File: cvRoberts_dns_negsol.c

package info (click to toggle)
sundials 6.4.1%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 79,368 kB
  • sloc: ansic: 218,700; f90: 62,503; cpp: 61,511; fortran: 5,166; python: 4,642; sh: 4,114; makefile: 562; perl: 123
file content (315 lines) | stat: -rw-r--r-- 10,527 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/* -----------------------------------------------------------------
 * Programmers: Radu Serban and Alan Hindmarsh @ LLNL
 * -----------------------------------------------------------------
 * SUNDIALS Copyright Start
 * Copyright (c) 2002-2022, Lawrence Livermore National Security
 * and Southern Methodist University.
 * All rights reserved.
 *
 * See the top-level LICENSE and NOTICE files for details.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 * SUNDIALS Copyright End
 * -----------------------------------------------------------------
 * Modification of the CVODE example cvRoberts_dns to illustrate
 * the treatment of unphysical solution components through the RHS
 * function return retval.
 *
 * Note that, to make possible negative solution components, the
 * absolute tolerances had to be loosened a bit from their values
 * in cvRoberts_dns.
 *
 * The following is a simple example problem, with the coding
 * needed for its solution by CVODE. The problem is from
 * chemical kinetics, and consists of the following three rate
 * equations:
 *    dy1/dt = -.04*y1 + 1.e4*y2*y3
 *    dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*(y2)^2
 *    dy3/dt = 3.e7*(y2)^2
 * on the interval from t = 0.0 to t = 4.e10, with initial
 * conditions: y1 = 1.0, y2 = y3 = 0. The problem is stiff.
 * -----------------------------------------------------------------*/

#include <stdio.h>

#include <cvode/cvode.h>               /* prototypes for CVODE fcts., consts.  */
#include <nvector/nvector_serial.h>    /* access to serial N_Vector            */
#include <sunmatrix/sunmatrix_dense.h> /* access to dense SUNMatrix            */
#include <sunlinsol/sunlinsol_dense.h> /* access to dense SUNLinearSolver      */
#include <sundials/sundials_types.h>   /* defs. of realtype, sunindextype      */

/* Problem Constants */

#define NEQ   3                /* number of equations  */
#define Y1    RCONST(1.0)      /* initial y components */
#define Y2    RCONST(0.0)
#define Y3    RCONST(0.0)
#define RTOL  RCONST(1.0e-4)   /* scalar relative tolerance            */
#define ATOL1 RCONST(1.0e-7)   /* vector absolute tolerance components */
#define ATOL2 RCONST(1.0e-13)
#define ATOL3 RCONST(1.0e-5)
#define T0    RCONST(0.0)      /* initial time           */
#define T1    RCONST(0.4)      /* first output time      */
#define TMULT RCONST(10.0)     /* output time factor     */
#define NOUT  14               /* number of output times */

#define ZERO  RCONST(0.0)

/* Functions Called by the Solver */

static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data);

/* Private functions to output results */

static void PrintOutput(realtype t, realtype y1, realtype y2, realtype y3);

/* Private function to print final statistics */

static void PrintFinalStats(void *cvode_mem);

/* Private function to check function return values */

static int check_retval(void *returnvalue, const char *funcname, int opt);


/*
 *-------------------------------
 * Main Program
 *-------------------------------
 */

int main()
{
  SUNContext sunctx;
  realtype t, tout;
  N_Vector y;
  N_Vector abstol;
  SUNMatrix A;
  SUNLinearSolver LS;
  void *cvode_mem;
  int retval, iout;
  booleantype check_negative;

  y = NULL;
  abstol = NULL;
  A = NULL;
  LS = NULL;
  cvode_mem = NULL;

  /* Create the SUNDIALS context */
  retval = SUNContext_Create(NULL, &sunctx);
  if (check_retval(&retval, "SUNContext_Create", 1)) return(1);

  /* Initial conditions */
  y = N_VNew_Serial(NEQ, sunctx);
  if (check_retval((void *)y, "N_VNew_Serial", 0)) return(1);

  /* Initialize y */
  NV_Ith_S(y,0) = Y1;
  NV_Ith_S(y,1) = Y2;
  NV_Ith_S(y,2) = Y3;

  /* Set the vector absolute tolerance */
  abstol = N_VNew_Serial(NEQ, sunctx);
  if (check_retval((void *)abstol, "N_VNew_Serial", 0)) return(1);

  NV_Ith_S(abstol,0) = ATOL1;
  NV_Ith_S(abstol,1) = ATOL2;
  NV_Ith_S(abstol,2) = ATOL3;

  /* Call CVodeCreate to create the solver memory and specify the
   * Backward Differentiation Formula */
  cvode_mem = CVodeCreate(CV_BDF, sunctx);
  if (check_retval((void *)cvode_mem, "CVodeCreate", 0)) return(1);

  /* Call CVodeInit to initialize the integrator memory and specify the
   * user's right hand side function in y'=f(t,y), the initial time T0, and
   * the initial dependent variable vector y. */
  retval = CVodeInit(cvode_mem, f, T0, y);
  if (check_retval(&retval, "CVodeInit", 1)) return(1);

  /* Call CVodeSVtolerances to specify the scalar relative tolerance
   * and vector absolute tolerances */
  retval = CVodeSVtolerances(cvode_mem, RTOL, abstol);
  if (check_retval(&retval, "CVodeSVtolerances", 1)) return(1);

  /* Call CVodeSetUserData to pass the check negative retval as user data */
  retval = CVodeSetUserData(cvode_mem, &check_negative);
  if (check_retval(&retval, "CVodeSetUserData", 1)) return(1);

  /* Create dense SUNMatrix for use in linear solves */
  A = SUNDenseMatrix(NEQ, NEQ, sunctx);
  if (check_retval((void *)A, "SUNDenseMatrix", 0)) return(1);

  /* Create dense SUNLinearSolver object for use by CVode */
  LS = SUNLinSol_Dense(y, A, sunctx);
  if (check_retval((void *)LS, "SUNLinSol_Dense", 0)) return(1);

  /* Attach the matrix and linear solver */
  retval = CVodeSetLinearSolver(cvode_mem, LS, A);
  if (check_retval(&retval, "CVodeSetLinearSolver", 1)) return(1);

  /* Case 1: ignore negative solution components */
  printf("Ignore negative solution components\n\n");
  check_negative = SUNFALSE;
  /* In loop, call CVode in CV_NORMAL mode */
  iout = 0;  tout = T1;
  while(1) {
    retval = CVode(cvode_mem, tout, y, &t, CV_NORMAL);
    PrintOutput(t, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));
    iout++;
    tout *= TMULT;
    if (iout == NOUT) break;
  }
  /* Print some final statistics */
  PrintFinalStats(cvode_mem);

  /* Case 2: intercept negative solution components */
  printf("Intercept negative solution components\n\n");
  check_negative = SUNTRUE;
  /* Reinitialize solver */
  NV_Ith_S(y,0) = Y1;
  NV_Ith_S(y,1) = Y2;
  NV_Ith_S(y,2) = Y3;
  retval = CVodeReInit(cvode_mem, T0, y);
  /* In loop, call CVode in CV_NORMAL mode */
  iout = 0;  tout = T1;
  while(1) {
    CVode(cvode_mem, tout, y, &t, CV_NORMAL);
    PrintOutput(t, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));
    iout++;
    tout *= TMULT;
    if (iout == NOUT) break;
  }
  /* Print some final statistics */
  PrintFinalStats(cvode_mem);

  /* Free memory */
  N_VDestroy(y);                            /* Free y vector */
  N_VDestroy(abstol);                       /* Free abstol vector */
  CVodeFree(&cvode_mem);                    /* Free CVODE memory */
  SUNLinSolFree(LS);                        /* Free the linear solver memory */
  SUNMatDestroy(A);                         /* Free the matrix memory */
  SUNContext_Free(&sunctx);                 /* Free the SUNDIALS context */

  return(0);
}


/*
 *-------------------------------
 * Functions called by the solver
 *-------------------------------
 */

/*
 * f routine. Compute function f(t,y).
 */

static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
  realtype y1, y2, y3, yd1, yd3;
  booleantype *check_negative;

  check_negative = (booleantype *)user_data;

  y1 = NV_Ith_S(y,0); y2 = NV_Ith_S(y,1); y3 = NV_Ith_S(y,2);

  if ( *check_negative && (y1<0 || y2<0 || y3<0) )
    return(1);

  yd1 = NV_Ith_S(ydot,0) = RCONST(-0.04)*y1 + RCONST(1.0e4)*y2*y3;
  yd3 = NV_Ith_S(ydot,2) = RCONST(3.0e7)*y2*y2;
        NV_Ith_S(ydot,1) = -yd1 - yd3;

  return(0);
}

/*
 *-------------------------------
 * Private helper functions
 *-------------------------------
 */

static void PrintOutput(realtype t, realtype y1, realtype y2, realtype y3)
{
#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("At t = %0.4Le      y =%14.6Le  %14.6Le  %14.6Le\n", t, y1, y2, y3);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("At t = %0.4e      y =%14.6e  %14.6e  %14.6e\n", t, y1, y2, y3);
#else
  printf("At t = %0.4e      y =%14.6e  %14.6e  %14.6e\n", t, y1, y2, y3);
#endif

  return;
}

static void PrintFinalStats(void *cvode_mem)
{
  long int nst, nfe, nsetups, nje, nfeLS, nni, nnf, ncfn, netf;
  int retval;

  retval = CVodeGetNumSteps(cvode_mem, &nst);
  check_retval(&retval, "CVodeGetNumSteps", 1);
  retval = CVodeGetNumRhsEvals(cvode_mem, &nfe);
  check_retval(&retval, "CVodeGetNumRhsEvals", 1);
  retval = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);
  check_retval(&retval, "CVodeGetNumLinSolvSetups", 1);
  retval = CVodeGetNumErrTestFails(cvode_mem, &netf);
  check_retval(&retval, "CVodeGetNumErrTestFails", 1);
  retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
  check_retval(&retval, "CVodeGetNumNonlinSolvIters", 1);
  retval = CVodeGetNumNonlinSolvConvFails(cvode_mem, &nnf);
  check_retval(&retval, "CVodeGetNumNonlinSolvConvFails", 1);
  retval = CVodeGetNumStepSolveFails(cvode_mem, &ncfn);
  check_retval(&retval, "CVodeGetNumStepSolveFails", 1);

  retval = CVodeGetNumJacEvals(cvode_mem, &nje);
  check_retval(&retval, "CVodeGetNumJacEvals", 1);
  retval = CVodeGetNumLinRhsEvals(cvode_mem, &nfeLS);
  check_retval(&retval, "CVodeGetNumLinRhsEvals", 1);

  printf("\nFinal Statistics:\n");
  printf("nst = %-6ld nfe = %-6ld nsetups = %-6ld nfeLS = %-6ld nje = %ld\n",
         nst, nfe, nsetups, nfeLS, nje);
  printf("nni = %-6ld nnf = %-6ld netf = %-6ld    ncfn = %-6ld\n\n",
         nni, nnf, netf, ncfn);
}

/*
 * Check function return value...
 *   opt == 0 means SUNDIALS function allocates memory so check if
 *            returned NULL pointer
 *   opt == 1 means SUNDIALS function returns an integer value so check if
 *            retval < 0
 *   opt == 2 means function allocates memory so check if returned
 *            NULL pointer
 */

static int check_retval(void *returnvalue, const char *funcname, int opt)
{
  int *retval;

  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */
  if (opt == 0 && returnvalue == NULL) {
    fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return(1); }

  /* Check if retval < 0 */
  else if (opt == 1) {
    retval = (int *) returnvalue;
    if (*retval < 0) {
      fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with retval = %d\n\n",
              funcname, *retval);
      return(1); }}

  /* Check if function returned NULL pointer - no memory allocated */
  else if (opt == 2 && returnvalue == NULL) {
    fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return(1); }

  return(0);
}