1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
/* -----------------------------------------------------------------
* Programmers: Radu Serban and Alan Hindmarsh @ LLNL
* -----------------------------------------------------------------
* SUNDIALS Copyright Start
* Copyright (c) 2002-2022, Lawrence Livermore National Security
* and Southern Methodist University.
* All rights reserved.
*
* See the top-level LICENSE and NOTICE files for details.
*
* SPDX-License-Identifier: BSD-3-Clause
* SUNDIALS Copyright End
* -----------------------------------------------------------------
* Modification of the CVODE example cvRoberts_dns to illustrate
* the treatment of unphysical solution components through the RHS
* function return retval.
*
* Note that, to make possible negative solution components, the
* absolute tolerances had to be loosened a bit from their values
* in cvRoberts_dns.
*
* The following is a simple example problem, with the coding
* needed for its solution by CVODE. The problem is from
* chemical kinetics, and consists of the following three rate
* equations:
* dy1/dt = -.04*y1 + 1.e4*y2*y3
* dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*(y2)^2
* dy3/dt = 3.e7*(y2)^2
* on the interval from t = 0.0 to t = 4.e10, with initial
* conditions: y1 = 1.0, y2 = y3 = 0. The problem is stiff.
* -----------------------------------------------------------------*/
#include <stdio.h>
#include <cvode/cvode.h> /* prototypes for CVODE fcts., consts. */
#include <nvector/nvector_serial.h> /* access to serial N_Vector */
#include <sunmatrix/sunmatrix_dense.h> /* access to dense SUNMatrix */
#include <sunlinsol/sunlinsol_dense.h> /* access to dense SUNLinearSolver */
#include <sundials/sundials_types.h> /* defs. of realtype, sunindextype */
/* Problem Constants */
#define NEQ 3 /* number of equations */
#define Y1 RCONST(1.0) /* initial y components */
#define Y2 RCONST(0.0)
#define Y3 RCONST(0.0)
#define RTOL RCONST(1.0e-4) /* scalar relative tolerance */
#define ATOL1 RCONST(1.0e-7) /* vector absolute tolerance components */
#define ATOL2 RCONST(1.0e-13)
#define ATOL3 RCONST(1.0e-5)
#define T0 RCONST(0.0) /* initial time */
#define T1 RCONST(0.4) /* first output time */
#define TMULT RCONST(10.0) /* output time factor */
#define NOUT 14 /* number of output times */
#define ZERO RCONST(0.0)
/* Functions Called by the Solver */
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data);
/* Private functions to output results */
static void PrintOutput(realtype t, realtype y1, realtype y2, realtype y3);
/* Private function to print final statistics */
static void PrintFinalStats(void *cvode_mem);
/* Private function to check function return values */
static int check_retval(void *returnvalue, const char *funcname, int opt);
/*
*-------------------------------
* Main Program
*-------------------------------
*/
int main()
{
SUNContext sunctx;
realtype t, tout;
N_Vector y;
N_Vector abstol;
SUNMatrix A;
SUNLinearSolver LS;
void *cvode_mem;
int retval, iout;
booleantype check_negative;
y = NULL;
abstol = NULL;
A = NULL;
LS = NULL;
cvode_mem = NULL;
/* Create the SUNDIALS context */
retval = SUNContext_Create(NULL, &sunctx);
if (check_retval(&retval, "SUNContext_Create", 1)) return(1);
/* Initial conditions */
y = N_VNew_Serial(NEQ, sunctx);
if (check_retval((void *)y, "N_VNew_Serial", 0)) return(1);
/* Initialize y */
NV_Ith_S(y,0) = Y1;
NV_Ith_S(y,1) = Y2;
NV_Ith_S(y,2) = Y3;
/* Set the vector absolute tolerance */
abstol = N_VNew_Serial(NEQ, sunctx);
if (check_retval((void *)abstol, "N_VNew_Serial", 0)) return(1);
NV_Ith_S(abstol,0) = ATOL1;
NV_Ith_S(abstol,1) = ATOL2;
NV_Ith_S(abstol,2) = ATOL3;
/* Call CVodeCreate to create the solver memory and specify the
* Backward Differentiation Formula */
cvode_mem = CVodeCreate(CV_BDF, sunctx);
if (check_retval((void *)cvode_mem, "CVodeCreate", 0)) return(1);
/* Call CVodeInit to initialize the integrator memory and specify the
* user's right hand side function in y'=f(t,y), the initial time T0, and
* the initial dependent variable vector y. */
retval = CVodeInit(cvode_mem, f, T0, y);
if (check_retval(&retval, "CVodeInit", 1)) return(1);
/* Call CVodeSVtolerances to specify the scalar relative tolerance
* and vector absolute tolerances */
retval = CVodeSVtolerances(cvode_mem, RTOL, abstol);
if (check_retval(&retval, "CVodeSVtolerances", 1)) return(1);
/* Call CVodeSetUserData to pass the check negative retval as user data */
retval = CVodeSetUserData(cvode_mem, &check_negative);
if (check_retval(&retval, "CVodeSetUserData", 1)) return(1);
/* Create dense SUNMatrix for use in linear solves */
A = SUNDenseMatrix(NEQ, NEQ, sunctx);
if (check_retval((void *)A, "SUNDenseMatrix", 0)) return(1);
/* Create dense SUNLinearSolver object for use by CVode */
LS = SUNLinSol_Dense(y, A, sunctx);
if (check_retval((void *)LS, "SUNLinSol_Dense", 0)) return(1);
/* Attach the matrix and linear solver */
retval = CVodeSetLinearSolver(cvode_mem, LS, A);
if (check_retval(&retval, "CVodeSetLinearSolver", 1)) return(1);
/* Case 1: ignore negative solution components */
printf("Ignore negative solution components\n\n");
check_negative = SUNFALSE;
/* In loop, call CVode in CV_NORMAL mode */
iout = 0; tout = T1;
while(1) {
retval = CVode(cvode_mem, tout, y, &t, CV_NORMAL);
PrintOutput(t, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));
iout++;
tout *= TMULT;
if (iout == NOUT) break;
}
/* Print some final statistics */
PrintFinalStats(cvode_mem);
/* Case 2: intercept negative solution components */
printf("Intercept negative solution components\n\n");
check_negative = SUNTRUE;
/* Reinitialize solver */
NV_Ith_S(y,0) = Y1;
NV_Ith_S(y,1) = Y2;
NV_Ith_S(y,2) = Y3;
retval = CVodeReInit(cvode_mem, T0, y);
/* In loop, call CVode in CV_NORMAL mode */
iout = 0; tout = T1;
while(1) {
CVode(cvode_mem, tout, y, &t, CV_NORMAL);
PrintOutput(t, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));
iout++;
tout *= TMULT;
if (iout == NOUT) break;
}
/* Print some final statistics */
PrintFinalStats(cvode_mem);
/* Free memory */
N_VDestroy(y); /* Free y vector */
N_VDestroy(abstol); /* Free abstol vector */
CVodeFree(&cvode_mem); /* Free CVODE memory */
SUNLinSolFree(LS); /* Free the linear solver memory */
SUNMatDestroy(A); /* Free the matrix memory */
SUNContext_Free(&sunctx); /* Free the SUNDIALS context */
return(0);
}
/*
*-------------------------------
* Functions called by the solver
*-------------------------------
*/
/*
* f routine. Compute function f(t,y).
*/
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
realtype y1, y2, y3, yd1, yd3;
booleantype *check_negative;
check_negative = (booleantype *)user_data;
y1 = NV_Ith_S(y,0); y2 = NV_Ith_S(y,1); y3 = NV_Ith_S(y,2);
if ( *check_negative && (y1<0 || y2<0 || y3<0) )
return(1);
yd1 = NV_Ith_S(ydot,0) = RCONST(-0.04)*y1 + RCONST(1.0e4)*y2*y3;
yd3 = NV_Ith_S(ydot,2) = RCONST(3.0e7)*y2*y2;
NV_Ith_S(ydot,1) = -yd1 - yd3;
return(0);
}
/*
*-------------------------------
* Private helper functions
*-------------------------------
*/
static void PrintOutput(realtype t, realtype y1, realtype y2, realtype y3)
{
#if defined(SUNDIALS_EXTENDED_PRECISION)
printf("At t = %0.4Le y =%14.6Le %14.6Le %14.6Le\n", t, y1, y2, y3);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
printf("At t = %0.4e y =%14.6e %14.6e %14.6e\n", t, y1, y2, y3);
#else
printf("At t = %0.4e y =%14.6e %14.6e %14.6e\n", t, y1, y2, y3);
#endif
return;
}
static void PrintFinalStats(void *cvode_mem)
{
long int nst, nfe, nsetups, nje, nfeLS, nni, nnf, ncfn, netf;
int retval;
retval = CVodeGetNumSteps(cvode_mem, &nst);
check_retval(&retval, "CVodeGetNumSteps", 1);
retval = CVodeGetNumRhsEvals(cvode_mem, &nfe);
check_retval(&retval, "CVodeGetNumRhsEvals", 1);
retval = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);
check_retval(&retval, "CVodeGetNumLinSolvSetups", 1);
retval = CVodeGetNumErrTestFails(cvode_mem, &netf);
check_retval(&retval, "CVodeGetNumErrTestFails", 1);
retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
check_retval(&retval, "CVodeGetNumNonlinSolvIters", 1);
retval = CVodeGetNumNonlinSolvConvFails(cvode_mem, &nnf);
check_retval(&retval, "CVodeGetNumNonlinSolvConvFails", 1);
retval = CVodeGetNumStepSolveFails(cvode_mem, &ncfn);
check_retval(&retval, "CVodeGetNumStepSolveFails", 1);
retval = CVodeGetNumJacEvals(cvode_mem, &nje);
check_retval(&retval, "CVodeGetNumJacEvals", 1);
retval = CVodeGetNumLinRhsEvals(cvode_mem, &nfeLS);
check_retval(&retval, "CVodeGetNumLinRhsEvals", 1);
printf("\nFinal Statistics:\n");
printf("nst = %-6ld nfe = %-6ld nsetups = %-6ld nfeLS = %-6ld nje = %ld\n",
nst, nfe, nsetups, nfeLS, nje);
printf("nni = %-6ld nnf = %-6ld netf = %-6ld ncfn = %-6ld\n\n",
nni, nnf, netf, ncfn);
}
/*
* Check function return value...
* opt == 0 means SUNDIALS function allocates memory so check if
* returned NULL pointer
* opt == 1 means SUNDIALS function returns an integer value so check if
* retval < 0
* opt == 2 means function allocates memory so check if returned
* NULL pointer
*/
static int check_retval(void *returnvalue, const char *funcname, int opt)
{
int *retval;
/* Check if SUNDIALS function returned NULL pointer - no memory allocated */
if (opt == 0 && returnvalue == NULL) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return(1); }
/* Check if retval < 0 */
else if (opt == 1) {
retval = (int *) returnvalue;
if (*retval < 0) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with retval = %d\n\n",
funcname, *retval);
return(1); }}
/* Check if function returned NULL pointer - no memory allocated */
else if (opt == 2 && returnvalue == NULL) {
fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return(1); }
return(0);
}
|