File: test_sunlinsol_pcg_serial.c

package info (click to toggle)
sundials 6.4.1%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 79,368 kB
  • sloc: ansic: 218,700; f90: 62,503; cpp: 61,511; fortran: 5,166; python: 4,642; sh: 4,114; makefile: 562; perl: 123
file content (457 lines) | stat: -rw-r--r-- 14,992 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
/*
 * -----------------------------------------------------------------
 * Programmer(s): Daniel Reynolds, Ashley Crawford @ SMU
 * -----------------------------------------------------------------
 * SUNDIALS Copyright Start
 * Copyright (c) 2002-2022, Lawrence Livermore National Security
 * and Southern Methodist University.
 * All rights reserved.
 *
 * See the top-level LICENSE and NOTICE files for details.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 * SUNDIALS Copyright End
 * -----------------------------------------------------------------
 * This is the testing routine to check the SUNLinSol PCG module
 * implementation.
 * -----------------------------------------------------------------
 */

#include <stdio.h>
#include <stdlib.h>

#include <sundials/sundials_types.h>
#include <sunlinsol/sunlinsol_pcg.h>
#include <nvector/nvector_serial.h>
#include <sundials/sundials_iterative.h>
#include <sundials/sundials_math.h>
#include "test_sunlinsol.h"

#if defined(SUNDIALS_EXTENDED_PRECISION)
#define GSYM "Lg"
#define ESYM "Le"
#define FSYM "Lf"
#else
#define GSYM "g"
#define ESYM "e"
#define FSYM "f"
#endif

/* constants */
#define FIVE      RCONST(5.0)
#define THOUSAND  RCONST(1000.0)

/* user data structure */
typedef struct {
  sunindextype N; /* problem size */
  N_Vector d;     /* matrix diagonal */
  N_Vector s;     /* scaling vector supplied to PCG */
} UserData;

/* private functions */
/*    matrix-vector product  */
int ATimes(void* ProbData, N_Vector v, N_Vector z);
/*    preconditioner setup */
int PSetup(void* ProbData);
/*    preconditioner solve */
int PSolve(void* ProbData, N_Vector r, N_Vector z, realtype tol, int lr);
/*    checks function return values  */
static int check_flag(void *flagvalue, const char *funcname, int opt);
/*    uniform random number generator in [0,1] */
static realtype urand();

/* global copy of the problem size (for check_vector routine) */
sunindextype problem_size;

/* ----------------------------------------------------------------------
 * SUNOCG Linear Solver Testing Routine
 *
 * We run multiple tests to exercise this solver:
 * 1. simple tridiagonal system (no preconditioning)
 * 2. simple tridiagonal system (Jacobi preconditioning)
 * 3. tridiagonal system w/ scale vector s (no preconditioning)
 * 4. tridiagonal system w/ scale vector s (Jacobi preconditioning)
 *
 * Note: We construct a tridiagonal matrix Ahat, a random solution
 *       xhat, and a corresponding rhs vector bhat = Ahat*xhat, such
 *       that each of these is unit-less.  To test scaling, we use
 *       the matrix
 *             A = (S-inverse) Ahat (S-inverse),
 *       solution vector
 *             x = S xhat;
 *       and construct b = A*x.  Hence the linear system has both rows
 *       and columns scaled by (S-inverse), where S is the diagonal
 *       matrix with entries from the vector s, the 'scaling' vector
 *       supplied to PCG having strictly positive entries.
 *
 *       When this is combined with preconditioning, we construct
 *       P \approx (A-inverse) by taking a unit-less preconditioner
 *       Phat \approx (Ahat-inverse), and constructing the operator
 *       P via
 *             P = S Phat S \approx S (Ahat-inverse) S = A-inverse
 *       We apply this via the steps:
 *             z = Pr = S Phat S r
 *       Since both S and Phat are diagonal matrices, this is
 *       equivalent to
 *             z(i) = s(i)^2 Phat(i) r(i)
 * --------------------------------------------------------------------*/
int main(int argc, char *argv[])
{
  int             fails=0;          /* counter for test failures */
  int             passfail=0;       /* overall pass/fail flag    */
  SUNLinearSolver LS;               /* linear solver object      */
  N_Vector        xhat, x, b;       /* test vectors              */
  UserData        ProbData;         /* problem data structure    */
  int             maxl, print_timing;
  sunindextype    i;
  realtype        *vecdata;
  double          tol;
  SUNContext      sunctx;

  if (SUNContext_Create(NULL, &sunctx)) {
    printf("ERROR: SUNContext_Create failed\n");
    return(-1);
  }

  /* check inputs: local problem size, timing flag */
  if (argc < 5) {
    printf("ERROR: FOUR (4) Inputs required:\n");
    printf("  Problem size should be >0\n");
    printf("  Maximum Krylov subspace dimension should be >0\n");
    printf("  Solver tolerance should be >0\n");
    printf("  timing output flag should be 0 or 1 \n");
    return 1;
  }
  ProbData.N = (sunindextype) atol(argv[1]);
  problem_size = ProbData.N;
  if (ProbData.N <= 0) {
    printf("ERROR: Problem size must be a positive integer\n");
    return 1;
  }
  maxl = atoi(argv[2]);
  if (maxl <= 0) {
    printf("ERROR: Maximum Krylov subspace dimension must be a positive integer\n");
    return 1;
  }
  tol = atof(argv[3]);
  if (tol <= ZERO) {
    printf("ERROR: Solver tolerance must be a positive real number\n");
    return 1;
  }
  print_timing = atoi(argv[4]);
  SetTiming(print_timing);

  printf("\nPCG linear solver test:\n");
  printf("  Problem size = %ld\n", (long int) ProbData.N);
  printf("  Maximum Krylov subspace dimension = %i\n", maxl);
  printf("  Solver Tolerance = %g\n", tol);
  printf("  timing output flag = %i\n\n", print_timing);

  /* Create vectors */
  x = N_VNew_Serial(ProbData.N, sunctx);
  if (check_flag(x, "N_VNew_Serial", 0)) return 1;
  xhat = N_VNew_Serial(ProbData.N, sunctx);
  if (check_flag(xhat, "N_VNew_Serial", 0)) return 1;
  b = N_VNew_Serial(ProbData.N, sunctx);
  if (check_flag(b, "N_VNew_Serial", 0)) return 1;
  ProbData.d = N_VNew_Serial(ProbData.N, sunctx);
  if (check_flag(ProbData.d, "N_VNew_Serial", 0)) return 1;
  ProbData.s = N_VNew_Serial(ProbData.N, sunctx);
  if (check_flag(ProbData.s, "N_VNew_Serial", 0)) return 1;

  /* Fill xhat vector with uniform random data in [1,2] */
  vecdata = N_VGetArrayPointer(xhat);
  for (i=0; i<ProbData.N; i++)
    vecdata[i] = ONE + urand();

  /* Fill Jacobi vector with matrix diagonal */
  N_VConst(FIVE, ProbData.d);

  /* Create PCG linear solver */
  LS = SUNLinSol_PCG(x, SUN_PREC_RIGHT, maxl, sunctx);
  fails += Test_SUNLinSolGetType(LS, SUNLINEARSOLVER_ITERATIVE, 0);
  fails += Test_SUNLinSolGetID(LS, SUNLINEARSOLVER_PCG, 0);
  fails += Test_SUNLinSolSetATimes(LS, &ProbData, ATimes, 0);
  fails += Test_SUNLinSolSetPreconditioner(LS, &ProbData, PSetup, PSolve, 0);
  fails += Test_SUNLinSolSetScalingVectors(LS, ProbData.s, NULL, 0);
  fails += Test_SUNLinSolSetZeroGuess(LS, 0);
  fails += Test_SUNLinSolInitialize(LS, 0);
  fails += Test_SUNLinSolSpace(LS, 0);
  if (fails) {
    printf("FAIL: SUNLinSol_PCG module failed %i initialization tests\n\n", fails);
    return 1;
  } else {
    printf("SUCCESS: SUNLinSol_PCG module passed all initialization tests\n\n");
  }



  /*** Test 1: simple Poisson-like solve (no preconditioning) ***/

  /* set scaling vector */
  N_VConst(ONE, ProbData.s);

  /* Fill x vector with scaled version */
  N_VProd(xhat, ProbData.s, x);

  /* Fill b vector with result of matrix-vector product */
  fails = ATimes(&ProbData, x, b);
  if (check_flag(&fails, "ATimes", 1)) return 1;

  /* Run test with this setup */
  fails += SUNLinSol_PCGSetPrecType(LS, SUN_PREC_NONE);
  fails += Test_SUNLinSolSetup(LS, NULL, 0);
  fails += Test_SUNLinSolSolve(LS, NULL, x, b, tol, SUNTRUE, 0);
  fails += Test_SUNLinSolSolve(LS, NULL, x, b, tol, SUNFALSE, 0);
  fails += Test_SUNLinSolLastFlag(LS, 0);
  fails += Test_SUNLinSolNumIters(LS, 0);
  fails += Test_SUNLinSolResNorm(LS, 0);
  fails += Test_SUNLinSolResid(LS, 0);

  /* Print result */
  if (fails) {
    printf("FAIL: SUNLinSol_PCG module, problem 1, failed %i tests\n\n", fails);
    passfail += 1;
  } else {
    printf("SUCCESS: SUNLinSol_PCG module, problem 1, passed all tests\n\n");
  }


  /*** Test 2: simple Poisson-like solve (Jacobi preconditioning) ***/

  /* set scaling vector */
  N_VConst(ONE, ProbData.s);

  /* Fill x vector with scaled version */
  N_VProd(xhat, ProbData.s, x);

  /* Fill b vector with result of matrix-vector product */
  fails = ATimes(&ProbData, x, b);
  if (check_flag(&fails, "ATimes", 1)) return 1;

  /* Run tests with this setup */
  fails += SUNLinSol_PCGSetPrecType(LS, SUN_PREC_RIGHT);
  fails += Test_SUNLinSolSetup(LS, NULL, 0);
  fails += Test_SUNLinSolSolve(LS, NULL, x, b, tol, SUNTRUE, 0);
  fails += Test_SUNLinSolSolve(LS, NULL, x, b, tol, SUNFALSE, 0);
  fails += Test_SUNLinSolLastFlag(LS, 0);
  fails += Test_SUNLinSolNumIters(LS, 0);
  fails += Test_SUNLinSolResNorm(LS, 0);
  fails += Test_SUNLinSolResid(LS, 0);

  /* Print result */
  if (fails) {
    printf("FAIL: SUNLinSol_PCG module, problem 2, failed %i tests\n\n", fails);
    passfail += 1;
  } else {
    printf("SUCCESS: SUNLinSol_PCG module, problem 2, passed all tests\n\n");
  }


  /*** Test 3: Poisson-like solve w/ scaling (no preconditioning) ***/

  /* set scaling vector */
  vecdata = N_VGetArrayPointer(ProbData.s);
  for (i=0; i<ProbData.N; i++)
    vecdata[i] = ONE + THOUSAND*urand();

  /* Fill x vector with scaled version */
  N_VProd(xhat, ProbData.s, x);

  /* Fill b vector with result of matrix-vector product */
  fails = ATimes(&ProbData, x, b);
  if (check_flag(&fails, "ATimes", 1)) return 1;

  /* Run tests with this setup */
  fails += SUNLinSol_PCGSetPrecType(LS, SUN_PREC_NONE);
  fails += Test_SUNLinSolSetup(LS, NULL, 0);
  fails += Test_SUNLinSolSolve(LS, NULL, x, b, tol, SUNTRUE, 0);
  fails += Test_SUNLinSolSolve(LS, NULL, x, b, tol, SUNFALSE, 0);
  fails += Test_SUNLinSolLastFlag(LS, 0);
  fails += Test_SUNLinSolNumIters(LS, 0);
  fails += Test_SUNLinSolResNorm(LS, 0);
  fails += Test_SUNLinSolResid(LS, 0);

  /* Print result */
  if (fails) {
    printf("FAIL: SUNLinSol_PCG module, problem 3, failed %i tests\n\n", fails);
    passfail += 1;
  } else {
    printf("SUCCESS: SUNLinSol_PCG module, problem 3, passed all tests\n\n");
  }


  /*** Test 4: Poisson-like solve w/ scaling (Jacobi preconditioning) ***/

  /* set scaling vectors */
  vecdata = N_VGetArrayPointer(ProbData.s);
  for (i=0; i<ProbData.N; i++)
    vecdata[i] = ONE + THOUSAND*urand();

  /* Fill x vector with scaled version */
  N_VProd(xhat, ProbData.s, x);

  /* Fill b vector with result of matrix-vector product */
  fails = ATimes(&ProbData, x, b);
  if (check_flag(&fails, "ATimes", 1)) return 1;

  /* Run tests with this setup */
  fails += SUNLinSol_PCGSetPrecType(LS, SUN_PREC_RIGHT);
  fails += Test_SUNLinSolSetup(LS, NULL, 0);
  fails += Test_SUNLinSolSolve(LS, NULL, x, b, tol, SUNTRUE, 0);
  fails += Test_SUNLinSolSolve(LS, NULL, x, b, tol, SUNFALSE, 0);
  fails += Test_SUNLinSolLastFlag(LS, 0);
  fails += Test_SUNLinSolNumIters(LS, 0);
  fails += Test_SUNLinSolResNorm(LS, 0);
  fails += Test_SUNLinSolResid(LS, 0);

  /* Print result */
  if (fails) {
    printf("FAIL: SUNLinSol_PCG module, problem 4, failed %i tests\n\n", fails);
    passfail += 1;
  } else {
    printf("SUCCESS: SUNLinSol_PCG module, problem 4, passed all tests\n\n");
  }


  /* Free solver and vectors */
  SUNLinSolFree(LS);
  N_VDestroy(x);
  N_VDestroy(xhat);
  N_VDestroy(b);
  N_VDestroy(ProbData.d);
  N_VDestroy(ProbData.s);
  SUNContext_Free(&sunctx);

  return(passfail);
}


/* ----------------------------------------------------------------------
 * Private helper functions
 * --------------------------------------------------------------------*/

/* matrix-vector product  */
int ATimes(void* Data, N_Vector v_vec, N_Vector z_vec)
{
  /* local variables */
  realtype *v, *z, *s;
  sunindextype i, N;
  UserData *ProbData;

  /* access user data structure and vector data */
  ProbData = (UserData *) Data;
  v = N_VGetArrayPointer(v_vec);
  if (check_flag(v, "N_VGetArrayPointer", 0)) return 1;
  z = N_VGetArrayPointer(z_vec);
  if (check_flag(z, "N_VGetArrayPointer", 0)) return 1;
  s = N_VGetArrayPointer(ProbData->s);
  if (check_flag(s, "N_VGetArrayPointer", 0)) return 1;
  N = ProbData->N;

  /* perform product at left boundary (note: v is zero at the boundary)*/
  z[0] = (FIVE*v[0]/s[0] - v[1]/s[1])/s[0];

  /* iterate through interior of domain, performing product */
  for (i=1; i<N-1; i++)
    z[i] = (-v[i-1]/s[i-1] + FIVE*v[i]/s[i] - v[i+1]/s[i+1])/s[i];

  /* perform product at right boundary (note: v is zero at the boundary)*/
  z[N-1] = (-v[N-2]/s[N-2] + FIVE*v[N-1]/s[N-1])/s[N-1];

  /* return with success */
  return 0;
}

/* preconditioner setup -- nothing to do here since everything is already stored */
int PSetup(void* Data) { return 0; }

/* preconditioner solve */
int PSolve(void* Data, N_Vector r_vec, N_Vector z_vec, realtype tol, int lr)
{
  /* local variables */
  realtype *r, *z, *d, *s;
  sunindextype i;
  UserData *ProbData;

  /* access user data structure and vector data */
  ProbData = (UserData *) Data;
  r = N_VGetArrayPointer(r_vec);
  if (check_flag(r, "N_VGetArrayPointer", 0)) return 1;
  z = N_VGetArrayPointer(z_vec);
  if (check_flag(z, "N_VGetArrayPointer", 0)) return 1;
  d = N_VGetArrayPointer(ProbData->d);
  if (check_flag(d, "N_VGetArrayPointer", 0)) return 1;
  s = N_VGetArrayPointer(ProbData->s);
  if (check_flag(s, "N_VGetArrayPointer", 0)) return 1;

  /* iterate through domain, performing Jacobi solve */
  for (i=0; i<ProbData->N; i++)
    z[i] = s[i] * s[i] * r[i] / d[i];

  /* return with success */
  return 0;
}

/* uniform random number generator */
static realtype urand()
{
  return ((realtype) rand() / (realtype) RAND_MAX);
}

/* Check function return value based on "opt" input:
     0:  function allocates memory so check for NULL pointer
     1:  function returns a flag so check for flag != 0 */
static int check_flag(void *flagvalue, const char *funcname, int opt)
{
  int *errflag;

  /* Check if function returned NULL pointer - no memory allocated */
  if (opt==0 && flagvalue==NULL) {
    fprintf(stderr, "\nERROR: %s() failed - returned NULL pointer\n\n",
	    funcname);
    return 1; }

  /* Check if flag != 0 */
  if (opt==1) {
    errflag = (int *) flagvalue;
    if (*errflag != 0) {
      fprintf(stderr, "\nERROR: %s() failed with flag = %d\n\n",
	      funcname, *errflag);
      return 1; }}

  return 0;
}


/* ----------------------------------------------------------------------
 * Implementation-specific 'check' routines
 * --------------------------------------------------------------------*/
int check_vector(N_Vector X, N_Vector Y, realtype tol)
{
  int      failure = 0;
  long int i;
  realtype *Xdata, *Ydata, maxerr;

  Xdata = N_VGetArrayPointer(X);
  Ydata = N_VGetArrayPointer(Y);

  /* check vector data */
  for(i=0; i<problem_size; i++)
    failure += SUNRCompareTol(Xdata[i], Ydata[i], tol);

  if (failure > ZERO) {
    maxerr = ZERO;
    for(i=0; i < problem_size; i++)
      maxerr = SUNMAX(SUNRabs(Xdata[i]-Ydata[i])/SUNRabs(Xdata[i]), maxerr);
    printf("check err failure: maxerr = %"GSYM" (tol = %"GSYM")\n",
	   maxerr, tol);
    return(1);
  }
  else
    return(0);
}

void sync_device()
{
}