File: cvsRoberts_dns_uw.c

package info (click to toggle)
sundials 6.4.1%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 79,368 kB
  • sloc: ansic: 218,700; f90: 62,503; cpp: 61,511; fortran: 5,166; python: 4,642; sh: 4,114; makefile: 562; perl: 123
file content (412 lines) | stat: -rw-r--r-- 12,955 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/* -----------------------------------------------------------------
 * Programmer(s): Scott D. Cohen, Alan C. Hindmarsh and
 *                Radu Serban @ LLNL
 * -----------------------------------------------------------------
 * SUNDIALS Copyright Start
 * Copyright (c) 2002-2022, Lawrence Livermore National Security
 * and Southern Methodist University.
 * All rights reserved.
 *
 * See the top-level LICENSE and NOTICE files for details.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 * SUNDIALS Copyright End
 * -----------------------------------------------------------------
 * Example problem:
 *
 * The following is a simple example problem, with the coding
 * needed for its solution by CVODE. The problem is from
 * chemical kinetics, and consists of the following three rate
 * equations:
 *    dy1/dt = -.04*y1 + 1.e4*y2*y3
 *    dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*(y2)^2
 *    dy3/dt = 3.e7*(y2)^2
 * on the interval from t = 0.0 to t = 4.e10, with initial
 * conditions: y1 = 1.0, y2 = y3 = 0. The problem is stiff.
 * While integrating the system, we also use the rootfinding
 * feature to find the points at which y1 = 1e-4 or at which
 * y3 = 0.01. This program solves the problem with the BDF method,
 * Newton iteration with the dense linear solver, and a
 * user-supplied Jacobian routine.
 * It uses a user-supplied function to compute the error weights
 * required for the WRMS norm calculations.
 * Output is printed in decades from t = .4 to t = 4.e10.
 * Run statistics (optional outputs) are printed at the end.
 * -----------------------------------------------------------------*/

#include <stdio.h>
#include <math.h>

#include <cvodes/cvodes.h>             /* prototypes for CVODE fcts., consts.  */
#include <nvector/nvector_serial.h>    /* access to serial N_Vector            */
#include <sunmatrix/sunmatrix_dense.h> /* access to dense SUNMatrix            */
#include <sunlinsol/sunlinsol_dense.h> /* access to dense SUNLinearSolver      */

/* User-defined vector and matrix accessor macros: Ith, IJth */

/* These macros are defined in order to write code which exactly matches
   the mathematical problem description given above.

   Ith(v,i) references the ith component of the vector v, where i is in
   the range [1..NEQ] and NEQ is defined below. The Ith macro is defined
   using the N_VIth macro in nvector.h. N_VIth numbers the components of
   a vector starting from 0.

   IJth(A,i,j) references the (i,j)th element of the dense matrix A, where
   i and j are in the range [1..NEQ]. The IJth macro is defined using the
   SM_ELEMENT_D macro. SM_ELEMENT_D numbers rows and columns of
   a dense matrix starting from 0. */

#define Ith(v,i)    NV_Ith_S(v,i-1)         /* i-th vector component i=1..NEQ */
#define IJth(A,i,j) SM_ELEMENT_D(A,i-1,j-1) /* (i,j)-th matrix component i,j=1..NEQ */

/* Precision specific math function macros */

#if defined(SUNDIALS_DOUBLE_PRECISION)
#define ABS(x)   (fabs((x)))
#elif defined(SUNDIALS_SINGLE_PRECISION)
#define ABS(x)   (fabsf((x)))
#elif defined(SUNDIALS_EXTENDED_PRECISION)
#define ABS(x)   (fabsl((x)))
#endif

/* Problem Constants */

#define NEQ   3                /* number of equations  */
#define Y1    RCONST(1.0)      /* initial y components */
#define Y2    RCONST(0.0)
#define Y3    RCONST(0.0)
#define RTOL  RCONST(1.0e-4)   /* scalar relative tolerance            */
#define ATOL1 RCONST(1.0e-8)   /* vector absolute tolerance components */
#define ATOL2 RCONST(1.0e-14)
#define ATOL3 RCONST(1.0e-6)
#define T0    RCONST(0.0)      /* initial time           */
#define T1    RCONST(0.4)      /* first output time      */
#define TMULT RCONST(10.0)     /* output time factor     */
#define NOUT  12               /* number of output times */

#define ZERO  RCONST(0.0)

/* Functions Called by the Solver */

static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data);

static int g(realtype t, N_Vector y, realtype *gout, void *user_data);

static int Jac(realtype t, N_Vector y, N_Vector fy, SUNMatrix J,
               void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);

static int ewt(N_Vector y, N_Vector w, void *user_data);

/* Private functions to output results */

static void PrintOutput(realtype t, realtype y1, realtype y2, realtype y3);
static void PrintRootInfo(int root_f1, int root_f2);

/* Private function to print final statistics */

static void PrintFinalStats(void *cvode_mem);

/* Private function to check function return values */

static int check_retval(void *returnvalue, const char *funcname, int opt);


/*
 *-------------------------------
 * Main Program
 *-------------------------------
 */

int main()
{
  SUNContext sunctx;
  realtype t, tout;
  N_Vector y;
  SUNMatrix A;
  SUNLinearSolver LS;
  void *cvode_mem;
  int retval, iout;
  int retvalr;
  int rootsfound[2];

  y = NULL;
  A = NULL;
  LS = NULL;
  cvode_mem = NULL;

  /* Create the SUNDIALS context */
  retval = SUNContext_Create(NULL, &sunctx);
  if (check_retval(&retval, "SUNContext_Create", 1)) return(1);

  /* Initial conditions */
  y = N_VNew_Serial(NEQ, sunctx);
  if (check_retval((void *)y, "N_VNew_Serial", 0)) return(1);

  /* Initialize y */
  Ith(y,1) = Y1;
  Ith(y,2) = Y2;
  Ith(y,3) = Y3;

  /* Call CVodeCreate to create the solver memory and specify the
   * Backward Differentiation Formula */
  cvode_mem = CVodeCreate(CV_BDF, sunctx);
  if (check_retval((void *)cvode_mem, "CVodeCreate", 0)) return(1);

  /* Call CVodeInit to initialize the integrator memory and specify the
   * user's right hand side function in y'=f(t,y), the initial time T0, and
   * the initial dependent variable vector y. */
  retval = CVodeInit(cvode_mem, f, T0, y);
  if (check_retval(&retval, "CVodeInit", 1)) return(1);

  /* Use private function to compute error weights */
  retval = CVodeWFtolerances(cvode_mem, ewt);
  if (check_retval(&retval, "CVodeSetEwtFn", 1)) return(1);

  /* Call CVodeRootInit to specify the root function g with 2 components */
  retval = CVodeRootInit(cvode_mem, 2, g);
  if (check_retval(&retval, "CVodeRootInit", 1)) return(1);

  /* Create dense SUNMatrix for use in linear solves */
  A = SUNDenseMatrix(NEQ, NEQ, sunctx);
  if (check_retval((void *)A, "SUNDenseMatrix", 0)) return(1);

  /* Create dense SUNLinearSolver object for use by CVode */
  LS = SUNLinSol_Dense(y, A, sunctx);
  if (check_retval((void *)LS, "SUNLinSol_Dense", 0)) return(1);

  /* Attach the matrix and linear solver */
  retval = CVodeSetLinearSolver(cvode_mem, LS, A);
  if (check_retval(&retval, "CVodeSetLinearSolver", 1)) return(1);

  /* Set the user-supplied Jacobian routine Jac */
  retval = CVodeSetJacFn(cvode_mem, Jac);
  if (check_retval(&retval, "CVodeSetJacFn", 1)) return(1);

  /* In loop, call CVode, print results, and test for error.
     Break out of loop when NOUT preset output times have been reached.  */
  printf(" \n3-species kinetics problem\n\n");

  iout = 0;  tout = T1;
  while(1) {
    retval = CVode(cvode_mem, tout, y, &t, CV_NORMAL);
    PrintOutput(t, Ith(y,1), Ith(y,2), Ith(y,3));

    if (retval == CV_ROOT_RETURN) {
      retvalr = CVodeGetRootInfo(cvode_mem, rootsfound);
      if (check_retval(&retvalr, "CVodeGetRootInfo", 1)) return(1);
      PrintRootInfo(rootsfound[0],rootsfound[1]);
    }

    if (check_retval(&retval, "CVode", 1)) break;
    if (retval == CV_SUCCESS) {
      iout++;
      tout *= TMULT;
    }

    if (iout == NOUT) break;
  }

  /* Print some final statistics */
  PrintFinalStats(cvode_mem);

  /* Free memory */
  N_VDestroy(y);                            /* Free y vector */
  CVodeFree(&cvode_mem);                    /* Free CVODES memory */
  SUNLinSolFree(LS);                        /* Free the linear solver memory */
  SUNMatDestroy(A);                         /* Free the matrix memory */
  SUNContext_Free(&sunctx);                 /* Free the SUNDIALS context */

  return(0);
}


/*
 *-------------------------------
 * Functions called by the solver
 *-------------------------------
 */

/*
 * f routine. Compute function f(t,y).
 */

static int f(realtype t, N_Vector y, N_Vector ydot, void *user_data)
{
  realtype y1, y2, y3, yd1, yd3;

  y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);

  yd1 = Ith(ydot,1) = RCONST(-0.04)*y1 + RCONST(1.0e4)*y2*y3;
  yd3 = Ith(ydot,3) = RCONST(3.0e7)*y2*y2;
        Ith(ydot,2) = -yd1 - yd3;

  return(0);
}

/*
 * g routine. Compute functions g_i(t,y) for i = 0,1.
 */

static int g(realtype t, N_Vector y, realtype *gout, void *user_data)
{
  realtype y1, y3;

  y1 = Ith(y,1); y3 = Ith(y,3);
  gout[0] = y1 - RCONST(0.0001);
  gout[1] = y3 - RCONST(0.01);

  return(0);
}

/*
 * Jacobian routine. Compute J(t,y) = df/dy. *
 */

static int Jac(realtype t, N_Vector y, N_Vector fy, SUNMatrix J,
               void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
  realtype y2, y3;

  y2 = Ith(y,2); y3 = Ith(y,3);

  IJth(J,1,1) = RCONST(-0.04);
  IJth(J,1,2) = RCONST(1.0e4)*y3;
  IJth(J,1,3) = RCONST(1.0e4)*y2;

  IJth(J,2,1) = RCONST(0.04);
  IJth(J,2,2) = RCONST(-1.0e4)*y3-RCONST(6.0e7)*y2;
  IJth(J,2,3) = RCONST(-1.0e4)*y2;

  IJth(J,3,1) = ZERO;
  IJth(J,3,2) = RCONST(6.0e7)*y2;
  IJth(J,3,3) = ZERO;

  return(0);
}

/*
 * EwtSet function. Computes the error weights at the current solution.
 */

static int ewt(N_Vector y, N_Vector w, void *user_data)
{
  int i;
  realtype yy, ww, rtol, atol[3];

  rtol    = RTOL;
  atol[0] = ATOL1;
  atol[1] = ATOL2;
  atol[2] = ATOL3;

  for (i=1; i<=3; i++) {
    yy = Ith(y,i);
    ww = rtol * ABS(yy) + atol[i-1];
    if (ww <= 0.0) return (-1);
    Ith(w,i) = 1.0/ww;
  }

  return(0);
}

/*
 *-------------------------------
 * Private helper functions
 *-------------------------------
 */

static void PrintOutput(realtype t, realtype y1, realtype y2, realtype y3)
{
#if defined(SUNDIALS_EXTENDED_PRECISION)
  printf("At t = %0.4Le      y =%14.6Le  %14.6Le  %14.6Le\n", t, y1, y2, y3);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
  printf("At t = %0.4e      y =%14.6e  %14.6e  %14.6e\n", t, y1, y2, y3);
#else
  printf("At t = %0.4e      y =%14.6e  %14.6e  %14.6e\n", t, y1, y2, y3);
#endif

  return;
}

static void PrintRootInfo(int root_f1, int root_f2)
{
  printf("    rootsfound[] = %3d %3d\n", root_f1, root_f2);

  return;
}

/*
 * Get and print some final statistics
 */

static void PrintFinalStats(void *cvode_mem)
{
  long int nst, nfe, nsetups, nje, nfeLS, nni, nnf, ncfn, netf, nge;
  int retval;

  retval = CVodeGetNumSteps(cvode_mem, &nst);
  check_retval(&retval, "CVodeGetNumSteps", 1);
  retval = CVodeGetNumRhsEvals(cvode_mem, &nfe);
  check_retval(&retval, "CVodeGetNumRhsEvals", 1);
  retval = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);
  check_retval(&retval, "CVodeGetNumLinSolvSetups", 1);
  retval = CVodeGetNumErrTestFails(cvode_mem, &netf);
  check_retval(&retval, "CVodeGetNumErrTestFails", 1);
  retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
  check_retval(&retval, "CVodeGetNumNonlinSolvIters", 1);
  retval = CVodeGetNumNonlinSolvConvFails(cvode_mem, &nnf);
  check_retval(&retval, "CVodeGetNumNonlinSolvConvFails", 1);
  retval = CVodeGetNumStepSolveFails(cvode_mem, &ncfn);
  check_retval(&retval, "CVodeGetNumStepSolveFails", 1);

  retval = CVodeGetNumJacEvals(cvode_mem, &nje);
  check_retval(&retval, "CVodeGetNumJacEvals", 1);
  retval = CVodeGetNumLinRhsEvals(cvode_mem, &nfeLS);
  check_retval(&retval, "CVodeGetNumLinRhsEvals", 1);

  retval = CVodeGetNumGEvals(cvode_mem, &nge);
  check_retval(&retval, "CVodeGetNumGEvals", 1);

  printf("\nFinal Statistics:\n");
  printf("nst = %-6ld nfe = %-6ld nsetups = %-6ld nfeLS = %-6ld nje = %ld\n",
         nst, nfe, nsetups, nfeLS, nje);
  printf("nni = %-6ld nnf = %-6ld netf = %-6ld    ncfn = %-6ld  nge = %ld\n\n",
         nni, nnf, netf, ncfn, nge);
}

/*
 * Check function return value...
 *   opt == 0 means SUNDIALS function allocates memory so check if
 *            returned NULL pointer
 *   opt == 1 means SUNDIALS function returns an integer value so check if
 *            retval < 0
 *   opt == 2 means function allocates memory so check if returned
 *            NULL pointer
 */

static int check_retval(void *returnvalue, const char *funcname, int opt)
{
  int *retval;

  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */
  if (opt == 0 && returnvalue == NULL) {
    fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return(1); }

  /* Check if retval < 0 */
  else if (opt == 1) {
    retval = (int *) returnvalue;
    if (*retval < 0) {
      fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with retval = %d\n\n",
              funcname, *retval);
      return(1); }}

  /* Check if function returned NULL pointer - no memory allocated */
  else if (opt == 2 && returnvalue == NULL) {
    fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
            funcname);
    return(1); }

  return(0);
}