File: cvsRoberts_FSA_sps.c

package info (click to toggle)
sundials 6.4.1%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 79,368 kB
  • sloc: ansic: 218,700; f90: 62,503; cpp: 61,511; fortran: 5,166; python: 4,642; sh: 4,114; makefile: 562; perl: 123
file content (716 lines) | stat: -rw-r--r-- 22,502 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
/* -----------------------------------------------------------------
 * Programmer(s): Ting Yan @ SMU
 *      Based on cvsRoberts_FSA_dns.c and modified to use SUPERLU_MT
 * -----------------------------------------------------------------
 * SUNDIALS Copyright Start
 * Copyright (c) 2002-2022, Lawrence Livermore National Security
 * and Southern Methodist University.
 * All rights reserved.
 *
 * See the top-level LICENSE and NOTICE files for details.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 * SUNDIALS Copyright End
 * -----------------------------------------------------------------
 * Example problem:
 *
 * The following is a simple example problem, with the coding
 * needed for its solution by CVODES for Forward Sensitivity
 * Analysis. The problem is from chemical kinetics, and consists
 * of the following three rate equations:
 *    dy1/dt = -p1*y1 + p2*y2*y3
 *    dy2/dt =  p1*y1 - p2*y2*y3 - p3*(y2)^2
 *    dy3/dt =  p3*(y2)^2
 * on the interval from t = 0.0 to t = 4.e10, with initial
 * conditions: y1 = 1.0, y2 = y3 = 0. The problem is stiff.
 * The reaction rates are: p1=0.04, p2=1e4, and p3=3e7.
 * This program solves the problem with the BDF method, Newton
 * iteration with the SUPERLU_MT linear solver, and a
 * user-supplied Jacobian routine.
 * It uses a scalar relative tolerance and a vector absolute
 * tolerance. Output is printed in decades from t = .4 to t = 4.e10.
 * Run statistics (optional outputs) are printed at the end.
 *
 * Optionally, CVODES can compute sensitivities with respect to the
 * problem parameters p1, p2, and p3.
 * The sensitivity right hand side is given analytically through the
 * user routine fS (of type SensRhs1Fn).
 * Any of three sensitivity methods (SIMULTANEOUS, STAGGERED, and
 * STAGGERED1) can be used and sensitivities may be included in the
 * error test or not (error control set on SUNTRUE or SUNFALSE,
 * respectively).
 *
 * Execution:
 *
 * If no sensitivities are desired:
 *    % cvsRoberts_FSA_sps -nosensi
 * If sensitivities are to be computed:
 *    % cvsRoberts_FSA_sps -sensi sensi_meth err_con
 * where sensi_meth is one of {sim, stg, stg1} and err_con is one of
 * {t, f}.
 * -----------------------------------------------------------------*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <cvodes/cvodes.h>                  /* prototypes for CVODE fcts., consts.  */
#include <nvector/nvector_serial.h>         /* access to serial N_Vector            */
#include <sunmatrix/sunmatrix_sparse.h>     /* access to sparse SUNMatrix           */
#include <sunlinsol/sunlinsol_superlumt.h>  /* access to SuperLUMT linear solver    */
#include <sundials/sundials_types.h>        /* defs. of realtype, sunindextype      */
#include <sundials/sundials_math.h>         /* defs. of SUNRabs, SUNRexp, etc.      */

/* User-defined vector accessor macro: Ith */

/* These macros are defined in order to write code which exactly matches
   the mathematical problem description given above.

   Ith(v,i) references the ith component of the vector v, where i is in
   the range [1..NEQ] and NEQ is defined below. The Ith macro is defined
   using the N_VIth macro in nvector.h. N_VIth numbers the components of
   a vector starting from 0. */

#define Ith(v,i)    NV_Ith_S(v,i-1)         /* i-th vector component, i=1..NEQ */


/* Problem Constants */

#define NEQ   3                /* number of equations  */
#define NNZ   7                /* number of non-zero entries in the Jacobian */
#define Y1    RCONST(1.0)      /* initial y components */
#define Y2    RCONST(0.0)
#define Y3    RCONST(0.0)
#define RTOL  RCONST(1.0e-4)   /* scalar relative tolerance            */
#define ATOL1 RCONST(1.0e-8)   /* vector absolute tolerance components */
#define ATOL2 RCONST(1.0e-14)
#define ATOL3 RCONST(1.0e-6)
#define T0    RCONST(0.0)      /* initial time           */
#define T1    RCONST(0.4)      /* first output time      */
#define TMULT RCONST(10.0)     /* output time factor     */
#define NOUT  12               /* number of output times */

#define NP    3             /* number of problem parameters */
#define NS    3             /* number of sensitivities computed */

#define ZERO  RCONST(0.0)

/* Type : UserData */

typedef struct {
  realtype p[3];           /* problem parameters */
} *UserData;

/* Functions Called by the Solver */

static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data);

static int Jac(realtype t, N_Vector y, N_Vector fy, SUNMatrix J,
               void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);

static int fS(int Ns, realtype t, N_Vector y, N_Vector ydot,
              int iS, N_Vector yS, N_Vector ySdot,
              void *user_data, N_Vector tmp1, N_Vector tmp2);

static int ewt(N_Vector y, N_Vector w, void *user_data);

/* Private functions to output results */

static void PrintOutput(void *cvode_mem, realtype t, N_Vector u);
static void PrintOutputS(N_Vector *uS);

/* Private function to print final statistics */

static void PrintFinalStats(void *cvode_mem, booleantype sensi);

/* Prototypes of private functions */

static void ProcessArgs(int argc, char *argv[],
                        booleantype *sensi, int *sensi_meth,
                        booleantype *err_con);

static void WrongArgs(char *name);

static int check_retval(void *returnvalue, const char *funcname, int opt);


/*
 *-------------------------------
 * Main Program
 *-------------------------------
 */

int main(int argc, char *argv[])
{
  SUNContext sunctx;
  realtype t, tout;
  N_Vector y;
  SUNMatrix A;
  SUNLinearSolver LS;
  void *cvode_mem;
  int retval, iout;
  UserData data;

  realtype pbar[NS];
  int is;
  N_Vector *yS;
  booleantype sensi, err_con;
  int sensi_meth;

  data = NULL;
  y = NULL;
  yS = NULL;
  A = NULL;
  LS = NULL;
  cvode_mem = NULL;

  /* Process arguments */
  ProcessArgs(argc, argv, &sensi, &sensi_meth, &err_con);

  /* User data structure */
  data = (UserData) malloc(sizeof *data);
  if (check_retval((void *)data, "malloc", 2)) return(1);
  data->p[0] = RCONST(0.04);
  data->p[1] = RCONST(1.0e4);
  data->p[2] = RCONST(3.0e7);

  /* Create the SUNDIALS context that all SUNDIALS objects require */
  retval = SUNContext_Create(NULL, &sunctx);
  if (check_retval(&retval, "SUNContext_Create", 1)) return(1);

  /* Initial conditions */
  y = N_VNew_Serial(NEQ, sunctx);
  if (check_retval((void *)y, "N_VNew_Serial", 0)) return(1);

  /* Initialize y */
  Ith(y,1) = Y1;
  Ith(y,2) = Y2;
  Ith(y,3) = Y3;

  /* Call CVodeCreate to create the solver memory and specify the
   * Backward Differentiation Formula */
  cvode_mem = CVodeCreate(CV_BDF, sunctx);
  if (check_retval((void *)cvode_mem, "CVodeCreate", 0)) return(1);

  /* Call CVodeInit to initialize the integrator memory and specify the
   * user's right hand side function in y'=f(t,y), the initial time T0, and
   * the initial dependent variable vector y. */
  retval = CVodeInit(cvode_mem, f, T0, y);
  if (check_retval(&retval, "CVodeInit", 1)) return(1);

  /* Call CVodeWFtolerances to specify a user-supplied function ewt that sets
   * the multiplicative error weights w_i for use in the weighted RMS norm */
  retval = CVodeWFtolerances(cvode_mem, ewt);
  if (check_retval(&retval, "CVodeWFtolerances", 1)) return(1);

  /* Attach user data */
  retval = CVodeSetUserData(cvode_mem, data);
  if (check_retval(&retval, "CVodeSetUserData", 1)) return(1);

  /* Create sparse SUNMatrix for use in linear solves */
  A = SUNSparseMatrix(NEQ, NEQ, NNZ, CSC_MAT, sunctx);
  if (check_retval((void *)A, "SUNSparseMatrix", 0)) return(1);

  /* Create SuperLUMT solver object for use by CVode (one thread) */
  LS = SUNLinSol_SuperLUMT(y, A, 1, sunctx);
  if (check_retval((void *)LS, "SUNLinSol_SuperLUMT", 0)) return(1);

  /* Attach the matrix and linear solver */
  retval = CVodeSetLinearSolver(cvode_mem, LS, A);
  if (check_retval(&retval, "CVodeSetLinearSolver", 1)) return(1);

  /* Set the user-supplied Jacobian routine Jac */
  retval = CVodeSetJacFn(cvode_mem, Jac);
  if (check_retval(&retval, "CVodeSetJacFn", 1)) return(1);

  printf(" \n3-species kinetics problem\n");

  /* Sensitivity-related settings */
  if (sensi) {

    /* Set parameter scaling factor */
    pbar[0] = data->p[0];
    pbar[1] = data->p[1];
    pbar[2] = data->p[2];

    /* Set sensitivity initial conditions */
    yS = N_VCloneVectorArray(NS, y);
    if (check_retval((void *)yS, "N_VCloneVectorArray", 0)) return(1);
    for (is=0;is<NS;is++) N_VConst(ZERO, yS[is]);

    /* Call CVodeSensInit1 to activate forward sensitivity computations
     * and allocate internal memory for COVEDS related to sensitivity
     * calculations. Computes the right-hand sides of the sensitivity
     * ODE, one at a time */
    retval = CVodeSensInit1(cvode_mem, NS, sensi_meth, fS, yS);
    if(check_retval(&retval, "CVodeSensInit", 1)) return(1);

    /* Call CVodeSensEEtolerances to estimate tolerances for sensitivity
     * variables based on the rolerances supplied for states variables and
     * the scaling factor pbar */
    retval = CVodeSensEEtolerances(cvode_mem);
    if(check_retval(&retval, "CVodeSensEEtolerances", 1)) return(1);

    /* Set sensitivity analysis optional inputs */
    /* Call CVodeSetSensErrCon to specify the error control strategy for
     * sensitivity variables */
    retval = CVodeSetSensErrCon(cvode_mem, err_con);
    if (check_retval(&retval, "CVodeSetSensErrCon", 1)) return(1);

    /* Call CVodeSetSensParams to specify problem parameter information for
     * sensitivity calculations */
    retval = CVodeSetSensParams(cvode_mem, NULL, pbar, NULL);
    if (check_retval(&retval, "CVodeSetSensParams", 1)) return(1);

    printf("Sensitivity: YES ");
    if(sensi_meth == CV_SIMULTANEOUS)
      printf("( SIMULTANEOUS +");
    else
      if(sensi_meth == CV_STAGGERED) printf("( STAGGERED +");
      else                           printf("( STAGGERED1 +");
    if(err_con) printf(" FULL ERROR CONTROL )");
    else        printf(" PARTIAL ERROR CONTROL )");

  } else {

    printf("Sensitivity: NO ");

  }

  /* In loop, call CVode, print results, and test for error.
     Break out of loop when NOUT preset output times have been reached.  */

  printf("\n\n");
  printf("===========================================");
  printf("============================\n");
  printf("     T     Q       H      NST           y1");
  printf("           y2           y3    \n");
  printf("===========================================");
  printf("============================\n");

  for (iout=1, tout=T1; iout <= NOUT; iout++, tout *= TMULT) {

    retval = CVode(cvode_mem, tout, y, &t, CV_NORMAL);
    if (check_retval(&retval, "CVode", 1)) break;

    PrintOutput(cvode_mem, t, y);

    /* Call CVodeGetSens to get the sensitivity solution vector after a
     * successful return from CVode */
    if (sensi) {
      retval = CVodeGetSens(cvode_mem, &t, yS);
      if (check_retval(&retval, "CVodeGetSens", 1)) break;
      PrintOutputS(yS);
    }
    printf("-----------------------------------------");
    printf("------------------------------\n");

  }

  /* Print some final statistics */
  PrintFinalStats(cvode_mem, sensi);

  /* Free memory */
  N_VDestroy(y);                            /* Free y vector */
  if (sensi) N_VDestroyVectorArray(yS, NS); /* Free yS vector */
  free(data);                               /* Free user data */
  CVodeFree(&cvode_mem);                    /* Free CVODES memory */
  SUNLinSolFree(LS);                        /* Free the linear solver memory */
  SUNMatDestroy(A);                         /* Free the matrix memory */
  SUNContext_Free(&sunctx);                 /* Free the SUNDIALS context */

  return(0);
}


/*
 *-------------------------------
 * Functions called by the solver
 *-------------------------------
 */

/*
 * f routine. Compute function f(t,y).
 */

static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
  realtype y1, y2, y3, yd1, yd3;
  UserData data;
  realtype p1, p2, p3;

  y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);
  data = (UserData) user_data;
  p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];

  yd1 = Ith(ydot,1) = -p1*y1 + p2*y2*y3;
  yd3 = Ith(ydot,3) = p3*y2*y2;
        Ith(ydot,2) = -yd1 - yd3;

  return(0);
}

/*
 * Jacobian routine. Compute J(t,y) = df/dy. *
 */

static int Jac(realtype t, N_Vector y, N_Vector fy, SUNMatrix J,
               void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
  /* State at which to evaluate the Jacobian */
  realtype *yval = N_VGetArrayPointer(y);

  /* J is stored in CSC format:
     data    = non-zero matrix entries stored column-wise (length NNZ)
     rowvals = row index for each non-zero matrix entry (length NNZ)
     colptrs = i-th entry is the index in data where the first non-zero matrix
               entry of the i-th column is stored (length NEQ + 1) */
  realtype     *data    = SUNSparseMatrix_Data(J);
  sunindextype *rowvals = SUNSparseMatrix_IndexValues(J);
  sunindextype *colptrs = SUNSparseMatrix_IndexPointers(J);
  UserData     userdata = (UserData) user_data;
  realtype     p1 = userdata->p[0];
  realtype     p2 = userdata->p[1];
  realtype     p3 = userdata->p[2];

  /* first column entries start at data[0], two entries (rows 0 and 1) */
  colptrs[0] = 0;

  rowvals[0] = 0;
  data[0]    = -p1;

  rowvals[1] = 1;
  data[1]    = p1;

  /* second column entries start at data[2], three entries (rows 0, 1, and 2) */
  colptrs[1] = 2;

  rowvals[2] = 0;
  data[2]    = p2 * yval[2];

  rowvals[3] = 1;
  data[3]    = (-p2 * yval[2]) - (2 * p3 * yval[1]);

  rowvals[4] = 2;
  data[4]    = 2 * p3 * yval[1];

  /* third column entries start at data[5], two entries (rows 0 and 1) */
  colptrs[2] = 5;

  rowvals[5] = 0;
  data[5]    = p2 * yval[1];

  rowvals[6] = 1;
  data[6]    = -p2 * yval[1];

  /* number of non-zeros */
  colptrs[3] = 7;

  return(0);
}

/*
 * fS routine. Compute sensitivity r.h.s.
 */

static int fS(int Ns, realtype t, N_Vector y, N_Vector ydot,
              int iS, N_Vector yS, N_Vector ySdot,
              void *user_data, N_Vector tmp1, N_Vector tmp2)
{
  UserData data;
  realtype p1, p2, p3;
  realtype y1, y2, y3;
  realtype s1, s2, s3;
  realtype sd1, sd2, sd3;

  data = (UserData) user_data;
  p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];

  y1 = Ith(y,1);  y2 = Ith(y,2);  y3 = Ith(y,3);
  s1 = Ith(yS,1); s2 = Ith(yS,2); s3 = Ith(yS,3);

  sd1 = -p1*s1 + p2*y3*s2 + p2*y2*s3;
  sd3 = 2*p3*y2*s2;
  sd2 = -sd1-sd3;

  switch (iS) {
  case 0:
    sd1 += -y1;
    sd2 +=  y1;
    break;
  case 1:
    sd1 +=  y2*y3;
    sd2 += -y2*y3;
    break;
  case 2:
    sd2 += -y2*y2;
    sd3 +=  y2*y2;
    break;
  }

  Ith(ySdot,1) = sd1;
  Ith(ySdot,2) = sd2;
  Ith(ySdot,3) = sd3;

  return(0);
}

/*
 * EwtSet function. Computes the error weights at the current solution.
 */

static int ewt(N_Vector y, N_Vector w, void *user_data)
{
  int i;
  realtype yy, ww, rtol, atol[3];

  rtol    = RTOL;
  atol[0] = ATOL1;
  atol[1] = ATOL2;
  atol[2] = ATOL3;

  for (i=1; i<=3; i++) {
    yy = Ith(y,i);
    ww = rtol * SUNRabs(yy) + atol[i-1];
    if (ww <= 0.0) return (-1);
    Ith(w,i) = 1.0/ww;
  }

  return(0);
}

/*
 *-------------------------------
 * Private helper functions
 *-------------------------------
 */

/*
 * Process and verify arguments to cvsfwddenx.
 */

static void ProcessArgs(int argc, char *argv[],
                        booleantype *sensi, int *sensi_meth, booleantype *err_con)
{
  *sensi = SUNFALSE;
  *sensi_meth = -1;
  *err_con = SUNFALSE;

  if (argc < 2) WrongArgs(argv[0]);

  if (strcmp(argv[1],"-nosensi") == 0)
    *sensi = SUNFALSE;
  else if (strcmp(argv[1],"-sensi") == 0)
    *sensi = SUNTRUE;
  else
    WrongArgs(argv[0]);

  if (*sensi) {

    if (argc != 4)
      WrongArgs(argv[0]);

    if (strcmp(argv[2],"sim") == 0)
      *sensi_meth = CV_SIMULTANEOUS;
    else if (strcmp(argv[2],"stg") == 0)
      *sensi_meth = CV_STAGGERED;
    else if (strcmp(argv[2],"stg1") == 0)
      *sensi_meth = CV_STAGGERED1;
    else
      WrongArgs(argv[0]);

    if (strcmp(argv[3],"t") == 0)
      *err_con = SUNTRUE;
    else if (strcmp(argv[3],"f") == 0)
      *err_con = SUNFALSE;
    else
      WrongArgs(argv[0]);
  }

}

static void WrongArgs(char *name)
{
    printf("\nUsage: %s [-nosensi] [-sensi sensi_meth err_con]\n",name);
    printf("         sensi_meth = sim, stg, or stg1\n");
    printf("         err_con    = t or f\n");

    exit(0);
}

/*
 * Print current t, step count, order, stepsize, and solution.
 */

static void PrintOutput(void *cvode_mem, realtype t, N_Vector u)
{
  long int nst;
  int qu, retval;
  realtype hu, *udata;

  udata = N_VGetArrayPointer(u);

  retval = CVodeGetNumSteps(cvode_mem, &nst);
  check_retval(&retval, "CVodeGetNumSteps", 1);
  retval = CVodeGetLastOrder(cvode_mem, &qu);
  check_retval(&retval, "CVodeGetLastOrder", 1);
  retval = CVodeGetLastStep(cvode_mem, &hu);
  check_retval(&retval, "CVodeGetLastStep", 1);

#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("%8.3Le %2d  %8.3Le %5ld\n", t, qu, hu, nst);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("%8.3e %2d  %8.3e %5ld\n", t, qu, hu, nst);
#else
  printf("%8.3e %2d  %8.3e %5ld\n", t, qu, hu, nst);
#endif

  printf("                  Solution       ");

#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("%12.4Le %12.4Le %12.4Le \n", udata[0], udata[1], udata[2]);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("%12.4e %12.4e %12.4e \n", udata[0], udata[1], udata[2]);
#else
  printf("%12.4e %12.4e %12.4e \n", udata[0], udata[1], udata[2]);
#endif

}

/*
 * Print sensitivities.
*/

static void PrintOutputS(N_Vector *uS)
{
  realtype *sdata;

  sdata = N_VGetArrayPointer(uS[0]);
  printf("                  Sensitivity 1  ");

#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("%12.4Le %12.4Le %12.4Le \n", sdata[0], sdata[1], sdata[2]);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("%12.4e %12.4e %12.4e \n", sdata[0], sdata[1], sdata[2]);
#else
  printf("%12.4e %12.4e %12.4e \n", sdata[0], sdata[1], sdata[2]);
#endif

  sdata = N_VGetArrayPointer(uS[1]);
  printf("                  Sensitivity 2  ");

#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("%12.4Le %12.4Le %12.4Le \n", sdata[0], sdata[1], sdata[2]);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("%12.4e %12.4e %12.4e \n", sdata[0], sdata[1], sdata[2]);
#else
  printf("%12.4e %12.4e %12.4e \n", sdata[0], sdata[1], sdata[2]);
#endif

  sdata = N_VGetArrayPointer(uS[2]);
  printf("                  Sensitivity 3  ");

#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("%12.4Le %12.4Le %12.4Le \n", sdata[0], sdata[1], sdata[2]);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("%12.4e %12.4e %12.4e \n", sdata[0], sdata[1], sdata[2]);
#else
  printf("%12.4e %12.4e %12.4e \n", sdata[0], sdata[1], sdata[2]);
#endif
}

/*
 * Get and print some final statistics
 */

static void PrintFinalStats(void *cvode_mem, booleantype sensi)
{
  long int nst, nfe, nsetups, nje, nni, nnf, ncfn, netf;
  long int nfSe, nfeS, nsetupsS, nniS, nnfS, ncfnS, netfS;
  int retval;

  retval = CVodeGetNumSteps(cvode_mem, &nst);
  check_retval(&retval, "CVodeGetNumSteps", 1);
  retval = CVodeGetNumRhsEvals(cvode_mem, &nfe);
  check_retval(&retval, "CVodeGetNumRhsEvals", 1);
  retval = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);
  check_retval(&retval, "CVodeGetNumLinSolvSetups", 1);
  retval = CVodeGetNumErrTestFails(cvode_mem, &netf);
  check_retval(&retval, "CVodeGetNumErrTestFails", 1);
  retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
  check_retval(&retval, "CVodeGetNumNonlinSolvIters", 1);
  retval = CVodeGetNumNonlinSolvConvFails(cvode_mem, &nnf);
  check_retval(&retval, "CVodeGetNumNonlinSolvConvFails", 1);
  retval = CVodeGetNumStepSolveFails(cvode_mem, &ncfn);
  check_retval(&retval, "CVodeGetNumStepSolveFails", 1);

  if (sensi) {
    retval = CVodeGetSensNumRhsEvals(cvode_mem, &nfSe);
    check_retval(&retval, "CVodeGetSensNumRhsEvals", 1);
    retval = CVodeGetNumRhsEvalsSens(cvode_mem, &nfeS);
    check_retval(&retval, "CVodeGetNumRhsEvalsSens", 1);
    retval = CVodeGetSensNumLinSolvSetups(cvode_mem, &nsetupsS);
    check_retval(&retval, "CVodeGetSensNumLinSolvSetups", 1);
    retval = CVodeGetSensNumErrTestFails(cvode_mem, &netfS);
    check_retval(&retval, "CVodeGetSensNumErrTestFails", 1);
    retval = CVodeGetSensNumNonlinSolvIters(cvode_mem, &nniS);
    check_retval(&retval, "CVodeGetSensNumNonlinSolvIters", 1);
    retval = CVodeGetSensNumNonlinSolvConvFails(cvode_mem, &nnfS);
    check_retval(&retval, "CVodeGetSensNumNonlinSolvConvFails", 1);
    retval = CVodeGetNumStepSensSolveFails(cvode_mem, &ncfnS);
    check_retval(&retval, "CVodeGetNumStepSensSolveFails", 1);
  }

  retval = CVodeGetNumJacEvals(cvode_mem, &nje);
  check_retval(&retval, "CVodeGetNumJacEvals", 1);

  printf("\nFinal Statistics:\n");
  printf("nst = %-6ld nfe = %-6ld nsetups = %-6ld nje = %ld\n",
         nst, nfe, nsetups, nje);
  printf("nni = %-6ld nnf = %-6ld netf = %-6ld    ncfn = %-6ld\n\n",
         nni, nnf, netf, ncfn);

  if(sensi) {
    printf("nfSe = %-6ld nfeS = %-6ld nsetupsS = %-6ld\n",
           nfSe, nfeS, nsetupsS);
    printf("nniS = %-6ld nnfS = %-6ld netfS = %-6ld ncfnS = %-6ld\n\n",
           nniS, nnfS, netfS, ncfnS);
  }
}

/*
 * Check function return value...
 *   opt == 0 means SUNDIALS function allocates memory so check if
 *            returned NULL pointer
 *   opt == 1 means SUNDIALS function returns an integer value so check if
 *            retval < 0
 *   opt == 2 means function allocates memory so check if returned
 *            NULL pointer
 */

static int check_retval(void *returnvalue, const char *funcname, int opt)
{
  int *retval;

  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */
  if (opt == 0 && returnvalue == NULL) {
    fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return(1); }

  /* Check if retval < 0 */
  else if (opt == 1) {
    retval = (int *) returnvalue;
    if (*retval < 0) {
      fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with retval = %d\n\n",
              funcname, *retval);
      return(1); }}

  /* Check if function returned NULL pointer - no memory allocated */
  else if (opt == 2 && returnvalue == NULL) {
    fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return(1); }

  return(0);
}