ic-mxns, ns);
          break;
        case 6 :
          /* jx == 0, jy == my-1 */
          /* x[ic+i] += gam2[i]x[ic-mxns+i] */
          v_inc_by_prod(xd+ic, gam2, xd+ic-mxns, ns);
          break;
        case 7 :
          /* 1 <= jx <= mx-2, jy == my-1 */
          /* x[ic+i] += beta[i]x[ic-ns+i] + gam2[i]x[ic-mxns+i] */
          v_inc_by_prod(xd+ic, beta, xd+ic-ns, ns);
          v_inc_by_prod(xd+ic, gam2, xd+ic-mxns, ns);
          break;
        case 8 :
          /* jx == mx-1, jy == my-1 */
          /* x[ic+i] += beta2[i]x[ic-ns+i] + gam2[i]x[ic-mxns+i] */
          v_inc_by_prod(xd+ic, beta2, xd+ic-ns, ns);
          v_inc_by_prod(xd+ic, gam2, xd+ic-mxns, ns);
          break;
        }
      }
    }

    /* Add increment x to z : z <- z+x */

    N_VLinearSum(ONE, z, ONE, x, z);

  }
}

static void v_inc_by_prod(realtype u[], realtype v[], realtype w[], int n)
{
  int i;
  for (i=0; i < n; i++) u[i] += v[i]*w[i];
}

static void v_sum_prods(realtype u[], realtype p[], realtype q[],
                        realtype v[], realtype w[], int n)
{
  int i;
  for (i=0; i < n; i++) u[i] = p[i]*q[i] + v[i]*w[i];
}

static void v_prod(realtype u[], realtype v[], realtype w[], int n)
{
  int i;
  for (i=0; i < n; i++) u[i] = v[i]*w[i];
}

static void v_zero(realtype u[], int n)
{
  int i;
  for (i=0; i < n; i++) u[i] = ZERO;
}

/* Check function return value...
     opt == 0 means SUNDIALS function allocates memory so check if
              returned NULL pointer
     opt == 1 means SUNDIALS function returns an integer value so check if
              retval < 0
     opt == 2 means function allocates memory so check if returned
              NULL pointer */

static int check_retval(void *returnvalue, const char *funcname, int opt)
{
  int *retval;

  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */
  if (opt == 0 && returnvalue == NULL) {
    fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return(1); }

  /* Check if retval < 0 */
  else if (opt == 1) {
    retval = (int *) returnvalue;
    if (*retval < 0) {
      fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with retval = %d\n\n",
              funcname, *retval);
      return(1); }}

  /* Check if function returned NULL pointer - no memory allocated */
  else if (opt == 2 && returnvalue == NULL) {
    fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return(1); }

  return(0);
}