1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
|
/* -----------------------------------------------------------------
* Programmer(s): Ting Yan @ SMU
* Based on cvsRoberts_FSA_dns.c and modified to use SUPERLU_MT
* -----------------------------------------------------------------
* SUNDIALS Copyright Start
* Copyright (c) 2002-2022, Lawrence Livermore National Security
* and Southern Methodist University.
* All rights reserved.
*
* See the top-level LICENSE and NOTICE files for details.
*
* SPDX-License-Identifier: BSD-3-Clause
* SUNDIALS Copyright End
* -----------------------------------------------------------------
* Example problem:
*
* The following is a simple example problem, with the coding
* needed for its solution by CVODES for Forward Sensitivity
* Analysis. The problem is from chemical kinetics, and consists
* of the following three rate equations:
* dy1/dt = -p1*y1 + p2*y2*y3
* dy2/dt = p1*y1 - p2*y2*y3 - p3*(y2)^2
* dy3/dt = p3*(y2)^2
* on the interval from t = 0.0 to t = 4.e10, with initial
* conditions: y1 = 1.0, y2 = y3 = 0. The problem is stiff.
* The reaction rates are: p1=0.04, p2=1e4, and p3=3e7.
* This program solves the problem with the BDF method, Newton
* iteration with the SUPERLU_MT linear solver, and a
* user-supplied Jacobian routine.
* It uses a scalar relative tolerance and a vector absolute
* tolerance. Output is printed in decades from t = .4 to t = 4.e10.
* Run statistics (optional outputs) are printed at the end.
*
* Optionally, CVODES can compute sensitivities with respect to the
* problem parameters p1, p2, and p3.
* The sensitivity right hand side is given analytically through the
* user routine fS (of type SensRhs1Fn).
* Any of three sensitivity methods (SIMULTANEOUS, STAGGERED, and
* STAGGERED1) can be used and sensitivities may be included in the
* error test or not (error control set on SUNTRUE or SUNFALSE,
* respectively).
*
* Execution:
*
* If no sensitivities are desired:
* % cvsRoberts_FSA_sps -nosensi
* If sensitivities are to be computed:
* % cvsRoberts_FSA_sps -sensi sensi_meth err_con
* where sensi_meth is one of {sim, stg, stg1} and err_con is one of
* {t, f}.
* -----------------------------------------------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cvodes/cvodes.h> /* prototypes for CVODE fcts., consts. */
#include <nvector/nvector_serial.h> /* access to serial N_Vector */
#include <sunmatrix/sunmatrix_sparse.h> /* access to sparse SUNMatrix */
#include <sunlinsol/sunlinsol_superlumt.h> /* access to SuperLUMT linear solver */
#include <sundials/sundials_types.h> /* defs. of realtype, sunindextype */
#include <sundials/sundials_math.h> /* defs. of SUNRabs, SUNRexp, etc. */
/* User-defined vector accessor macro: Ith */
/* These macros are defined in order to write code which exactly matches
the mathematical problem description given above.
Ith(v,i) references the ith component of the vector v, where i is in
the range [1..NEQ] and NEQ is defined below. The Ith macro is defined
using the N_VIth macro in nvector.h. N_VIth numbers the components of
a vector starting from 0. */
#define Ith(v,i) NV_Ith_S(v,i-1) /* i-th vector component, i=1..NEQ */
/* Problem Constants */
#define NEQ 3 /* number of equations */
#define NNZ 7 /* number of non-zero entries in the Jacobian */
#define Y1 RCONST(1.0) /* initial y components */
#define Y2 RCONST(0.0)
#define Y3 RCONST(0.0)
#define RTOL RCONST(1.0e-4) /* scalar relative tolerance */
#define ATOL1 RCONST(1.0e-8) /* vector absolute tolerance components */
#define ATOL2 RCONST(1.0e-14)
#define ATOL3 RCONST(1.0e-6)
#define T0 RCONST(0.0) /* initial time */
#define T1 RCONST(0.4) /* first output time */
#define TMULT RCONST(10.0) /* output time factor */
#define NOUT 12 /* number of output times */
#define NP 3 /* number of problem parameters */
#define NS 3 /* number of sensitivities computed */
#define ZERO RCONST(0.0)
/* Type : UserData */
typedef struct {
realtype p[3]; /* problem parameters */
} *UserData;
/* Functions Called by the Solver */
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data);
static int Jac(realtype t, N_Vector y, N_Vector fy, SUNMatrix J,
void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
static int fS(int Ns, realtype t, N_Vector y, N_Vector ydot,
int iS, N_Vector yS, N_Vector ySdot,
void *user_data, N_Vector tmp1, N_Vector tmp2);
static int ewt(N_Vector y, N_Vector w, void *user_data);
/* Private functions to output results */
static void PrintOutput(void *cvode_mem, realtype t, N_Vector u);
static void PrintOutputS(N_Vector *uS);
/* Private function to print final statistics */
static void PrintFinalStats(void *cvode_mem, booleantype sensi);
/* Prototypes of private functions */
static void ProcessArgs(int argc, char *argv[],
booleantype *sensi, int *sensi_meth,
booleantype *err_con);
static void WrongArgs(char *name);
static int check_retval(void *returnvalue, const char *funcname, int opt);
/*
*-------------------------------
* Main Program
*-------------------------------
*/
int main(int argc, char *argv[])
{
SUNContext sunctx;
realtype t, tout;
N_Vector y;
SUNMatrix A;
SUNLinearSolver LS;
void *cvode_mem;
int retval, iout;
UserData data;
realtype pbar[NS];
int is;
N_Vector *yS;
booleantype sensi, err_con;
int sensi_meth;
data = NULL;
y = NULL;
yS = NULL;
A = NULL;
LS = NULL;
cvode_mem = NULL;
/* Process arguments */
ProcessArgs(argc, argv, &sensi, &sensi_meth, &err_con);
/* User data structure */
data = (UserData) malloc(sizeof *data);
if (check_retval((void *)data, "malloc", 2)) return(1);
data->p[0] = RCONST(0.04);
data->p[1] = RCONST(1.0e4);
data->p[2] = RCONST(3.0e7);
/* Create the SUNDIALS context that all SUNDIALS objects require */
retval = SUNContext_Create(NULL, &sunctx);
if (check_retval(&retval, "SUNContext_Create", 1)) return(1);
/* Initial conditions */
y = N_VNew_Serial(NEQ, sunctx);
if (check_retval((void *)y, "N_VNew_Serial", 0)) return(1);
/* Initialize y */
Ith(y,1) = Y1;
Ith(y,2) = Y2;
Ith(y,3) = Y3;
/* Call CVodeCreate to create the solver memory and specify the
* Backward Differentiation Formula */
cvode_mem = CVodeCreate(CV_BDF, sunctx);
if (check_retval((void *)cvode_mem, "CVodeCreate", 0)) return(1);
/* Call CVodeInit to initialize the integrator memory and specify the
* user's right hand side function in y'=f(t,y), the initial time T0, and
* the initial dependent variable vector y. */
retval = CVodeInit(cvode_mem, f, T0, y);
if (check_retval(&retval, "CVodeInit", 1)) return(1);
/* Call CVodeWFtolerances to specify a user-supplied function ewt that sets
* the multiplicative error weights w_i for use in the weighted RMS norm */
retval = CVodeWFtolerances(cvode_mem, ewt);
if (check_retval(&retval, "CVodeWFtolerances", 1)) return(1);
/* Attach user data */
retval = CVodeSetUserData(cvode_mem, data);
if (check_retval(&retval, "CVodeSetUserData", 1)) return(1);
/* Create sparse SUNMatrix for use in linear solves */
A = SUNSparseMatrix(NEQ, NEQ, NNZ, CSC_MAT, sunctx);
if (check_retval((void *)A, "SUNSparseMatrix", 0)) return(1);
/* Create SuperLUMT solver object for use by CVode (one thread) */
LS = SUNLinSol_SuperLUMT(y, A, 1, sunctx);
if (check_retval((void *)LS, "SUNLinSol_SuperLUMT", 0)) return(1);
/* Attach the matrix and linear solver */
retval = CVodeSetLinearSolver(cvode_mem, LS, A);
if (check_retval(&retval, "CVodeSetLinearSolver", 1)) return(1);
/* Set the user-supplied Jacobian routine Jac */
retval = CVodeSetJacFn(cvode_mem, Jac);
if (check_retval(&retval, "CVodeSetJacFn", 1)) return(1);
printf(" \n3-species kinetics problem\n");
/* Sensitivity-related settings */
if (sensi) {
/* Set parameter scaling factor */
pbar[0] = data->p[0];
pbar[1] = data->p[1];
pbar[2] = data->p[2];
/* Set sensitivity initial conditions */
yS = N_VCloneVectorArray(NS, y);
if (check_retval((void *)yS, "N_VCloneVectorArray", 0)) return(1);
for (is=0;is<NS;is++) N_VConst(ZERO, yS[is]);
/* Call CVodeSensInit1 to activate forward sensitivity computations
* and allocate internal memory for COVEDS related to sensitivity
* calculations. Computes the right-hand sides of the sensitivity
* ODE, one at a time */
retval = CVodeSensInit1(cvode_mem, NS, sensi_meth, fS, yS);
if(check_retval(&retval, "CVodeSensInit", 1)) return(1);
/* Call CVodeSensEEtolerances to estimate tolerances for sensitivity
* variables based on the rolerances supplied for states variables and
* the scaling factor pbar */
retval = CVodeSensEEtolerances(cvode_mem);
if(check_retval(&retval, "CVodeSensEEtolerances", 1)) return(1);
/* Set sensitivity analysis optional inputs */
/* Call CVodeSetSensErrCon to specify the error control strategy for
* sensitivity variables */
retval = CVodeSetSensErrCon(cvode_mem, err_con);
if (check_retval(&retval, "CVodeSetSensErrCon", 1)) return(1);
/* Call CVodeSetSensParams to specify problem parameter information for
* sensitivity calculations */
retval = CVodeSetSensParams(cvode_mem, NULL, pbar, NULL);
if (check_retval(&retval, "CVodeSetSensParams", 1)) return(1);
printf("Sensitivity: YES ");
if(sensi_meth == CV_SIMULTANEOUS)
printf("( SIMULTANEOUS +");
else
if(sensi_meth == CV_STAGGERED) printf("( STAGGERED +");
else printf("( STAGGERED1 +");
if(err_con) printf(" FULL ERROR CONTROL )");
else printf(" PARTIAL ERROR CONTROL )");
} else {
printf("Sensitivity: NO ");
}
/* In loop, call CVode, print results, and test for error.
Break out of loop when NOUT preset output times have been reached. */
printf("\n\n");
printf("===========================================");
printf("============================\n");
printf(" T Q H NST y1");
printf(" y2 y3 \n");
printf("===========================================");
printf("============================\n");
for (iout=1, tout=T1; iout <= NOUT; iout++, tout *= TMULT) {
retval = CVode(cvode_mem, tout, y, &t, CV_NORMAL);
if (check_retval(&retval, "CVode", 1)) break;
PrintOutput(cvode_mem, t, y);
/* Call CVodeGetSens to get the sensitivity solution vector after a
* successful return from CVode */
if (sensi) {
retval = CVodeGetSens(cvode_mem, &t, yS);
if (check_retval(&retval, "CVodeGetSens", 1)) break;
PrintOutputS(yS);
}
printf("-----------------------------------------");
printf("------------------------------\n");
}
/* Print some final statistics */
PrintFinalStats(cvode_mem, sensi);
/* Free memory */
N_VDestroy(y); /* Free y vector */
if (sensi) N_VDestroyVectorArray(yS, NS); /* Free yS vector */
free(data); /* Free user data */
CVodeFree(&cvode_mem); /* Free CVODES memory */
SUNLinSolFree(LS); /* Free the linear solver memory */
SUNMatDestroy(A); /* Free the matrix memory */
SUNContext_Free(&sunctx); /* Free the SUNDIALS context */
return(0);
}
/*
*-------------------------------
* Functions called by the solver
*-------------------------------
*/
/*
* f routine. Compute function f(t,y).
*/
static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
realtype y1, y2, y3, yd1, yd3;
UserData data;
realtype p1, p2, p3;
y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);
data = (UserData) user_data;
p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];
yd1 = Ith(ydot,1) = -p1*y1 + p2*y2*y3;
yd3 = Ith(ydot,3) = p3*y2*y2;
Ith(ydot,2) = -yd1 - yd3;
return(0);
}
/*
* Jacobian routine. Compute J(t,y) = df/dy. *
*/
static int Jac(realtype t, N_Vector y, N_Vector fy, SUNMatrix J,
void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
/* State at which to evaluate the Jacobian */
realtype *yval = N_VGetArrayPointer(y);
/* J is stored in CSC format:
data = non-zero matrix entries stored column-wise (length NNZ)
rowvals = row index for each non-zero matrix entry (length NNZ)
colptrs = i-th entry is the index in data where the first non-zero matrix
entry of the i-th column is stored (length NEQ + 1) */
realtype *data = SUNSparseMatrix_Data(J);
sunindextype *rowvals = SUNSparseMatrix_IndexValues(J);
sunindextype *colptrs = SUNSparseMatrix_IndexPointers(J);
UserData userdata = (UserData) user_data;
realtype p1 = userdata->p[0];
realtype p2 = userdata->p[1];
realtype p3 = userdata->p[2];
/* first column entries start at data[0], two entries (rows 0 and 1) */
colptrs[0] = 0;
rowvals[0] = 0;
data[0] = -p1;
rowvals[1] = 1;
data[1] = p1;
/* second column entries start at data[2], three entries (rows 0, 1, and 2) */
colptrs[1] = 2;
rowvals[2] = 0;
data[2] = p2 * yval[2];
rowvals[3] = 1;
data[3] = (-p2 * yval[2]) - (2 * p3 * yval[1]);
rowvals[4] = 2;
data[4] = 2 * p3 * yval[1];
/* third column entries start at data[5], two entries (rows 0 and 1) */
colptrs[2] = 5;
rowvals[5] = 0;
data[5] = p2 * yval[1];
rowvals[6] = 1;
data[6] = -p2 * yval[1];
/* number of non-zeros */
colptrs[3] = 7;
return(0);
}
/*
* fS routine. Compute sensitivity r.h.s.
*/
static int fS(int Ns, realtype t, N_Vector y, N_Vector ydot,
int iS, N_Vector yS, N_Vector ySdot,
void *user_data, N_Vector tmp1, N_Vector tmp2)
{
UserData data;
realtype p1, p2, p3;
realtype y1, y2, y3;
realtype s1, s2, s3;
realtype sd1, sd2, sd3;
data = (UserData) user_data;
p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];
y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);
s1 = Ith(yS,1); s2 = Ith(yS,2); s3 = Ith(yS,3);
sd1 = -p1*s1 + p2*y3*s2 + p2*y2*s3;
sd3 = 2*p3*y2*s2;
sd2 = -sd1-sd3;
switch (iS) {
case 0:
sd1 += -y1;
sd2 += y1;
break;
case 1:
sd1 += y2*y3;
sd2 += -y2*y3;
break;
case 2:
sd2 += -y2*y2;
sd3 += y2*y2;
break;
}
Ith(ySdot,1) = sd1;
Ith(ySdot,2) = sd2;
Ith(ySdot,3) = sd3;
return(0);
}
/*
* EwtSet function. Computes the error weights at the current solution.
*/
static int ewt(N_Vector y, N_Vector w, void *user_data)
{
int i;
realtype yy, ww, rtol, atol[3];
rtol = RTOL;
atol[0] = ATOL1;
atol[1] = ATOL2;
atol[2] = ATOL3;
for (i=1; i<=3; i++) {
yy = Ith(y,i);
ww = rtol * SUNRabs(yy) + atol[i-1];
if (ww <= 0.0) return (-1);
Ith(w,i) = 1.0/ww;
}
return(0);
}
/*
*-------------------------------
* Private helper functions
*-------------------------------
*/
/*
* Process and verify arguments to cvsfwddenx.
*/
static void ProcessArgs(int argc, char *argv[],
booleantype *sensi, int *sensi_meth, booleantype *err_con)
{
*sensi = SUNFALSE;
*sensi_meth = -1;
*err_con = SUNFALSE;
if (argc < 2) WrongArgs(argv[0]);
if (strcmp(argv[1],"-nosensi") == 0)
*sensi = SUNFALSE;
else if (strcmp(argv[1],"-sensi") == 0)
*sensi = SUNTRUE;
else
WrongArgs(argv[0]);
if (*sensi) {
if (argc != 4)
WrongArgs(argv[0]);
if (strcmp(argv[2],"sim") == 0)
*sensi_meth = CV_SIMULTANEOUS;
else if (strcmp(argv[2],"stg") == 0)
*sensi_meth = CV_STAGGERED;
else if (strcmp(argv[2],"stg1") == 0)
*sensi_meth = CV_STAGGERED1;
else
WrongArgs(argv[0]);
if (strcmp(argv[3],"t") == 0)
*err_con = SUNTRUE;
else if (strcmp(argv[3],"f") == 0)
*err_con = SUNFALSE;
else
WrongArgs(argv[0]);
}
}
static void WrongArgs(char *name)
{
printf("\nUsage: %s [-nosensi] [-sensi sensi_meth err_con]\n",name);
printf(" sensi_meth = sim, stg, or stg1\n");
printf(" err_con = t or f\n");
exit(0);
}
/*
* Print current t, step count, order, stepsize, and solution.
*/
static void PrintOutput(void *cvode_mem, realtype t, N_Vector u)
{
long int nst;
int qu, retval;
realtype hu, *udata;
udata = N_VGetArrayPointer(u);
retval = CVodeGetNumSteps(cvode_mem, &nst);
check_retval(&retval, "CVodeGetNumSteps", 1);
retval = CVodeGetLastOrder(cvode_mem, &qu);
check_retval(&retval, "CVodeGetLastOrder", 1);
retval = CVodeGetLastStep(cvode_mem, &hu);
check_retval(&retval, "CVodeGetLastStep", 1);
#if defined(SUNDIALS_EXTENDED_PRECISION)
printf("%8.3Le %2d %8.3Le %5ld\n", t, qu, hu, nst);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
printf("%8.3e %2d %8.3e %5ld\n", t, qu, hu, nst);
#else
printf("%8.3e %2d %8.3e %5ld\n", t, qu, hu, nst);
#endif
printf(" Solution ");
#if defined(SUNDIALS_EXTENDED_PRECISION)
printf("%12.4Le %12.4Le %12.4Le \n", udata[0], udata[1], udata[2]);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
printf("%12.4e %12.4e %12.4e \n", udata[0], udata[1], udata[2]);
#else
printf("%12.4e %12.4e %12.4e \n", udata[0], udata[1], udata[2]);
#endif
}
/*
* Print sensitivities.
*/
static void PrintOutputS(N_Vector *uS)
{
realtype *sdata;
sdata = N_VGetArrayPointer(uS[0]);
printf(" Sensitivity 1 ");
#if defined(SUNDIALS_EXTENDED_PRECISION)
printf("%12.4Le %12.4Le %12.4Le \n", sdata[0], sdata[1], sdata[2]);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
printf("%12.4e %12.4e %12.4e \n", sdata[0], sdata[1], sdata[2]);
#else
printf("%12.4e %12.4e %12.4e \n", sdata[0], sdata[1], sdata[2]);
#endif
sdata = N_VGetArrayPointer(uS[1]);
printf(" Sensitivity 2 ");
#if defined(SUNDIALS_EXTENDED_PRECISION)
printf("%12.4Le %12.4Le %12.4Le \n", sdata[0], sdata[1], sdata[2]);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
printf("%12.4e %12.4e %12.4e \n", sdata[0], sdata[1], sdata[2]);
#else
printf("%12.4e %12.4e %12.4e \n", sdata[0], sdata[1], sdata[2]);
#endif
sdata = N_VGetArrayPointer(uS[2]);
printf(" Sensitivity 3 ");
#if defined(SUNDIALS_EXTENDED_PRECISION)
printf("%12.4Le %12.4Le %12.4Le \n", sdata[0], sdata[1], sdata[2]);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
printf("%12.4e %12.4e %12.4e \n", sdata[0], sdata[1], sdata[2]);
#else
printf("%12.4e %12.4e %12.4e \n", sdata[0], sdata[1], sdata[2]);
#endif
}
/*
* Get and print some final statistics
*/
static void PrintFinalStats(void *cvode_mem, booleantype sensi)
{
long int nst, nfe, nsetups, nje, nni, nnf, ncfn, netf;
long int nfSe, nfeS, nsetupsS, nniS, nnfS, ncfnS, netfS;
int retval;
retval = CVodeGetNumSteps(cvode_mem, &nst);
check_retval(&retval, "CVodeGetNumSteps", 1);
retval = CVodeGetNumRhsEvals(cvode_mem, &nfe);
check_retval(&retval, "CVodeGetNumRhsEvals", 1);
retval = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);
check_retval(&retval, "CVodeGetNumLinSolvSetups", 1);
retval = CVodeGetNumErrTestFails(cvode_mem, &netf);
check_retval(&retval, "CVodeGetNumErrTestFails", 1);
retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
check_retval(&retval, "CVodeGetNumNonlinSolvIters", 1);
retval = CVodeGetNumNonlinSolvConvFails(cvode_mem, &nnf);
check_retval(&retval, "CVodeGetNumNonlinSolvConvFails", 1);
retval = CVodeGetNumStepSolveFails(cvode_mem, &ncfn);
check_retval(&retval, "CVodeGetNumStepSolveFails", 1);
if (sensi) {
retval = CVodeGetSensNumRhsEvals(cvode_mem, &nfSe);
check_retval(&retval, "CVodeGetSensNumRhsEvals", 1);
retval = CVodeGetNumRhsEvalsSens(cvode_mem, &nfeS);
check_retval(&retval, "CVodeGetNumRhsEvalsSens", 1);
retval = CVodeGetSensNumLinSolvSetups(cvode_mem, &nsetupsS);
check_retval(&retval, "CVodeGetSensNumLinSolvSetups", 1);
retval = CVodeGetSensNumErrTestFails(cvode_mem, &netfS);
check_retval(&retval, "CVodeGetSensNumErrTestFails", 1);
retval = CVodeGetSensNumNonlinSolvIters(cvode_mem, &nniS);
check_retval(&retval, "CVodeGetSensNumNonlinSolvIters", 1);
retval = CVodeGetSensNumNonlinSolvConvFails(cvode_mem, &nnfS);
check_retval(&retval, "CVodeGetSensNumNonlinSolvConvFails", 1);
retval = CVodeGetNumStepSensSolveFails(cvode_mem, &ncfnS);
check_retval(&retval, "CVodeGetNumStepSensSolveFails", 1);
}
retval = CVodeGetNumJacEvals(cvode_mem, &nje);
check_retval(&retval, "CVodeGetNumJacEvals", 1);
printf("\nFinal Statistics:\n");
printf("nst = %-6ld nfe = %-6ld nsetups = %-6ld nje = %ld\n",
nst, nfe, nsetups, nje);
printf("nni = %-6ld nnf = %-6ld netf = %-6ld ncfn = %-6ld\n\n",
nni, nnf, netf, ncfn);
if(sensi) {
printf("nfSe = %-6ld nfeS = %-6ld nsetupsS = %-6ld\n",
nfSe, nfeS, nsetupsS);
printf("nniS = %-6ld nnfS = %-6ld netfS = %-6ld ncfnS = %-6ld\n\n",
nniS, nnfS, netfS, ncfnS);
}
}
/*
* Check function return value...
* opt == 0 means SUNDIALS function allocates memory so check if
* returned NULL pointer
* opt == 1 means SUNDIALS function returns an integer value so check if
* retval < 0
* opt == 2 means function allocates memory so check if returned
* NULL pointer
*/
static int check_retval(void *returnvalue, const char *funcname, int opt)
{
int *retval;
/* Check if SUNDIALS function returned NULL pointer - no memory allocated */
if (opt == 0 && returnvalue == NULL) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return(1); }
/* Check if retval < 0 */
else if (opt == 1) {
retval = (int *) returnvalue;
if (*retval < 0) {
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with retval = %d\n\n",
funcname, *retval);
return(1); }}
/* Check if function returned NULL pointer - no memory allocated */
else if (opt == 2 && returnvalue == NULL) {
fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return(1); }
return(0);
}
|