1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
|
/* -----------------------------------------------------------------
* Programmer(s): Jimmy Almgren-Bell @ LLNL
* Based on prior version by: Radu Serban @ LLNL
* -----------------------------------------------------------------
* SUNDIALS Copyright Start
* Copyright (c) 2002-2022, Lawrence Livermore National Security
* and Southern Methodist University.
* All rights reserved.
*
* See the top-level LICENSE and NOTICE files for details.
*
* SPDX-License-Identifier: BSD-3-Clause
* SUNDIALS Copyright End
* -----------------------------------------------------------------
* Adjoint sensitivity example problem.
* The following is a simple example problem, with the coding
* needed for its solution by CVODES. The problem is from chemical
* kinetics, and consists of the following three rate equations.
* dy1/dt = -p1*y1 + p2*y2*y3
* dy2/dt = p1*y1 - p2*y2*y3 - p3*(y2)^2
* dy3/dt = p3*(y2)^2
* on the interval from t = 0.0 to t = 4.e10, with initial
* conditions: y1 = 1.0, y2 = y3 = 0. The reaction rates are:
* p1=0.04, p2=1e4, and p3=3e7. The problem is stiff.
* This program solves the problem with the BDF method, Newton
* iteration with the CVODE dense linear solver, and a user-supplied
* Jacobian routine.
* It uses a scalar relative tolerance and a vector absolute
* tolerance.
* The constraint y_i >= 0 is posed for all components.
* Output is printed in decades from t = .4 to t = 4.e10.
* Run statistics (optional outputs) are printed at the end.
*
* Optionally, CVODES can compute sensitivities with respect to
* the problem parameters p1, p2, and p3 of the following quantity:
* G = int_t0^t1 g(t,p,y) dt
* where
* g(t,p,y) = y3
*
* The gradient dG/dp is obtained as:
* dG/dp = int_t0^t1 (g_p - lambda^T f_p ) dt - lambda^T(t0)*y0_p
* = - xi^T(t0) - lambda^T(t0)*y0_p
* where lambda and xi are solutions of:
* d(lambda)/dt = - (f_y)^T * lambda - (g_y)^T
* lambda(t1) = 0
* and
* d(xi)/dt = - (f_p)^T * lambda + (g_p)^T
* xi(t1) = 0
*
* During the backward integration, CVODES also evaluates G as
* G = - phi(t0)
* where
* d(phi)/dt = g(t,y,p)
* phi(t1) = 0
* -----------------------------------------------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include <cvodes/cvodes.h> /* prototypes for CVODE fcts., consts. */
#include <nvector/nvector_serial.h> /* access to serial N_Vector */
#include <sunmatrix/sunmatrix_dense.h> /* access to dense SUNMatrix */
#include <sunlinsol/sunlinsol_dense.h> /* access to dense SUNLinearSolver */
#include <cvodes/cvodes_direct.h> /* access to CVDls interface */
#include <sundials/sundials_types.h> /* defs. of realtype, sunindextype */
#include <sundials/sundials_math.h> /* defs. of SUNRabs, SUNRexp, etc. */
/* Accessor macros */
#define Ith(v,i) NV_Ith_S(v,i-1) /* i-th vector component, i=1..NEQ */
#define IJth(A,i,j) SM_ELEMENT_D(A,i-1,j-1) /* (i,j)-th matrix el., i,j=1..NEQ */
/* Problem Constants */
#define NEQ 3 /* number of equations */
#define RTOL RCONST(1e-4) /* scalar relative tolerance */
#define ATOL1 RCONST(1e-4) /* vector absolute tolerance components */
#define ATOL2 RCONST(1e-8)
#define ATOL3 RCONST(1e-4)
#define ATOLl RCONST(1e-8) /* absolute tolerance for adjoint vars. */
#define ATOLq RCONST(1e-6) /* absolute tolerance for quadratures */
#define T0 RCONST(0.0) /* initial time */
#define TOUT RCONST(4e7) /* final time */
#define TB1 RCONST(4e7) /* starting point for adjoint problem */
#define TB2 RCONST(50.0) /* starting point for adjoint problem */
#define TBout1 RCONST(40.0) /* intermediate t for adjoint problem */
#define STEPS 150 /* number of steps between check points */
#define NP 3 /* number of problem parameters */
#define ZERO RCONST(0.0)
#define ONE RCONST(1.0)
/* Type : UserData */
typedef struct {
realtype p[3];
} *UserData;
/* Prototypes of user-supplied functions */
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data);
static int Jac(realtype t, N_Vector y, N_Vector fy, SUNMatrix J,
void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
static int fQ(realtype t, N_Vector y, N_Vector qdot, void *user_data);
static int ewt(N_Vector y, N_Vector w, void *user_data);
static int fB(realtype t, N_Vector y,
N_Vector yB, N_Vector yBdot, void *user_dataB);
static int JacB(realtype t, N_Vector y, N_Vector yB, N_Vector fyB, SUNMatrix JB,
void *user_dataB, N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B);
static int fQB(realtype t, N_Vector y, N_Vector yB,
N_Vector qBdot, void *user_dataB);
/* Prototypes of private functions */
static void PrintHead(realtype tB0);
static void PrintOutput(realtype tfinal, N_Vector y, N_Vector yB, N_Vector qB);
static void PrintOutput1(realtype time, realtype t, N_Vector y, N_Vector yB);
static int check_retval(void *returnvalue, const char *funcname, int opt);
/*
*--------------------------------------------------------------------
* MAIN PROGRAM
*--------------------------------------------------------------------
*/
int main(int argc, char *argv[])
{
SUNContext sunctx;
UserData data;
SUNMatrix A, AB;
SUNLinearSolver LS, LSB;
void *cvode_mem;
realtype reltolQ, abstolQ;
N_Vector y, q, constraints;
int steps;
int indexB;
realtype reltolB, abstolB, abstolQB;
N_Vector yB, qB, constraintsB;
realtype time;
int retval, ncheck;
long int nst, nstB;
CVadjCheckPointRec *ckpnt;
data = NULL;
A = AB = NULL;
LS = LSB = NULL;
cvode_mem = NULL;
ckpnt = NULL;
y = yB = qB = NULL;
constraints = NULL;
constraintsB = NULL;
/* Print problem description */
printf("\nAdjoint Sensitivity Example for Chemical Kinetics\n");
printf("-------------------------------------------------\n\n");
printf("ODE: dy1/dt = -p1*y1 + p2*y2*y3\n");
printf(" dy2/dt = p1*y1 - p2*y2*y3 - p3*(y2)^2\n");
printf(" dy3/dt = p3*(y2)^2\n\n");
printf("Find dG/dp for\n");
printf(" G = int_t0^tB0 g(t,p,y) dt\n");
printf(" g(t,p,y) = y3\n\n\n");
/* User data structure */
data = (UserData) malloc(sizeof *data);
if (check_retval((void *)data, "malloc", 2)) return(1);
data->p[0] = RCONST(0.04);
data->p[1] = RCONST(1.0e4);
data->p[2] = RCONST(3.0e7);
/* Create the SUNDIALS simulation context that all SUNDIALS objects require */
retval = SUNContext_Create(NULL, &sunctx);
if (check_retval(&retval, "SUNContext_Create", 1)) return(1);
/* Initialize y */
y = N_VNew_Serial(NEQ, sunctx);
if (check_retval((void *)y, "N_VNew_Serial", 0)) return(1);
Ith(y,1) = RCONST(1.0);
Ith(y,2) = ZERO;
Ith(y,3) = ZERO;
/* Set constraints to all 1's for nonnegative solution values. */
constraints = N_VNew_Serial(NEQ, sunctx);
if(check_retval((void *)constraints, "N_VNew_Serial", 0)) return(1);
N_VConst(ONE, constraints);
/* Initialize q */
q = N_VNew_Serial(1, sunctx);
if (check_retval((void *)q, "N_VNew_Serial", 0)) return(1);
Ith(q,1) = ZERO;
/* Set the scalar realtive and absolute tolerances reltolQ and abstolQ */
reltolQ = RTOL;
abstolQ = ATOLq;
/* Create and allocate CVODES memory for forward run */
printf("Create and allocate CVODES memory for forward runs\n");
/* Call CVodeCreate to create the solver memory and specify the
Backward Differentiation Formula */
cvode_mem = CVodeCreate(CV_BDF, sunctx);
if (check_retval((void *)cvode_mem, "CVodeCreate", 0)) return(1);
/* Call CVodeInit to initialize the integrator memory and specify the
user's right hand side function in y'=f(t,y), the initial time T0, and
the initial dependent variable vector y. */
retval = CVodeInit(cvode_mem, f, T0, y);
if (check_retval(&retval, "CVodeInit", 1)) return(1);
/* Call CVodeWFtolerances to specify a user-supplied function ewt that sets
the multiplicative error weights w_i for use in the weighted RMS norm */
retval = CVodeWFtolerances(cvode_mem, ewt);
if (check_retval(&retval, "CVodeWFtolerances", 1)) return(1);
/* Attach user data */
retval = CVodeSetUserData(cvode_mem, data);
if (check_retval(&retval, "CVodeSetUserData", 1)) return(1);
/* Call CVodeSetConstraints to initialize constraints */
retval = CVodeSetConstraints(cvode_mem, constraints);
if (check_retval(&retval, "CVODESetConstraints", 1)) return(1);
N_VDestroy(constraints);
/* Create dense SUNMatrix for use in linear solves */
A = SUNDenseMatrix(NEQ, NEQ, sunctx);
if (check_retval((void *)A, "SUNDenseMatrix", 0)) return(1);
/* Create dense SUNLinearSolver object */
LS = SUNLinSol_Dense(y, A, sunctx);
if (check_retval((void *)LS, "SUNLinSol_Dense", 0)) return(1);
/* Attach the matrix and linear solver */
retval = CVodeSetLinearSolver(cvode_mem, LS, A);
if (check_retval(&retval, "CVodeSetLinearSolver", 1)) return(1);
/* Set the user-supplied Jacobian routine Jac */
retval = CVodeSetJacFn(cvode_mem, Jac);
if (check_retval(&retval, "CVodeSetJacFn", 1)) return(1);
/* Call CVodeQuadInit to allocate initernal memory and initialize
quadrature integration*/
retval = CVodeQuadInit(cvode_mem, fQ, q);
if (check_retval(&retval, "CVodeQuadInit", 1)) return(1);
/* Call CVodeSetQuadErrCon to specify whether or not the quadrature variables
are to be used in the step size control mechanism within CVODES. Call
CVodeQuadSStolerances or CVodeQuadSVtolerances to specify the integration
tolerances for the quadrature variables. */
retval = CVodeSetQuadErrCon(cvode_mem, SUNTRUE);
if (check_retval(&retval, "CVodeSetQuadErrCon", 1)) return(1);
/* Call CVodeQuadSStolerances to specify scalar relative and absolute
tolerances. */
retval = CVodeQuadSStolerances(cvode_mem, reltolQ, abstolQ);
if (check_retval(&retval, "CVodeQuadSStolerances", 1)) return(1);
/* Allocate global memory */
/* Call CVodeAdjInit to update CVODES memory block by allocting the internal
memory needed for backward integration.*/
steps = STEPS; /* no. of integration steps between two consecutive ckeckpoints*/
retval = CVodeAdjInit(cvode_mem, steps, CV_HERMITE);
/*
retval = CVodeAdjInit(cvode_mem, steps, CV_POLYNOMIAL);
*/
if (check_retval(&retval, "CVodeAdjInit", 1)) return(1);
/* Perform forward run */
printf("Forward integration ... ");
/* Call CVodeF to integrate the forward problem over an interval in time and
saves checkpointing data */
retval = CVodeF(cvode_mem, TOUT, y, &time, CV_NORMAL, &ncheck);
if (check_retval(&retval, "CVodeF", 1)) return(1);
retval = CVodeGetNumSteps(cvode_mem, &nst);
if (check_retval(&retval, "CVodeGetNumSteps", 1)) return(1);
printf("done ( nst = %ld )\n",nst);
printf("\nncheck = %d\n\n", ncheck);
retval = CVodeGetQuad(cvode_mem, &time, q);
if (check_retval(&retval, "CVodeGetQuad", 1)) return(1);
printf("--------------------------------------------------------\n");
#if defined(SUNDIALS_EXTENDED_PRECISION)
printf("G: %12.4Le \n",Ith(q,1));
#elif defined(SUNDIALS_DOUBLE_PRECISION)
printf("G: %12.4e \n",Ith(q,1));
#else
printf("G: %12.4e \n",Ith(q,1));
#endif
printf("--------------------------------------------------------\n\n");
/* Test check point linked list
(uncomment next block to print check point information) */
/*
{
int i;
printf("\nList of Check Points (ncheck = %d)\n\n", ncheck);
ckpnt = (CVadjCheckPointRec *) malloc ( (ncheck+1)*sizeof(CVadjCheckPointRec));
CVodeGetAdjCheckPointsInfo(cvode_mem, ckpnt);
for (i=0;i<=ncheck;i++) {
printf("Address: %p\n",ckpnt[i].my_addr);
printf("Next: %p\n",ckpnt[i].next_addr);
printf("Time interval: %le %le\n",ckpnt[i].t0, ckpnt[i].t1);
printf("Step number: %ld\n",ckpnt[i].nstep);
printf("Order: %d\n",ckpnt[i].order);
printf("Step size: %le\n",ckpnt[i].step);
printf("\n");
}
}
*/
/* Initialize yB */
yB = N_VNew_Serial(NEQ, sunctx);
if (check_retval((void *)yB, "N_VNew_Serial", 0)) return(1);
Ith(yB,1) = ZERO;
Ith(yB,2) = ZERO;
Ith(yB,3) = ZERO;
/* Initialize qB */
qB = N_VNew_Serial(NP, sunctx);
if (check_retval((void *)qB, "N_VNew", 0)) return(1);
Ith(qB,1) = ZERO;
Ith(qB,2) = ZERO;
Ith(qB,3) = ZERO;
/* Set the scalar relative tolerance reltolB */
reltolB = RTOL;
/* Set the scalar absolute tolerance abstolB */
abstolB = ATOLl;
/* Set the scalar absolute tolerance abstolQB */
abstolQB = ATOLq;
/* Set constraints to all 1's for nonnegative solution values. */
constraintsB = N_VNew_Serial(NEQ, sunctx);
if(check_retval((void *)constraintsB, "N_VNew_Serial", 0)) return(1);
N_VConst(ONE, constraintsB);
/* Create and allocate CVODES memory for backward run */
printf("Create and allocate CVODES memory for backward run\n");
/* Call CVodeCreateB to specify the solution method for the backward
problem. */
retval = CVodeCreateB(cvode_mem, CV_BDF, &indexB);
if (check_retval(&retval, "CVodeCreateB", 1)) return(1);
/* Call CVodeInitB to allocate internal memory and initialize the
backward problem. */
retval = CVodeInitB(cvode_mem, indexB, fB, TB1, yB);
if (check_retval(&retval, "CVodeInitB", 1)) return(1);
/* Set the scalar relative and absolute tolerances. */
retval = CVodeSStolerancesB(cvode_mem, indexB, reltolB, abstolB);
if (check_retval(&retval, "CVodeSStolerancesB", 1)) return(1);
/* Attach the user data for backward problem. */
retval = CVodeSetUserDataB(cvode_mem, indexB, data);
if (check_retval(&retval, "CVodeSetUserDataB", 1)) return(1);
/* Call CVodeSetConstraintsB to initialize constraints */
retval = CVodeSetConstraintsB(cvode_mem, indexB, constraintsB);
if(check_retval(&retval, "CVodeSetConstraintsB", 1)) return(1);
N_VDestroy(constraintsB);
/* Create dense SUNMatrix for use in linear solves */
AB = SUNDenseMatrix(NEQ, NEQ, sunctx);
if (check_retval((void *)AB, "SUNDenseMatrix", 0)) return(1);
/* Create dense SUNLinearSolver object */
LSB = SUNLinSol_Dense(yB, AB, sunctx);
if (check_retval((void *)LSB, "SUNLinSol_Dense", 0)) return(1);
/* Attach the matrix and linear solver */
retval = CVodeSetLinearSolverB(cvode_mem, indexB, LSB, AB);
if (check_retval(&retval, "CVodeSetLinearSolverB", 1)) return(1);
/* Set the user-supplied Jacobian routine JacB */
retval = CVodeSetJacFnB(cvode_mem, indexB, JacB);
if (check_retval(&retval, "CVodeSetJacFnB", 1)) return(1);
/* Call CVodeQuadInitB to allocate internal memory and initialize backward
quadrature integration. */
retval = CVodeQuadInitB(cvode_mem, indexB, fQB, qB);
if (check_retval(&retval, "CVodeQuadInitB", 1)) return(1);
/* Call CVodeSetQuadErrCon to specify whether or not the quadrature variables
are to be used in the step size control mechanism within CVODES. Call
CVodeQuadSStolerances or CVodeQuadSVtolerances to specify the integration
tolerances for the quadrature variables. */
retval = CVodeSetQuadErrConB(cvode_mem, indexB, SUNTRUE);
if (check_retval(&retval, "CVodeSetQuadErrConB", 1)) return(1);
/* Call CVodeQuadSStolerancesB to specify the scalar relative and absolute tolerances
for the backward problem. */
retval = CVodeQuadSStolerancesB(cvode_mem, indexB, reltolB, abstolQB);
if (check_retval(&retval, "CVodeQuadSStolerancesB", 1)) return(1);
/* Backward Integration */
PrintHead(TB1);
/* First get results at t = TBout1 */
/* Call CVodeB to integrate the backward ODE problem. */
retval = CVodeB(cvode_mem, TBout1, CV_NORMAL);
if (check_retval(&retval, "CVodeB", 1)) return(1);
/* Call CVodeGetB to get yB of the backward ODE problem. */
retval = CVodeGetB(cvode_mem, indexB, &time, yB);
if (check_retval(&retval, "CVodeGetB", 1)) return(1);
/* Call CVodeGetAdjY to get the interpolated value of the forward solution
y during a backward integration. */
retval = CVodeGetAdjY(cvode_mem, TBout1, y);
if (check_retval(&retval, "CVodeGetAdjY", 1)) return(1);
PrintOutput1(time, TBout1, y, yB);
/* Then at t = T0 */
retval = CVodeB(cvode_mem, T0, CV_NORMAL);
if (check_retval(&retval, "CVodeB", 1)) return(1);
CVodeGetNumSteps(CVodeGetAdjCVodeBmem(cvode_mem, indexB), &nstB);
printf("Done ( nst = %ld )\n", nstB);
retval = CVodeGetB(cvode_mem, indexB, &time, yB);
if (check_retval(&retval, "CVodeGetB", 1)) return(1);
/* Call CVodeGetQuadB to get the quadrature solution vector after a
successful return from CVodeB. */
retval = CVodeGetQuadB(cvode_mem, indexB, &time, qB);
if (check_retval(&retval, "CVodeGetQuadB", 1)) return(1);
retval = CVodeGetAdjY(cvode_mem, T0, y);
if (check_retval(&retval, "CVodeGetAdjY", 1)) return(1);
PrintOutput(time, y, yB, qB);
/* Reinitialize backward phase (new tB0) */
Ith(yB,1) = ZERO;
Ith(yB,2) = ZERO;
Ith(yB,3) = ZERO;
Ith(qB,1) = ZERO;
Ith(qB,2) = ZERO;
Ith(qB,3) = ZERO;
printf("Re-initialize CVODES memory for backward run\n");
retval = CVodeReInitB(cvode_mem, indexB, TB2, yB);
if (check_retval(&retval, "CVodeReInitB", 1)) return(1);
retval = CVodeQuadReInitB(cvode_mem, indexB, qB);
if (check_retval(&retval, "CVodeQuadReInitB", 1)) return(1);
PrintHead(TB2);
/* First get results at t = TBout1 */
retval = CVodeB(cvode_mem, TBout1, CV_NORMAL);
if (check_retval(&retval, "CVodeB", 1)) return(1);
retval = CVodeGetB(cvode_mem, indexB, &time, yB);
if (check_retval(&retval, "CVodeGetB", 1)) return(1);
retval = CVodeGetAdjY(cvode_mem, TBout1, y);
if (check_retval(&retval, "CVodeGetAdjY", 1)) return(1);
PrintOutput1(time, TBout1, y, yB);
/* Then at t = T0 */
retval = CVodeB(cvode_mem, T0, CV_NORMAL);
if (check_retval(&retval, "CVodeB", 1)) return(1);
CVodeGetNumSteps(CVodeGetAdjCVodeBmem(cvode_mem, indexB), &nstB);
printf("Done ( nst = %ld )\n", nstB);
retval = CVodeGetB(cvode_mem, indexB, &time, yB);
if (check_retval(&retval, "CVodeGetB", 1)) return(1);
retval = CVodeGetQuadB(cvode_mem, indexB, &time, qB);
if (check_retval(&retval, "CVodeGetQuadB", 1)) return(1);
retval = CVodeGetAdjY(cvode_mem, T0, y);
if (check_retval(&retval, "CVodeGetAdjY", 1)) return(1);
PrintOutput(time, y, yB, qB);
/* Free memory */
printf("Free memory\n\n");
CVodeFree(&cvode_mem);
N_VDestroy(y);
N_VDestroy(q);
N_VDestroy(yB);
N_VDestroy(qB);
SUNLinSolFree(LS);
SUNMatDestroy(A);
SUNLinSolFree(LSB);
SUNMatDestroy(AB);
SUNContext_Free(&sunctx);
if (ckpnt != NULL) free(ckpnt);
free(data);
return(0);
}
/*
*--------------------------------------------------------------------
* FUNCTIONS CALLED BY CVODES
*--------------------------------------------------------------------
*/
/*
* f routine. Compute f(t,y).
*/
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
realtype y1, y2, y3, yd1, yd3;
UserData data;
realtype p1, p2, p3;
y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);
data = (UserData) user_data;
p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];
yd1 = Ith(ydot,1) = -p1*y1 + p2*y2*y3;
yd3 = Ith(ydot,3) = p3*y2*y2;
Ith(ydot,2) = -yd1 - yd3;
return(0);
}
/*
* Jacobian routine. Compute J(t,y).
*/
static int Jac(realtype t, N_Vector y, N_Vector fy, SUNMatrix J,
void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
realtype y2, y3;
UserData data;
realtype p1, p2, p3;
y2 = Ith(y,2); y3 = Ith(y,3);
data = (UserData) user_data;
p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];
IJth(J,1,1) = -p1; IJth(J,1,2) = p2*y3; IJth(J,1,3) = p2*y2;
IJth(J,2,1) = p1; IJth(J,2,2) = -p2*y3-2*p3*y2; IJth(J,2,3) = -p2*y2;
IJth(J,3,1) = ZERO; IJth(J,3,2) = 2*p3*y2; IJth(J,3,3) = ZERO;
return(0);
}
/*
* fQ routine. Compute fQ(t,y).
*/
static int fQ(realtype t, N_Vector y, N_Vector qdot, void *user_data)
{
Ith(qdot,1) = Ith(y,3);
return(0);
}
/*
* EwtSet function. Computes the error weights at the current solution.
*/
static int ewt(N_Vector y, N_Vector w, void *user_data)
{
int i;
realtype yy, ww, rtol, atol[3];
rtol = RTOL;
atol[0] = ATOL1;
atol[1] = ATOL2;
atol[2] = ATOL3;
for (i=1; i<=3; i++) {
yy = Ith(y,i);
ww = rtol * SUNRabs(yy) + atol[i-1];
if (ww <= 0.0) return (-1);
Ith(w,i) = 1.0/ww;
}
return(0);
}
/*
* fB routine. Compute fB(t,y,yB).
*/
static int fB(realtype t, N_Vector y, N_Vector yB, N_Vector yBdot, void *user_dataB)
{
UserData data;
realtype y2, y3;
realtype p1, p2, p3;
realtype l1, l2, l3;
realtype l21, l32;
data = (UserData) user_dataB;
/* The p vector */
p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];
/* The y vector */
y2 = Ith(y,2); y3 = Ith(y,3);
/* The lambda vector */
l1 = Ith(yB,1); l2 = Ith(yB,2); l3 = Ith(yB,3);
/* Temporary variables */
l21 = l2-l1;
l32 = l3-l2;
/* Load yBdot */
Ith(yBdot,1) = - p1*l21;
Ith(yBdot,2) = p2*y3*l21 - RCONST(2.0)*p3*y2*l32;
Ith(yBdot,3) = p2*y2*l21 - RCONST(1.0);
return(0);
}
/*
* JacB routine. Compute JB(t,y,yB).
*/
static int JacB(realtype t, N_Vector y, N_Vector yB, N_Vector fyB, SUNMatrix JB,
void *user_dataB, N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B)
{
UserData data;
realtype y2, y3;
realtype p1, p2, p3;
data = (UserData) user_dataB;
/* The p vector */
p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];
/* The y vector */
y2 = Ith(y,2); y3 = Ith(y,3);
/* Load JB */
IJth(JB,1,1) = p1; IJth(JB,1,2) = -p1; IJth(JB,1,3) = ZERO;
IJth(JB,2,1) = -p2*y3; IJth(JB,2,2) = p2*y3+2.0*p3*y2; IJth(JB,2,3) = RCONST(-2.0)*p3*y2;
IJth(JB,3,1) = -p2*y2; IJth(JB,3,2) = p2*y2; IJth(JB,3,3) = ZERO;
return(0);
}
/*
* fQB routine. Compute integrand for quadratures
*/
static int fQB(realtype t, N_Vector y, N_Vector yB,
N_Vector qBdot, void *user_dataB)
{
realtype y1, y2, y3;
realtype l1, l2, l3;
realtype l21, l32, y23;
/* The y vector */
y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);
/* The lambda vector */
l1 = Ith(yB,1); l2 = Ith(yB,2); l3 = Ith(yB,3);
/* Temporary variables */
l21 = l2-l1;
l32 = l3-l2;
y23 = y2*y3;
Ith(qBdot,1) = y1*l21;
Ith(qBdot,2) = - y23*l21;
Ith(qBdot,3) = y2*y2*l32;
return(0);
}
/*
*--------------------------------------------------------------------
* PRIVATE FUNCTIONS
*--------------------------------------------------------------------
*/
/*
* Print heading for backward integration
*/
static void PrintHead(realtype tB0)
{
#if defined(SUNDIALS_EXTENDED_PRECISION)
printf("Backward integration from tB0 = %12.4Le\n\n",tB0);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
printf("Backward integration from tB0 = %12.4e\n\n",tB0);
#else
printf("Backward integration from tB0 = %12.4e\n\n",tB0);
#endif
}
/*
* Print intermediate results during backward integration
*/
static void PrintOutput1(realtype time, realtype t, N_Vector y, N_Vector yB)
{
printf("--------------------------------------------------------\n");
#if defined(SUNDIALS_EXTENDED_PRECISION)
printf("returned t: %12.4Le\n",time);
printf("tout: %12.4Le\n",t);
printf("lambda(t): %12.4Le %12.4Le %12.4Le\n",
Ith(yB,1), Ith(yB,2), Ith(yB,3));
printf("y(t): %12.4Le %12.4Le %12.4Le\n",
Ith(y,1), Ith(y,2), Ith(y,3));
#elif defined(SUNDIALS_DOUBLE_PRECISION)
printf("returned t: %12.4e\n",time);
printf("tout: %12.4e\n",t);
printf("lambda(t): %12.4e %12.4e %12.4e\n",
Ith(yB,1), Ith(yB,2), Ith(yB,3));
printf("y(t): %12.4e %12.4e %12.4e\n",
Ith(y,1), Ith(y,2), Ith(y,3));
#else
printf("returned t: %12.4e\n",time);
printf("tout: %12.4e\n",t);
printf("lambda(t): %12.4e %12.4e %12.4e\n",
Ith(yB,1), Ith(yB,2), Ith(yB,3));
printf("y(t) : %12.4e %12.4e %12.4e\n",
Ith(y,1), Ith(y,2), Ith(y,3));
#endif
printf("--------------------------------------------------------\n\n");
}
/*
* Print final results of backward integration
*/
static void PrintOutput(realtype tfinal, N_Vector y, N_Vector yB, N_Vector qB)
{
printf("--------------------------------------------------------\n");
#if defined(SUNDIALS_EXTENDED_PRECISION)
printf("returned t: %12.4Le\n",tfinal);
printf("lambda(t0): %12.4Le %12.4Le %12.4Le\n",
Ith(yB,1), Ith(yB,2), Ith(yB,3));
printf("y(t0): %12.4Le %12.4Le %12.4Le\n",
Ith(y,1), Ith(y,2), Ith(y,3));
printf("dG/dp: %12.4Le %12.4Le %12.4Le\n",
-Ith(qB,1), -Ith(qB,2), -Ith(qB,3));
#elif defined(SUNDIALS_DOUBLE_PRECISION)
printf("returned t: %12.4e\n",tfinal);
printf("lambda(t0): %12.4e %12.4e %12.4e\n",
Ith(yB,1), Ith(yB,2), Ith(yB,3));
printf("y(t0): %12.4e %12.4e %12.4e\n",
Ith(y,1), Ith(y,2), Ith(y,3));
printf("dG/dp: %12.4e %12.4e %12.4e\n",
-Ith(qB,1), -Ith(qB,2), -Ith(qB,3));
#else
printf("returned t: %12.4e\n",tfinal);
printf("lambda(t0): %12.4e %12.4e %12.4e\n",
Ith(yB,1), Ith(yB,2), Ith(yB,3));
printf("y(t0) : %12.4e %12.4e %12.4e\n",
Ith(y,1), Ith(y,2), Ith(y,3));
printf("dG/dp: %12.4e %12.4e %12.4e\n",
-Ith(qB,1), -Ith(qB,2), -Ith(qB,3));
#endif
printf("--------------------------------------------------------\n\n");
}
/*
* Check function return value.
* opt == 0 means SUNDIALS function allocates memory so check if
* returned NULL pointer
* opt == 1 means SUNDIALS function returns an integer value so check if
* retval < 0
* opt == 2 means function allocates memory so check if returned
* NULL pointer
*/
static int check_retval(void *returnvalue, const char *funcname, int opt)
{
int *retval;
/* Check if SUNDIALS function returned NULL pointer - no memory allocated */
if (opt == 0 && returnvalue == NULL) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return(1); }
/* Check if retval < 0 */
else if (opt == 1) {
retval = (int *) returnvalue;
if (*retval < 0) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with retval = %d\n\n",
funcname, *retval);
return(1); }}
/* Check if function returned NULL pointer - no memory allocated */
else if (opt == 2 && returnvalue == NULL) {
fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return(1); }
return(0);
}
|