File: cvsFoodWeb_ASAi_kry.c

package info (click to toggle)
sundials 6.4.1%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 79,368 kB
  • sloc: ansic: 218,700; f90: 62,503; cpp: 61,511; fortran: 5,166; python: 4,642; sh: 4,114; makefile: 562; perl: 123
file content (1408 lines) | stat: -rw-r--r-- 41,357 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
/* -----------------------------------------------------------------
 * Programmer(s): Radu Serban @ LLNL
 * -----------------------------------------------------------------
 * SUNDIALS Copyright Start
 * Copyright (c) 2002-2022, Lawrence Livermore National Security
 * and Southern Methodist University.
 * All rights reserved.
 *
 * See the top-level LICENSE and NOTICE files for details.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 * SUNDIALS Copyright End
 * -----------------------------------------------------------------
 * This program solves a stiff ODE system that arises from a system
 * of partial differential equations. The PDE system is a food web
 * population model, with predator-prey interaction and diffusion on
 * the unit square in two dimensions. The dependent variable vector
 * is the following:
 *
 *        1   2        ns
 *  c = (c , c , ..., c  )
 *
 * and the PDEs are as follows:
 *
 *    i               i      i
 *  dc /dt  =  d(i)*(c    + c   )  +  f (x,y,c)  (i=1,...,ns)
 *                    xx     yy        i
 *
 * where
 *
 *                 i          ns         j
 *  f (x,y,c)  =  c *(b(i) + sum a(i,j)*c )
 *   i                       j=1
 *
 * The number of species is ns = 2*np, with the first np being prey
 * and the last np being predators. The coefficients a(i,j), b(i),
 * d(i) are:
 *
 *  a(i,i) = -a  (all i)
 *  a(i,j) = -g  (i <= np, j > np)
 *  a(i,j) =  e  (i > np, j <= np)
 *  b(i) =  b*(1 + alpha*x*y)  (i <= np)
 *  b(i) = -b*(1 + alpha*x*y)  (i > np)
 *  d(i) = Dprey  (i <= np)
 *  d(i) = Dpred  (i > np)
 *
 * The spatial domain is the unit square. The final time is 10.
 * The boundary conditions are: normal derivative = 0.
 * A polynomial in x and y is used to set the initial conditions.
 *
 * The PDEs are discretized by central differencing on an MX by MY
 * mesh. The resulting ODE system is stiff.
 *
 * The ODE system is solved by CVODES using Newton iteration and
 * the SUNLinSol_SPGMR linear solver (scaled preconditioned GMRES).
 *
 * The preconditioner matrix used is the product of two matrices:
 * (1) A matrix, only defined implicitly, based on a fixed number
 * of Gauss-Seidel iterations using the diffusion terms only.
 * (2) A block-diagonal matrix based on the partial derivatives of
 * the interaction terms f only, using block-grouping (computing
 * only a subset of the ns by ns blocks).
 *
 * Additionally, CVODES integrates backwards in time the
 * the semi-discrete form of the adjoint PDE:
 *   d(lambda)/dt = - D^T ( lambda_xx + lambda_yy )
 *                  - F_c^T lambda - g_c^T
 * with homogeneous Neumann boundary conditions and final
 * conditions are the following:
 *   lambda(x,y,t=t_final) = 0.0
 * whose solution at t = 0 represents the sensitivity of
 *   G = int_0^t_final int_x int _y g(t,c) dx dy dt
 * with respect to the initial conditions of the original problem.
 *
 * In this example,
 *   g(t,c) = c(ISPEC), with ISPEC defined below.
 *
 * During the forward run, CVODES also computes G as
 *   G = phi(t_final)
 * where
 *   d(phi)/dt = int_x int _y g(t,c) dx dy
 * and the 2-D integral is evaluated with Simpson's rule.
 * -----------------------------------------------------------------
 * Reference:  Peter N. Brown and Alan C. Hindmarsh, Reduced Storage
 * Matrix Methods in Stiff ODE Systems, J. Appl. Math. & Comp., 31
 * (1989), pp. 40-91.  Also available as Lawrence Livermore National
 * Laboratory Report UCRL-95088, Rev. 1, June 1987.
 * -----------------------------------------------------------------*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <cvodes/cvodes.h>             /* main integrator header file          */
#include <nvector/nvector_serial.h>    /* access to serial N_Vector            */
#include <sunlinsol/sunlinsol_spgmr.h> /* access to SPGMR SUNLinearSolver      */
#include <sundials/sundials_dense.h>   /* use generic dense solver in precond. */
#include <sundials/sundials_types.h>   /* defs. of realtype, sunindextype      */

/* helpful macros */

#ifndef MAX
#define MAX(A, B) ((A) > (B) ? (A) : (B))
#endif

#ifndef SQR
#define SQR(A) ((A)*(A))
#endif

/* Constants */

#define ZERO RCONST(0.0)
#define ONE  RCONST(1.0)
#define TWO  RCONST(2.0)

/* Problem Specification Constants */

#define AA    ONE               /* AA = a */
#define EE    RCONST(1.0e4)     /* EE = e */
#define GG    RCONST(0.5e-6)    /* GG = g */
#define BB    ONE               /* BB = b */
#define DPREY ONE
#define DPRED RCONST(0.5)
#define ALPH  ONE
#define NP    3
#define NS    (2*NP)

/* Method Constants */

#define MX    20
#define MY    20
#define MXNS  (MX*NS)
#define AX    ONE
#define AY    ONE
#define DX    (AX/(realtype)(MX-1))
#define DY    (AY/(realtype)(MY-1))
#define MP    NS
#define MQ    (MX*MY)
#define MXMP  (MX*MP)
#define NGX   2
#define NGY   2
#define NGRP  (NGX*NGY)
#define ITMAX 5

/* CVodeInit Constants */

#define NEQ   (NS*MX*MY)
#define T0    ZERO
#define RTOL  RCONST(1.0e-5)
#define ATOL  RCONST(1.0e-5)

/* Output Constants */

#define TOUT RCONST(10.0)

/* Note: The value for species i at mesh point (j,k) is stored in */
/* component number (i-1) + j*NS + k*NS*MX of an N_Vector,        */
/* where 1 <= i <= NS, 0 <= j < MX, 0 <= k < MY.                  */

/* Structure for user data */

typedef struct {
  realtype **P[NGRP];
  sunindextype *pivot[NGRP];
  int ns, mxns, mp, mq, mx, my, ngrp, ngx, ngy, mxmp;
  int jgx[NGX+1], jgy[NGY+1], jigx[MX], jigy[MY];
  int jxr[NGX], jyr[NGY];
  realtype acoef[NS][NS], bcoef[NS], diff[NS];
  realtype cox[NS], coy[NS], dx, dy, srur;
  realtype fsave[NEQ];
  realtype fBsave[NEQ];
  N_Vector rewt;
  N_Vector vtemp;
  N_Vector rewtB;
  N_Vector vtempB;
  void *cvode_mem;
  int indexB;
} *WebData;

/* Adjoint calculation constants */
/* G = int_t int_x int_y c(ISPEC) dy dx dt */

#define NSTEPS 300 /* check points every NSTEPS steps */
#define ISPEC  6   /* species # in objective */

/* Prototypes for user-supplied functions */

static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data);

static int Precond(realtype t, N_Vector c, N_Vector fc,
                   booleantype jok, booleantype *jcurPtr,
                   realtype gamma, void *user_data);

static int PSolve(realtype t, N_Vector c, N_Vector fc,
                  N_Vector r, N_Vector z,
                  realtype gamma, realtype delta,
                  int lr, void *user_data);

static int fB(realtype t, N_Vector c, N_Vector cB,
               N_Vector cBdot, void *user_data);

static int PrecondB(realtype t, N_Vector c,
                    N_Vector cB, N_Vector fcB, booleantype jok,
                    booleantype *jcurPtr, realtype gamma,
                    void *user_data);

static int PSolveB(realtype t, N_Vector c,
                   N_Vector cB, N_Vector fcB,
                   N_Vector r, N_Vector z,
                   realtype gamma, realtype delta,
                   int lr, void *user_data);

/* Prototypes for private functions */

static WebData AllocUserData(void);
static void InitUserData(WebData wdata);
static void SetGroups(int m, int ng, int jg[], int jig[], int jr[]);
static void CInit(N_Vector c, WebData wdata);
static void PrintOutput(N_Vector c, int ns, int mxns, WebData wdata);
static void FreeUserData(WebData wdata);
static void WebRates(realtype x, realtype y, realtype t, realtype c[], realtype rate[],
                     WebData wdata);
static void WebRatesB(realtype x, realtype y, realtype t, realtype c[], realtype cB[],
                      realtype rate[], realtype rateB[], WebData wdata);
static void fblock (realtype t, realtype cdata[], int jx, int jy, realtype cdotdata[],
                    WebData wdata);
static void GSIter(realtype gamma, N_Vector z, N_Vector x, WebData wdata);
static realtype doubleIntgr(N_Vector c, int i, WebData wdata);
static int check_retval(void *returnvalue, const char *funcname, int opt);

/* Small Vector Kernels */

static void v_inc_by_prod(realtype u[], realtype v[], realtype w[], int n);
static void v_sum_prods(realtype u[], realtype p[], realtype q[], realtype v[],
                        realtype w[], int n);
static void v_prod(realtype u[], realtype v[], realtype w[], int n);
static void v_zero(realtype u[], int n);

/* SUNDIALS context */
static SUNContext sunctx;

/*
 *--------------------------------------------------------------------
 * MAIN PROGRAM
 *--------------------------------------------------------------------
 */

int main(int argc, char *argv[])
{
  realtype abstol=ATOL, reltol=RTOL, t;
  N_Vector c;
  WebData wdata;
  void *cvode_mem;
  SUNLinearSolver LS, LSB;

  int retval, ncheck;

  int indexB;

  realtype reltolB=RTOL, abstolB=ATOL;
  N_Vector cB;

  c = NULL;
  cB = NULL;
  wdata = NULL;
  cvode_mem = NULL;
  LS = LSB = NULL;

  /* Create the SUNDIALS simulation context that all SUNDIALS objects require */
  retval = SUNContext_Create(NULL, &sunctx);
  if (check_retval(&retval, "SUNContext_Create", 1)) return(1);

  /* Allocate and initialize user data */

  wdata = AllocUserData();
  if(check_retval((void *)wdata, "AllocUserData", 2)) return(1);
  InitUserData(wdata);

  /* Set-up forward problem */

  /* Initializations */
  c = N_VNew_Serial(NEQ+1, sunctx);
  if(check_retval((void *)c, "N_VNew_Serial", 0)) return(1);
  CInit(c, wdata);

  /* Call CVodeCreate/CVodeInit for forward run */
  printf("\nCreate and allocate CVODES memory for forward run\n");
  cvode_mem = CVodeCreate(CV_BDF, sunctx);
  if(check_retval((void *)cvode_mem, "CVodeCreate", 0)) return(1);
  wdata->cvode_mem = cvode_mem; /* Used in Precond */
  retval = CVodeSetUserData(cvode_mem, wdata);
  if(check_retval(&retval, "CVodeSetUserData", 1)) return(1);
  retval = CVodeInit(cvode_mem, f, T0, c);
  if(check_retval(&retval, "CVodeInit", 1)) return(1);
  retval = CVodeSStolerances(cvode_mem, reltol, abstol);
  if(check_retval(&retval, "CVodeSStolerances", 1)) return(1);

  /* Create SUNLinSol_SPGMR linear solver for forward run */
  LS = SUNLinSol_SPGMR(c, SUN_PREC_LEFT, 0, sunctx);
  if(check_retval((void *)LS, "SUNLinSol_SPGMR", 0)) return(1);

  /* Attach the linear sovler */
  retval = CVodeSetLinearSolver(cvode_mem, LS, NULL);
  if (check_retval(&retval, "CVodeSetLinearSolver", 1)) return 1;

  /* Set the preconditioner solve and setup functions */
  retval = CVodeSetPreconditioner(cvode_mem, Precond, PSolve);
  if(check_retval(&retval, "CVodeSetPreconditioner", 1)) return(1);

  /* Call CVodeSetMaxNumSteps to set the maximum number of steps the
   * solver will take in an attempt to reach the next output time
   * during forward integration. */
  retval = CVodeSetMaxNumSteps(cvode_mem, 2500);
  if(check_retval(&retval, "CVodeSetMaxNumSteps", 1)) return(1);

  /* Set-up adjoint calculations */

  printf("\nAllocate global memory\n");
  retval = CVodeAdjInit(cvode_mem, NSTEPS, CV_HERMITE);
  if(check_retval(&retval, "CVodeAdjInit", 1)) return(1);

  /* Perform forward run */

  printf("\nForward integration\n");
  retval = CVodeF(cvode_mem, TOUT, c, &t, CV_NORMAL, &ncheck);
  if(check_retval(&retval, "CVodeF", 1)) return(1);

  printf("\nncheck = %d\n", ncheck);


#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("\n   G = int_t int_x int_y c%d(t,x,y) dx dy dt = %Lf \n\n",
         ISPEC, N_VGetArrayPointer(c)[NEQ]);
#else
  printf("\n   G = int_t int_x int_y c%d(t,x,y) dx dy dt = %f \n\n",
         ISPEC, N_VGetArrayPointer(c)[NEQ]);
#endif

  /* Set-up backward problem */

  /* Allocate cB */
  cB = N_VNew_Serial(NEQ, sunctx);
  if(check_retval((void *)cB, "N_VNew_Serial", 0)) return(1);
  /* Initialize cB = 0 */
  N_VConst(ZERO, cB);

  /* Create and allocate CVODES memory for backward run */
  printf("\nCreate and allocate CVODES memory for backward run\n");
  retval = CVodeCreateB(cvode_mem, CV_BDF, &indexB);
  if(check_retval(&retval, "CVodeCreateB", 1)) return(1);
  retval = CVodeSetUserDataB(cvode_mem, indexB, wdata);
  if(check_retval(&retval, "CVodeSetUserDataB", 1)) return(1);
  retval = CVodeSetMaxNumStepsB(cvode_mem, indexB, 1000);
  if(check_retval(&retval, "CVodeSetMaxNumStepsB", 1)) return(1);
  retval = CVodeInitB(cvode_mem, indexB, fB, TOUT, cB);
  if(check_retval(&retval, "CVodeInitB", 1)) return(1);
  retval = CVodeSStolerancesB(cvode_mem, indexB, reltolB, abstolB);
  if(check_retval(&retval, "CVodeSStolerancesB", 1)) return(1);

  wdata->indexB = indexB;

  /* Create SUNLinSol_SPGMR linear solver for backward run */
  LSB = SUNLinSol_SPGMR(cB, SUN_PREC_LEFT, 0, sunctx);
  if(check_retval((void *)LSB, "SUNLinSol_SPGMR", 0)) return(1);

  /* Attach the linear sovler */
  retval = CVodeSetLinearSolverB(cvode_mem, indexB, LSB, NULL);
  if (check_retval(&retval, "CVodeSetLinearSolverB", 1)) return 1;

  /* Set the preconditioner solve and setup functions */
  retval = CVodeSetPreconditionerB(cvode_mem, indexB, PrecondB, PSolveB);
  if(check_retval(&retval, "CVodeSetPreconditionerB", 1)) return(1);

  /* Perform backward integration */

  printf("\nBackward integration\n");
  retval = CVodeB(cvode_mem, T0, CV_NORMAL);
  if(check_retval(&retval, "CVodeB", 1)) return(1);

  retval = CVodeGetB(cvode_mem, indexB, &t, cB);
  if(check_retval(&retval, "CVodeGetB", 1)) return(1);

  PrintOutput(cB, NS, MXNS, wdata);

  /* Free all memory */
  CVodeFree(&cvode_mem);

  N_VDestroy(c);
  N_VDestroy(cB);
  SUNLinSolFree(LS);
  SUNLinSolFree(LSB);
  SUNContext_Free(&sunctx);
  FreeUserData(wdata);

  return(0);
}

/*
 *--------------------------------------------------------------------
 * FUNCTIONS CALLED BY CVODES
 *--------------------------------------------------------------------
 */

/*
 * This routine computes the right-hand side of the ODE system and
 * returns it in cdot. The interaction rates are computed by calls to WebRates,
 * and these are saved in fsave for use in preconditioning.
 */

static int f(realtype t, N_Vector c, N_Vector cdot, void *user_data)
{
  int i, ic, ici, idxl, idxu, idyl, idyu, iyoff, jx, jy, ns, mxns;
  realtype dcxli, dcxui, dcyli, dcyui, x, y, *cox, *coy, *fsave, dx, dy;
  realtype *cdata, *cdotdata;
  WebData wdata;

  wdata = (WebData) user_data;
  cdata = N_VGetArrayPointer(c);
  cdotdata = N_VGetArrayPointer(cdot);

  mxns = wdata->mxns;
  ns = wdata->ns;
  fsave = wdata->fsave;
  cox = wdata->cox;
  coy = wdata->coy;
  mxns = wdata->mxns;
  dx = wdata->dx;
  dy = wdata->dy;

  for (jy = 0; jy < MY; jy++) {
    y = jy*dy;
    iyoff = mxns*jy;
    idyu = (jy == MY-1) ? -mxns : mxns;
    idyl = (jy == 0) ? -mxns : mxns;
    for (jx = 0; jx < MX; jx++) {
      x = jx*dx;
      ic = iyoff + ns*jx;
      /* Get interaction rates at one point (x,y). */
      WebRates(x, y, t, cdata+ic, fsave+ic, wdata);
      idxu = (jx == MX-1) ? -ns : ns;
      idxl = (jx == 0) ? -ns : ns;
      for (i = 1; i <= ns; i++) {
        ici = ic + i-1;
        /* Do differencing in y. */
        dcyli = cdata[ici] - cdata[ici-idyl];
        dcyui = cdata[ici+idyu] - cdata[ici];
        /* Do differencing in x. */
        dcxli = cdata[ici] - cdata[ici-idxl];
        dcxui = cdata[ici+idxu] - cdata[ici];
        /* Collect terms and load cdot elements. */
        cdotdata[ici] = coy[i-1]*(dcyui - dcyli) +
                        cox[i-1]*(dcxui - dcxli) +
                        fsave[ici];
      }
    }
  }

  /* Quadrature equation (species 1) */
  cdotdata[NEQ] = doubleIntgr(c,ISPEC,wdata);

  return(0);
}

/*
 * This routine generates the block-diagonal part of the Jacobian
 * corresponding to the interaction rates, multiplies by -gamma,
 * adds the identity matrix, and calls SUNDlsMat_denseGETRF to do
 * the LU decomposition of each diagonal block. The computation of
 * the diagonal blocks uses the preset block and grouping
 * information. One block per group is computed. The Jacobian
 * elements are generated by difference quotients using calls to the
 * routine fblock.
 *
 * This routine can be regarded as a prototype for the general case
 * of a block-diagonal preconditioner. The blocks are of size mp,
 * and there are ngrp=ngx*ngy blocks computed in the block-grouping
 * scheme.
 */

static int Precond(realtype t, N_Vector c, N_Vector fc,
                   booleantype jok, booleantype *jcurPtr,
                   realtype gamma, void *user_data)
{
  realtype ***P;
  sunindextype **pivot;
  int i, if0, if00, ig, igx, igy, j, jj, jx, jy;
  int *jxr, *jyr, ngrp, ngx, ngy, mxmp, mp, retval;
  sunindextype denseretval;
  realtype uround, fac, r, r0, save, srur;
  realtype *f1, *fsave, *cdata, *rewtdata;
  WebData wdata;
  N_Vector rewt;

  wdata = (WebData) user_data;
  rewt = wdata->rewt;
  retval = CVodeGetErrWeights(wdata->cvode_mem, rewt);
  if(check_retval(&retval, "CVodeGetErrWeights", 1)) return(1);

  cdata = N_VGetArrayPointer(c);
  rewtdata = N_VGetArrayPointer(rewt);

  uround = UNIT_ROUNDOFF;

  P = wdata->P;
  pivot = wdata->pivot;
  jxr = wdata->jxr;
  jyr = wdata->jyr;
  mp = wdata->mp;
  srur = wdata->srur;
  ngrp = wdata->ngrp;
  ngx = wdata->ngx;
  ngy = wdata->ngy;
  mxmp = wdata->mxmp;
  fsave = wdata->fsave;

  /* Make mp calls to fblock to approximate each diagonal block of Jacobian.
     Here, fsave contains the base value of the rate vector and
     r0 is a minimum increment factor for the difference quotient. */

  f1 = N_VGetArrayPointer(wdata->vtemp);

  fac = N_VWrmsNorm (fc, rewt);
  r0 = RCONST(1000.0)*fabs(gamma)*uround*(NEQ+1)*fac;
  if (r0 == ZERO) r0 = ONE;

  for (igy = 0; igy < ngy; igy++) {
    jy = jyr[igy];
    if00 = jy*mxmp;
    for (igx = 0; igx < ngx; igx++) {
      jx = jxr[igx];
      if0 = if00 + jx*mp;
      ig = igx + igy*ngx;
      /* Generate ig-th diagonal block */
      for (j = 0; j < mp; j++) {
        /* Generate the jth column as a difference quotient */
        jj = if0 + j;
        save = cdata[jj];
        r = MAX(srur*fabs(save),r0/rewtdata[jj]);
        cdata[jj] += r;
        fac = -gamma/r;
        fblock (t, cdata, jx, jy, f1, wdata);
        for (i = 0; i < mp; i++) {
          P[ig][j][i] = (f1[i] - fsave[if0+i])*fac;
        }
        cdata[jj] = save;
      }
    }
  }

  /* Add identity matrix and do LU decompositions on blocks. */

   for (ig = 0; ig < ngrp; ig++) {
     SUNDlsMat_denseAddIdentity(P[ig], mp);
     denseretval = SUNDlsMat_denseGETRF(P[ig], mp, mp, pivot[ig]);
     if (denseretval != 0) return(1);
   }

  *jcurPtr = SUNTRUE;
  return(0);
}

/*
 * This routine applies two inverse preconditioner matrices
 * to the vector r, using the interaction-only block-diagonal Jacobian
 * with block-grouping, denoted Jr, and Gauss-Seidel applied to the
 * diffusion contribution to the Jacobian, denoted Jd.
 * It first calls GSIter for a Gauss-Seidel approximation to
 * ((I - gamma*Jd)-inverse)*r, and stores the result in z.
 * Then it computes ((I - gamma*Jr)-inverse)*z, using LU factors of the
 * blocks in P, and pivot information in pivot, and returns the result in z.
 */

static int PSolve(realtype t, N_Vector c, N_Vector fc,
                  N_Vector r, N_Vector z,
                  realtype gamma, realtype delta,
                  int lr, void *user_data)
{
  realtype ***P;
  sunindextype **pivot;
  int jx, jy, igx, igy, iv, ig, *jigx, *jigy, mx, my, ngx, mp;
  WebData wdata;

  wdata = (WebData) user_data;

  N_VScale(ONE, r, z);

  /* call GSIter for Gauss-Seidel iterations */

  GSIter(gamma, z, wdata->vtemp, wdata);

  /* Do backsolves for inverse of block-diagonal preconditioner factor */

  P = wdata->P;
  pivot = wdata->pivot;
  mx = wdata->mx;
  my = wdata->my;
  ngx = wdata->ngx;
  mp = wdata->mp;
  jigx = wdata->jigx;
  jigy = wdata->jigy;

  iv = 0;
  for (jy = 0; jy < my; jy++) {
    igy = jigy[jy];
    for (jx = 0; jx < mx; jx++) {
      igx = jigx[jx];
      ig = igx + igy*ngx;
      SUNDlsMat_denseGETRS(P[ig], mp, pivot[ig], &(N_VGetArrayPointer(z)[iv]));
      iv += mp;
    }
  }

  /* Solve for the quadrature variable */
  N_VGetArrayPointer(z)[NEQ] = N_VGetArrayPointer(r)[NEQ] + gamma*doubleIntgr(z,ISPEC,wdata);

  return(0);
}

/*
 * This routine computes the right-hand side of the adjoint ODE system and
 * returns it in cBdot. The interaction rates are computed by calls to WebRates,
 * and these are saved in fsave for use in preconditioning. The adjoint
 * interaction rates are computed by calls to WebRatesB.
 */

static int fB(realtype t, N_Vector c, N_Vector cB,
              N_Vector cBdot, void *user_data)
{
  int i, ic, ici, idxl, idxu, idyl, idyu, iyoff, jx, jy, ns, mxns;
  realtype dcxli, dcxui, dcyli, dcyui, x, y, *cox, *coy, *fsave, *fBsave, dx, dy;
  realtype *cdata, *cBdata, *cBdotdata;
  WebData wdata;

  realtype gu[NS];

  wdata = (WebData) user_data;
  cdata = N_VGetArrayPointer(c);
  cBdata = N_VGetArrayPointer(cB);
  cBdotdata = N_VGetArrayPointer(cBdot);

  mxns = wdata->mxns;
  ns = wdata->ns;
  fsave = wdata->fsave;
  fBsave = wdata->fBsave;
  cox = wdata->cox;
  coy = wdata->coy;
  mxns = wdata->mxns;
  dx = wdata->dx;
  dy = wdata->dy;

  for ( i = 0; i < ns; i++ ) gu[i] = ZERO;
  gu[ISPEC-1] = ONE;

  for (jy = 0; jy < MY; jy++) {
    y = jy*dy;
    iyoff = mxns*jy;
    idyu = (jy == MY-1) ? -mxns : mxns;
    idyl = (jy == 0) ? -mxns : mxns;
    for (jx = 0; jx < MX; jx++) {
      x = jx*dx;
      ic = iyoff + ns*jx;
      /* Get interaction rates at one point (x,y). */
      WebRatesB(x, y, t, cdata+ic, cBdata+ic, fsave+ic, fBsave+ic, wdata);
      idxu = (jx == MX-1) ? -ns : ns;
      idxl = (jx == 0) ? -ns : ns;
      for (i = 1; i <= ns; i++) {
        ici = ic + i-1;
        /* Do differencing in y. */
        dcyli = cBdata[ici] - cBdata[ici-idyl];
        dcyui = cBdata[ici+idyu] - cBdata[ici];
        /* Do differencing in x. */
        dcxli = cBdata[ici] - cBdata[ici-idxl];
        dcxui = cBdata[ici+idxu] - cBdata[ici];
        /* Collect terms and load cdot elements. */
        cBdotdata[ici] = - coy[i-1]*(dcyui - dcyli)
                         - cox[i-1]*(dcxui - dcxli)
                         - fBsave[ici]
                         - gu[i-1];
      }
    }
  }

  return(0);
}

/*
 * Preconditioner setup function for the backward problem
 */

static int PrecondB(realtype t, N_Vector c,
                    N_Vector cB, N_Vector fcB, booleantype jok,
                    booleantype *jcurPtr, realtype gamma,
                    void *user_data)
{
  realtype ***P;
  sunindextype **pivot;
  sunindextype denseretval;
  int i, if0, if00, ig, igx, igy, j, jj, jx, jy;
  int *jxr, *jyr, ngrp, ngx, ngy, mxmp, mp, retval;
  realtype uround, fac, r, r0, save, srur;
  realtype *f1, *fsave, *cdata, *rewtdata;
  void *cvode_mem;
  WebData wdata;
  N_Vector rewt;

  wdata = (WebData) user_data;
  cvode_mem = CVodeGetAdjCVodeBmem(wdata->cvode_mem, wdata->indexB);
  if(check_retval((void *)cvode_mem, "CVadjGetCVodeBmem", 0)) return(1);
  rewt = wdata->rewtB;
  retval = CVodeGetErrWeights(cvode_mem, rewt);
  if(check_retval(&retval, "CVodeGetErrWeights", 1)) return(1);

  cdata = N_VGetArrayPointer(c);
  rewtdata = N_VGetArrayPointer(rewt);

  uround = UNIT_ROUNDOFF;

  P = wdata->P;
  pivot = wdata->pivot;
  jxr = wdata->jxr;
  jyr = wdata->jyr;
  mp = wdata->mp;
  srur = wdata->srur;
  ngrp = wdata->ngrp;
  ngx = wdata->ngx;
  ngy = wdata->ngy;
  mxmp = wdata->mxmp;
  fsave = wdata->fsave;

  /* Make mp calls to fblock to approximate each diagonal block of Jacobian.
     Here, fsave contains the base value of the rate vector and
     r0 is a minimum increment factor for the difference quotient. */

  f1 = N_VGetArrayPointer(wdata->vtempB);
  fac = N_VWrmsNorm (fcB, rewt);
  r0 = RCONST(1000.0)*fabs(gamma)*uround*NEQ*fac;
  if (r0 == ZERO) r0 = ONE;

  for (igy = 0; igy < ngy; igy++) {
    jy = jyr[igy];
    if00 = jy*mxmp;
    for (igx = 0; igx < ngx; igx++) {
      jx = jxr[igx];
      if0 = if00 + jx*mp;
      ig = igx + igy*ngx;
      /* Generate ig-th diagonal block */
      for (j = 0; j < mp; j++) {
        /* Generate the jth column as a difference quotient */
        jj = if0 + j;
        save = cdata[jj];
        r = MAX(srur*fabs(save),r0/rewtdata[jj]);
        cdata[jj] += r;
        fac = gamma/r;
        fblock (t, cdata, jx, jy, f1, wdata);
        for (i = 0; i < mp; i++) {
          P[ig][i][j] = (f1[i] - fsave[if0+i])*fac;
        }
        cdata[jj] = save;
      }
    }
  }

  /* Add identity matrix and do LU decompositions on blocks. */

   for (ig = 0; ig < ngrp; ig++) {
     SUNDlsMat_denseAddIdentity(P[ig], mp);
     denseretval = SUNDlsMat_denseGETRF(P[ig], mp, mp, pivot[ig]);
     if (denseretval != 0) return(1);
   }

  *jcurPtr = SUNTRUE;
  return(0);
}

/*
 * Preconditioner solve function for the backward problem
 */

static int PSolveB(realtype t, N_Vector c,
                   N_Vector cB, N_Vector fcB,
                   N_Vector r, N_Vector z,
                   realtype gamma, realtype delta,
                   int lr, void *user_data)
{
  realtype ***P;
  sunindextype **pivot;
  int jx, jy, igx, igy, iv, ig, *jigx, *jigy, mx, my, ngx, mp;
  WebData wdata;

  wdata = (WebData) user_data;

  N_VScale(ONE, r, z);

  /* call GSIter for Gauss-Seidel iterations (same routine but with gamma=-gamma) */

  GSIter(-gamma, z, wdata->vtempB, wdata);

  /* Do backsolves for inverse of block-diagonal preconditioner factor */

  P = wdata->P;
  pivot = wdata->pivot;
  mx = wdata->mx;
  my = wdata->my;
  ngx = wdata->ngx;
  mp = wdata->mp;
  jigx = wdata->jigx;
  jigy = wdata->jigy;

  iv = 0;
  for (jy = 0; jy < my; jy++) {
    igy = jigy[jy];
    for (jx = 0; jx < mx; jx++) {
      igx = jigx[jx];
      ig = igx + igy*ngx;
      SUNDlsMat_denseGETRS(P[ig], mp, pivot[ig], &(N_VGetArrayPointer(z)[iv]));
      iv += mp;
    }
  }

  return(0);
}

/*
 *--------------------------------------------------------------------
 * PRIVATE FUNCTIONS
 *--------------------------------------------------------------------
 */

/*
 * Allocate space for user data structure
 */

static WebData AllocUserData(void)
{
  int i, ngrp = NGRP;
  sunindextype ns = NS;
  WebData wdata;

  wdata = (WebData) malloc(sizeof *wdata);
  for(i=0; i < ngrp; i++) {
    (wdata->P)[i] = SUNDlsMat_newDenseMat(ns, ns);
    (wdata->pivot)[i] = SUNDlsMat_newIndexArray(ns);
  }
  wdata->rewt   = N_VNew_Serial(NEQ+1, sunctx);
  wdata->vtemp  = N_VNew_Serial(NEQ+1, sunctx);
  wdata->rewtB  = N_VNew_Serial(NEQ, sunctx);
  wdata->vtempB = N_VNew_Serial(NEQ, sunctx);

  return(wdata);
}

/*
 * Initialize user data structure
 */

static void InitUserData(WebData wdata)
{
  int i, j, ns;
  realtype *bcoef, *diff, *cox, *coy, dx, dy;
  realtype (*acoef)[NS];

  acoef = wdata->acoef;
  bcoef = wdata->bcoef;
  diff = wdata->diff;
  cox = wdata->cox;
  coy = wdata->coy;
  ns = wdata->ns = NS;

  for (j = 0; j < NS; j++) { for (i = 0; i < NS; i++) acoef[i][j] = ZERO; }
  for (j = 0; j < NP; j++) {
    for (i = 0; i < NP; i++) {
      acoef[NP+i][j] = EE;
      acoef[i][NP+j] = -GG;
    }
    acoef[j][j] = -AA;
    acoef[NP+j][NP+j] = -AA;
    bcoef[j] = BB;
    bcoef[NP+j] = -BB;
    diff[j] = DPREY;
    diff[NP+j] = DPRED;
  }

  /* Set remaining problem parameters */

  wdata->mxns = MXNS;
  dx = wdata->dx = DX;
  dy = wdata->dy = DY;
  for (i = 0; i < ns; i++) {
    cox[i] = diff[i]/SQR(dx);
    coy[i] = diff[i]/SQR(dy);
  }

  /* Set remaining method parameters */

  wdata->mp = MP;
  wdata->mq = MQ;
  wdata->mx = MX;
  wdata->my = MY;
  wdata->srur = sqrt(UNIT_ROUNDOFF);
  wdata->mxmp = MXMP;
  wdata->ngrp = NGRP;
  wdata->ngx = NGX;
  wdata->ngy = NGY;
  SetGroups(MX, NGX, wdata->jgx, wdata->jigx, wdata->jxr);
  SetGroups(MY, NGY, wdata->jgy, wdata->jigy, wdata->jyr);
}

/*
 * This routine sets arrays jg, jig, and jr describing
 * a uniform partition of (0,1,2,...,m-1) into ng groups.
 * The arrays set are:
 *   jg    = length ng+1 array of group boundaries.
 *           Group ig has indices j = jg[ig],...,jg[ig+1]-1.
 *   jig   = length m array of group indices vs node index.
 *           Node index j is in group jig[j].
 *   jr    = length ng array of indices representing the groups.
 *           The index for group ig is j = jr[ig].
 */

static void SetGroups(int m, int ng, int jg[], int jig[], int jr[])
{
  int ig, j, len1, mper, ngm1;

  mper = m/ng; /* does integer division */
  for (ig=0; ig < ng; ig++) jg[ig] = ig*mper;
  jg[ng] = m;

  ngm1 = ng - 1;
  len1 = ngm1*mper;
  for (j = 0; j < len1; j++) jig[j] = j/mper;
  for (j = len1; j < m; j++) jig[j] = ngm1;

  for (ig = 0; ig < ngm1; ig++) jr[ig] = ((2*ig+1)*mper-1)/2;
  jr[ngm1] = (ngm1*mper+m-1)/2;
}

/*
 * This routine computes and loads the vector of initial values.
 */

static void CInit(N_Vector c, WebData wdata)
{
  int i, ici, ioff, iyoff, jx, jy, ns, mxns;
  realtype argx, argy, x, y, dx, dy, x_factor, y_factor, *cdata;

  cdata = N_VGetArrayPointer(c);
  ns = wdata->ns;
  mxns = wdata->mxns;
  dx = wdata->dx;
  dy = wdata->dy;

  x_factor = RCONST(4.0)/SQR(AX);
  y_factor = RCONST(4.0)/SQR(AY);
  for (jy = 0; jy < MY; jy++) {
    y = jy*dy;
    argy = SQR(y_factor*y*(AY-y));
    iyoff = mxns*jy;
    for (jx = 0; jx < MX; jx++) {
      x = jx*dx;
      argx = SQR(x_factor*x*(AX-x));
      ioff = iyoff + ns*jx;
      for (i = 1; i <= ns; i++) {
        ici = ioff + i-1;
        cdata[ici] = RCONST(10.0) + i*argx*argy;

        /*if(i==1) cdata[ici] += ONE;*/

      }
    }
  }

  /* Initialize quadrature variable to zero */
  cdata[NEQ] = ZERO;
}

/*
 * This routine computes the interaction rates for the species
 * c_1, ... ,c_ns (stored in c[0],...,c[ns-1]), at one spatial point
 * and at time t.
 */

static void WebRates(realtype x, realtype y, realtype t, realtype c[],
                     realtype rate[], WebData wdata)
{
  int i, j, ns;
  realtype fac, *bcoef;
  realtype (*acoef)[NS];

  ns = wdata->ns;
  acoef = wdata->acoef;
  bcoef = wdata->bcoef;

  for (i = 0; i < ns; i++)
    rate[i] = ZERO;

  for (j = 0; j < ns; j++)
    for (i = 0; i < ns; i++)
      rate[i] += c[j] * acoef[i][j];

  fac = ONE + ALPH*x*y;
  for (i = 0; i < ns; i++)
    rate[i] = c[i]*(bcoef[i]*fac + rate[i]);
}

/*
 * This routine computes the interaction rates for the backward problem
 */

static void WebRatesB(realtype x, realtype y, realtype t, realtype c[], realtype cB[],
                      realtype rate[], realtype rateB[], WebData wdata)
{
  int i, j, ns;
  realtype fac, *bcoef;
  realtype (*acoef)[NS];

  ns = wdata->ns;
  acoef = wdata->acoef;
  bcoef = wdata->bcoef;

  fac = ONE + ALPH*x*y;

  for (i = 0; i < ns; i++)
    rate[i] = bcoef[i]*fac;

  for (j = 0; j < ns; j++)
    for (i = 0; i < ns; i++)
      rate[i] += acoef[i][j]*c[j];

  for (i = 0; i < ns; i++) {
    rateB[i] = cB[i]*rate[i];
    rate[i] = c[i]*rate[i];
  }

  for (j = 0; j < ns; j++)
    for (i = 0; i < ns; i++)
      rateB[i] += acoef[j][i]*c[j]*cB[j];
}

/*
 * This routine computes one block of the interaction terms of the
 * system, namely block (jx,jy), for use in preconditioning.
 * Here jx and jy count from 0.
 */

static void fblock(realtype t, realtype cdata[], int jx, int jy,
                   realtype cdotdata[], WebData wdata)
{
  int iblok, ic;
  realtype x, y;

  iblok = jx + jy*(wdata->mx);
  y = jy*(wdata->dy);
  x = jx*(wdata->dx);
  ic = (wdata->ns)*(iblok);
  WebRates(x, y, t, cdata+ic, cdotdata, wdata);
}

/*
 * This routine performs ITMAX=5 Gauss-Seidel iterations to compute an
 * approximation to (P-inverse)*z, where P = I - gamma*Jd, and
 * Jd represents the diffusion contributions to the Jacobian.
 * The answer is stored in z on return, and x is a temporary vector.
 * The dimensions below assume a global constant NS >= ns.
 * Some inner loops of length ns are implemented with the small
 * vector kernels v_sum_prods, v_prod, v_inc_by_prod.
 */

static void GSIter(realtype gamma, N_Vector z, N_Vector x, WebData wdata)
{
  int i, ic, iter, iyoff, jx, jy, ns, mxns, mx, my, x_loc, y_loc;
  realtype beta[NS], beta2[NS], cof1[NS], gam[NS], gam2[NS];
  realtype temp, *cox, *coy, *xd, *zd;

  xd = N_VGetArrayPointer(x);
  zd = N_VGetArrayPointer(z);
  ns = wdata->ns;
  mx = wdata->mx;
  my = wdata->my;
  mxns = wdata->mxns;
  cox = wdata->cox;
  coy = wdata->coy;

  /* Write matrix as P = D - L - U.
     Load local arrays beta, beta2, gam, gam2, and cof1. */

  for (i = 0; i < ns; i++) {
    temp = ONE/(ONE + TWO*gamma*(cox[i] + coy[i]));
    beta[i] = gamma*cox[i]*temp;
    beta2[i] = TWO*beta[i];
    gam[i] = gamma*coy[i]*temp;
    gam2[i] = TWO*gam[i];
    cof1[i] = temp;
  }

  /* Begin iteration loop.
  Load vector x with (D-inverse)*z for first iteration. */

  for (jy = 0; jy < my; jy++) {
    iyoff = mxns*jy;
    for (jx = 0; jx < mx; jx++) {
      ic = iyoff + ns*jx;
      v_prod(xd+ic, cof1, zd+ic, ns); /* x[ic+i] = cof1[i]z[ic+i] */
    }
  }
  N_VConst(ZERO, z);

  /* Looping point for iterations. */

  for (iter=1; iter <= ITMAX; iter++) {

    /* Calculate (D-inverse)*U*x if not the first iteration. */

    if (iter > 1) {
      for (jy=0; jy < my; jy++) {
        iyoff = mxns*jy;
        for (jx=0; jx < mx; jx++) { /* order of loops matters */
          ic = iyoff + ns*jx;
          x_loc = (jx == 0) ? 0 : ((jx == mx-1) ? 2 : 1);
          y_loc = (jy == 0) ? 0 : ((jy == my-1) ? 2 : 1);
          switch (3*y_loc+x_loc) {
          case 0 : /* jx == 0, jy == 0 */
            /* x[ic+i] = beta2[i]x[ic+ns+i] + gam2[i]x[ic+mxns+i] */
            v_sum_prods(xd+ic, beta2, xd+ic+ns, gam2, xd+ic+mxns, ns);
            break;
          case 1 : /* 1 <= jx <= mx-2, jy == 0 */
            /* x[ic+i] = beta[i]x[ic+ns+i] + gam2[i]x[ic+mxns+i] */
            v_sum_prods(xd+ic, beta, xd+ic+ns, gam2, xd+ic+mxns, ns);
            break;
          case 2 : /* jx == mx-1, jy == 0 */
            /* x[ic+i] = gam2[i]x[ic+mxns+i] */
            v_prod(xd+ic, gam2, xd+ic+mxns, ns);
            break;
          case 3 : /* jx == 0, 1 <= jy <= my-2 */
            /* x[ic+i] = beta2[i]x[ic+ns+i] + gam[i]x[ic+mxns+i] */
            v_sum_prods(xd+ic, beta2, xd+ic+ns, gam, xd+ic+mxns, ns);
            break;
          case 4 : /* 1 <= jx <= mx-2, 1 <= jy <= my-2 */
            /* x[ic+i] = beta[i]x[ic+ns+i] + gam[i]x[ic+mxns+i] */
            v_sum_prods(xd+ic, beta, xd+ic+ns, gam, xd+ic+mxns, ns);
            break;
          case 5 : /* jx == mx-1, 1 <= jy <= my-2 */
            /* x[ic+i] = gam[i]x[ic+mxns+i] */
            v_prod(xd+ic, gam, xd+ic+mxns, ns);
            break;
          case 6 : /* jx == 0, jy == my-1 */
            /* x[ic+i] = beta2[i]x[ic+ns+i] */
            v_prod(xd+ic, beta2, xd+ic+ns, ns);
            break;
          case 7 : /* 1 <= jx <= mx-2, jy == my-1 */
            /* x[ic+i] = beta[i]x[ic+ns+i] */
            v_prod(xd+ic, beta, xd+ic+ns, ns);
            break;
          case 8 : /* jx == mx-1, jy == my-1 */
            /* x[ic+i] = ZERO */
            v_zero(xd+ic, ns);
            break;
          }
        }
      }
    }  /* end if (iter > 1) */

    /* Overwrite x with [(I - (D-inverse)*L)-inverse]*x. */

    for (jy=0; jy < my; jy++) {
      iyoff = mxns*jy;
      for (jx=0; jx < mx; jx++) { /* order of loops matters */
        ic = iyoff + ns*jx;
        x_loc = (jx == 0) ? 0 : ((jx == mx-1) ? 2 : 1);
        y_loc = (jy == 0) ? 0 : ((jy == my-1) ? 2 : 1);
        switch (3*y_loc+x_loc) {
        case 0 : /* jx == 0, jy == 0 */
          break;
        case 1 : /* 1 <= jx <= mx-2, jy == 0 */
          /* x[ic+i] += beta[i]x[ic-ns+i] */
          v_inc_by_prod(xd+ic, beta, xd+ic-ns, ns);
          break;
        case 2 : /* jx == mx-1, jy == 0 */
          /* x[ic+i] += beta2[i]x[ic-ns+i] */
          v_inc_by_prod(xd+ic, beta2, xd+ic-ns, ns);
          break;
        case 3 : /* jx == 0, 1 <= jy <= my-2 */
          /* x[ic+i] += gam[i]x[ic-mxns+i] */
          v_inc_by_prod(xd+ic, gam, xd+ic-mxns, ns);
          break;
        case 4 : /* 1 <= jx <= mx-2, 1 <= jy <= my-2 */
          /* x[ic+i] += beta[i]x[ic-ns+i] + gam[i]x[ic-mxns+i] */
          v_inc_by_prod(xd+ic, beta, xd+ic-ns, ns);
          v_inc_by_prod(xd+ic, gam, xd+ic-mxns, ns);
          break;
        case 5 : /* jx == mx-1, 1 <= jy <= my-2 */
          /* x[ic+i] += beta2[i]x[ic-ns+i] + gam[i]x[ic-mxns+i] */
          v_inc_by_prod(xd+ic, beta2, xd+ic-ns, ns);
          v_inc_by_prod(xd+ic, gam, xd+ic-mxns, ns);
          break;
        case 6 : /* jx == 0, jy == my-1 */
          /* x[ic+i] += gam2[i]x[ic-mxns+i] */
          v_inc_by_prod(xd+ic, gam2, xd+ic-mxns, ns);
          break;
        case 7 : /* 1 <= jx <= mx-2, jy == my-1 */
          /* x[ic+i] += beta[i]x[ic-ns+i] + gam2[i]x[ic-mxns+i] */
          v_inc_by_prod(xd+ic, beta, xd+ic-ns, ns);
          v_inc_by_prod(xd+ic, gam2, xd+ic-mxns, ns);
          break;
        case 8 : /* jx == mx-1, jy == my-1 */
          /* x[ic+i] += beta2[i]x[ic-ns+i] + gam2[i]x[ic-mxns+i] */
          v_inc_by_prod(xd+ic, beta2, xd+ic-ns, ns);
          v_inc_by_prod(xd+ic, gam2, xd+ic-mxns, ns);
          break;
        }
      }
    }

    /* Add increment x to z : z <- z+x */

    N_VLinearSum(ONE, z, ONE, x, z);

  }
}

static void v_inc_by_prod(realtype u[], realtype v[], realtype w[], int n)
{
  int i;
  for (i=0; i < n; i++) u[i] += v[i]*w[i];
}

static void v_sum_prods(realtype u[], realtype p[], realtype q[],
                        realtype v[], realtype w[], int n)
{
  int i;
  for (i=0; i < n; i++) u[i] = p[i]*q[i] + v[i]*w[i];
}

static void v_prod(realtype u[], realtype v[], realtype w[], int n)
{
  int i;
  for (i=0; i < n; i++) u[i] = v[i]*w[i];
}

static void v_zero(realtype u[], int n)
{
  int i;
  for (i=0; i < n; i++) u[i] = ZERO;
}

/*
 * Print maximum sensitivity of G for each species
 */

static void PrintOutput(N_Vector cB, int ns, int mxns, WebData wdata)
{
  int i, jx, jy;
  realtype *cdata, cij, cmax, x, y;

  x = y = ZERO;

  cdata = N_VGetArrayPointer(cB);

  for (i=1; i <= ns; i++) {

    cmax = ZERO;

    for (jy=MY-1; jy >= 0; jy--) {
      for (jx=0; jx < MX; jx++) {
        cij = cdata[(i-1) + jx*ns + jy*mxns];
        if (fabs(cij) > cmax) {
          cmax = cij;
          x = jx * wdata->dx;
          y = jy * wdata->dy;
        }
      }
    }

    printf("\nMaximum sensitivity with respect to I.C. of species %d\n", i);
#if defined(SUNDIALS_EXTENDED_PRECISION)
    printf("  lambda max = %Le\n",cmax);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
    printf("  lambda max = %e\n",cmax);
#else
    printf("  lambda max = %e\n",cmax);
#endif
    printf("at\n");
#if defined(SUNDIALS_EXTENDED_PRECISION)
    printf("  x = %Le\n  y = %Le\n", x, y);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
    printf("  x = %e\n  y = %e\n", x, y);
#else
    printf("  x = %e\n  y = %e\n", x, y);
#endif

  }

}

/*
 * Compute double space integral
 */

static realtype doubleIntgr(N_Vector c, int i, WebData wdata)
{
  realtype *cdata;
  int ns, mx, my, mxns;
  realtype dx, dy;
  realtype intgr_xy, intgr_x;
  int jx, jy;

  cdata = N_VGetArrayPointer(c);

  ns   = wdata->ns;
  mx   = wdata->mx;
  my   = wdata->my;
  mxns = wdata->mxns;
  dx   = wdata->dx;
  dy   = wdata->dy;

  jy = 0;
  intgr_x = cdata[(i-1)+jy*mxns];
  for (jx = 1; jx < mx-1; jx++) {
    intgr_x += TWO*cdata[(i-1) + jx*ns + jy*mxns];
  }
  intgr_x += cdata[(i-1)+(mx-1)*ns+jy*mxns];
  intgr_x *= RCONST(0.5)*dx;

  intgr_xy = intgr_x;

  for (jy = 1; jy < my-1; jy++) {

    intgr_x = cdata[(i-1)+jy*mxns];
    for (jx = 1; jx < mx-1; jx++) {
      intgr_x += TWO*cdata[(i-1) + jx*ns + jy*mxns];
    }
    intgr_x += cdata[(i-1)+(mx-1)*ns+jy*mxns];
    intgr_x *= RCONST(0.5)*dx;

    intgr_xy += TWO*intgr_x;

  }

  jy = my-1;
  intgr_x = cdata[(i-1)+jy*mxns];
  for (jx = 1; jx < mx-1; jx++) {
    intgr_x += TWO*cdata[(i-1) + jx*ns + jy*mxns];
  }
  intgr_x += cdata[(i-1)+(mx-1)*ns+jy*mxns];
  intgr_x *= RCONST(0.5)*dx;

  intgr_xy += intgr_x;

  intgr_xy *= RCONST(0.5)*dy;

  return(intgr_xy);
}

/*
 * Free space allocated for the user data structure
 */

static void FreeUserData(WebData wdata)
{
  int i, ngrp;

  ngrp = wdata->ngrp;
  for(i=0; i < ngrp; i++) {
    SUNDlsMat_destroyMat((wdata->P)[i]);
    SUNDlsMat_destroyArray((wdata->pivot)[i]);
  }
  N_VDestroy(wdata->rewt);
  N_VDestroy(wdata->vtemp);
  N_VDestroy(wdata->rewtB);
  N_VDestroy(wdata->vtempB);
  free(wdata);
}

/*
 * Check function return value.
 *    opt == 0 means SUNDIALS function allocates memory so check if
 *             returned NULL pointer
 *    opt == 1 means SUNDIALS function returns an integer value so check if
 *             retval < 0
 *    opt == 2 means function allocates memory so check if returned
 *             NULL pointer
 */

static int check_retval(void *returnvalue, const char *funcname, int opt)
{
  int *retval;

  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */
  if (opt == 0 && returnvalue == NULL) {
    fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return(1); }

  /* Check if retval < 0 */
  else if (opt == 1) {
    retval = (int *) returnvalue;
    if (*retval < 0) {
      fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with retval = %d\n\n",
              funcname, *retval);
      return(1); }}

  /* Check if function returned NULL pointer - no memory allocated */
  else if (opt == 2 && returnvalue == NULL) {
    fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return(1); }

  return(0);
}