1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
C ----------------------------------------------------------------
C Programmer(s): Daniel R. Reynolds @ SMU
C Steve Smith, Eddy Banks and Alan C. Hindmarsh @ LLNL
C ----------------------------------------------------------------
C SUNDIALS Copyright Start
C Copyright (c) 2002-2022, Lawrence Livermore National Security
C and Southern Methodist University.
C All rights reserved.
C
C See the top-level LICENSE and NOTICE files for details.
C
C SPDX-License-Identifier: BSD-3-Clause
C SUNDIALS Copyright End
c ----------------------------------------------------------------
c This simple example problem for FIDA, due to Robertson, is from
c chemical kinetics, and consists of the following three equations:
c
c dy1/dt = -.04*y1 + 1.e4*y2*y3
c dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2
c 0 = y1 + y2 + y3 - 1
c
c on the interval from t = 0.0 to t = 4.e10, with initial
c conditions: y1 = 1, y2 = y3 = 0.
c
c While integrating the system, we also employ the rootfinding feature
c to find the points at which y1 = 1.e-4 or at which y3 = 0.01.
c
c The problem is solved using a dense linear solver, with a
c user-supplied Jacobian. Output is printed at
c t = .4, 4, 40, ..., 4e10.
c ----------------------------------------------------------------
c
program fidaRoberts_dns
c
implicit none
c
c The following declaration specification should match C type long int.
integer*8 neq, iout(25), ipar
integer ier, ierroot, info(2)
double precision rout(10), rpar
integer iatol, nout, jout, itask
integer nst, kused, hused, i
double precision t0, t1, rtol, tout, tret
double precision y(3), yp(3), atol(3)
c
data nst/3/, kused/9/, hused/2/
integer nthreads
nthreads = 4
c
c Initialize variables
c
neq = 3
nout = 12
rtol = 1.0d-4
t0 = 0.0d0
t1 = 0.4d0
iatol = 2
itask = 1
c
y(1) = 1.0d0
y(2) = 0.0d0
y(3) = 0.0d0
c
yp(1) = -0.04d0
yp(2) = 0.04d0
yp(3) = 0.0d0
c
atol(1) = 1.0d-6
atol(2) = 1.0d-10
atol(3) = 1.0d-6
c
c Initialize IDA vector environment
c
call fnvinitomp(2, neq, nthreads, ier)
if (ier .ne. 0) then
write(6,10) ier
10 format(///' SUNDIALS_ERROR: FNVINITS returned IER = ', i5)
stop
endif
c
call fidamalloc(t0, y, yp, iatol, rtol, atol,
& iout, rout, ipar, rpar, ier)
if (ier .ne. 0) then
write(6,20) ier
20 format(///' SUNDIALS_ERROR: FIDAMALLOC returned IER = ', i5)
stop
endif
c
c Initialize rootfinding problem
call fidarootinit(2, ier)
if (ier .ne. 0) then
write(6,25) ier
25 format(///' SUNDIALS_ERROR: FIDAROOTINIT returned IER = ', i5)
call fidafree
stop
endif
c
c Attach dense matrix and linear solver
c
call fsundensematinit(2, neq, neq, ier)
if (ier .ne. 0) then
write(6,30) ier
30 format(///' SUNDIALS_ERROR: FSUNDENSEMATINIT IER = ', i5)
call fidafree
stop
endif
call fsundenselinsolinit(2, ier)
if (ier .ne. 0) then
write(6,33) ier
33 format(///' SUNDIALS_ERROR: FSUNDENSELINSOLINIT IER = ', i5)
call fidafree
stop
endif
call fidalsinit(ier)
if (ier .ne. 0) then
write(6,35) ier
35 format(///' SUNDIALS_ERROR: FIDALSINIT returned IER = ', i5)
call fidafree
stop
endif
call fidadensesetjac(1, ier)
if (ier .ne. 0) then
write(6,37) ier
37 format(///' SUNDIALS_ERROR: FIDADENSESETJAC IER = ', i5)
call fidafree
stop
endif
c
c Print header
c
call prntintro(rtol, atol, y)
c
tout = t1
c
c
jout = 1
do while(jout .le. nout)
c
call fidasolve(tout, tret, y, yp, itask, ier)
c
write(6,40) tret, (y(i), i = 1,3), iout(nst), iout(kused),
& rout(hused)
40 format(e10.4, 3(1x,e12.4), i5, i3, e12.4)
c
if (ier .lt. 0) then
write(6,50) ier, iout(15)
50 format(///' SUNDIALS_ERROR: FIDASOLVE returned IER = ',i5,/,
1 ' Linear Solver returned IER = ',i5)
call fidarootfree
call fidafree
stop
endif
c
if (ier .eq. 2) then
call fidarootinfo(2, info, ierroot)
if (ierroot .lt. 0) then
write(6,55) ierroot
55 format(///' SUNDIALS_ERROR: FIDAROOTINFO returned IER = ',
1 i5)
call fidarootfree
call fidafree
stop
endif
write(6,60) (info(i), i = 1,2)
60 format(5x, 'Above is a root, INFO() = ', 2i3)
endif
c
if (ier .eq. 0) then
tout = tout * 10.0d0
jout = jout + 1
endif
c
ENDDO
c
c Print final statistics
c
call prntstats(iout)
c
c Free IDA memory
c
call fidarootfree
call fidafree
c
stop
end
c
c ==========
c
subroutine fidaresfun(tres, y, yp, res, ipar, rpar, reserr)
c
implicit none
c
c The following declaration specification should match C type long int.
integer*8 ipar(*)
integer reserr
double precision tres, rpar(*)
double precision y(*), yp(*), res(*)
c
res(1) = -0.04d0*y(1)+1.0d4*y(2)*y(3)
res(2) = -res(1)-3.0d7*y(2)*y(2)-yp(2)
res(1) = res(1)-yp(1)
res(3) = y(1)+y(2)+y(3)-1.0d0
c
reserr = 0
c
return
end
c
c ==========
c
subroutine fidadjac(neq, t, y, yp, r, jac, cj, ewt, h,
1 ipar, rpar, wk1, wk2, wk3, djacerr)
c
implicit none
c
c The following declaration specification should match C type long int.
integer*8 neq, ipar(*)
integer djacerr
double precision t, h, cj, rpar(*)
double precision y(*), yp(*), r(*), ewt(*), jac(neq,neq)
double precision wk1(*), wk2(*), wk3(*)
c
jac(1,1) = -0.04d0-cj
jac(2,1) = 0.04d0
jac(3,1) = 1.0d0
jac(1,2) = 1.0d4*y(3)
jac(2,2) = -1.0d4*y(3)-6.0d7*y(2)-cj
jac(3,2) = 1.0d0
jac(1,3) = 1.0d4*y(2)
jac(2,3) = -1.0d4*y(2)
jac(3,3) = 1.0d0
c
djacerr = 0
return
end
c
c ==========
c
subroutine fidarootfn(t, y, yp, g, ipar, rpar, ier)
c Fortran routine for rootfinding
implicit none
c
c The following declaration specification should match C type long int.
integer*8 ipar(*)
integer ier
double precision t, y(*), yp(*), g(*), rpar(*)
c
g(1) = y(1) - 1.0d-4
g(2) = y(3) - 1.0d-2
ier = 0
return
end
c
c ==========
c
subroutine prntintro(rtol, atol, y)
c
implicit none
c
integer i
double precision rtol, atol(*), y(*)
c
write(6,60) rtol, (atol(i), i = 1,3), (y(i), i = 1,3)
60 format(/'fidaRoberts_dns: Robertson kinetics DAE serial example',
& 'problem for IDA', /,' Three equation chemical',
& 'kinetics problem.', //,
& 'Tolerance parameters: rtol = ', e8.2,
& ' atol = ', 3(1x,e8.2), /,
& 'Initial conditions y0 = (', 3(1x,e8.2), ')', //,
& ' t y1 y2 y3 nst',
& ' k h')
c
return
end
c
c ==========
c
subroutine prntstats(iout)
c
implicit none
c
c The following declaration specification should match C type long int.
integer*8 iout(25)
integer nst, reseval, jaceval, nni, ncf, netf, nge
c
data nst/3/, reseval/4/, jaceval/17/, nni/7/, netf/5/,
& ncf/6/, nge/12/
c
write(6,70) iout(nst), iout(reseval), iout(jaceval),
& iout(nni), iout(netf), iout(ncf), iout(nge)
70 format(/'Final Run Statistics:', //,
& 'Number of steps = ', i3, /,
& 'Number of residual evaluations = ', i3, /,
& 'Number of Jacobian evaluations = ', i3, /,
& 'Number of nonlinear iterations = ', i3, /,
& 'Number of error test failures = ', i3, /,
& 'Number of nonlinear conv. failures = ', i3, /,
& 'Number of root function evals. = ', i3)
c
return
end
|