1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
|
/*
* -----------------------------------------------------------------
* Programmer(s): Daniel R. Reynolds and Ting Yan @ SMU
* Based on idaFoodWeb_bnd.c and parallelized with OpenMP
* -----------------------------------------------------------------
* SUNDIALS Copyright Start
* Copyright (c) 2002-2024, Lawrence Livermore National Security
* and Southern Methodist University.
* All rights reserved.
*
* See the top-level LICENSE and NOTICE files for details.
*
* SPDX-License-Identifier: BSD-3-Clause
* SUNDIALS Copyright End
* -----------------------------------------------------------------
* Example program for IDA: Food web problem.
*
* This example program (OpenMP version) uses the SUNBAND linear
* solver, and IDACalcIC for initial condition calculation.
*
* The mathematical problem solved in this example is a DAE system
* that arises from a system of partial differential equations after
* spatial discretization. The PDE system is a food web population
* model, with predator-prey interaction and diffusion on the unit
* square in two dimensions. The dependent variable vector is:
*
* 1 2 ns
* c = (c , c , ..., c ) , ns = 2 * np
*
* and the PDE's are as follows:
*
* i i i
* dc /dt = d(i)*(c + c ) + R (x,y,c) (i = 1,...,np)
* xx yy i
*
* i i
* 0 = d(i)*(c + c ) + R (x,y,c) (i = np+1,...,ns)
* xx yy i
*
* where the reaction terms R are:
*
* i ns j
* R (x,y,c) = c * (b(i) + sum a(i,j)*c )
* i j=1
*
* The number of species is ns = 2 * np, with the first np being
* prey and the last np being predators. The coefficients a(i,j),
* b(i), d(i) are:
*
* a(i,i) = -AA (all i)
* a(i,j) = -GG (i <= np , j > np)
* a(i,j) = EE (i > np, j <= np)
* all other a(i,j) = 0
* b(i) = BB*(1+ alpha * x*y + beta*sin(4 pi x)*sin(4 pi y)) (i <= np)
* b(i) =-BB*(1+ alpha * x*y + beta*sin(4 pi x)*sin(4 pi y)) (i > np)
* d(i) = DPREY (i <= np)
* d(i) = DPRED (i > np)
*
* The various scalar parameters required are set using '#define'
* statements or directly in routine InitUserData. In this program,
* np = 1, ns = 2. The boundary conditions are homogeneous Neumann:
* normal derivative = 0.
*
* A polynomial in x and y is used to set the initial values of the
* first np variables (the prey variables) at each x,y location,
* while initial values for the remaining (predator) variables are
* set to a flat value, which is corrected by IDACalcIC.
*
* The PDEs are discretized by central differencing on a MX by MY
* mesh.
*
* The DAE system is solved by IDA using the SUNBAND linear solver.
* Output is printed at t = 0, .001, .01, .1, .4, .7, 1.
*
* Optionally, we can set the number of threads from environment
* variable or command line. To check the current value for number
* of threads from environment:
* % echo $OMP_NUM_THREADS
*
* Execution:
*
* To use the default value for the number of threads from
* the OMP_NUM_THREADS environment value:
* % ./idaFoodWeb_bnd_omp
* To specify the number of threads at the command line, use
* % ./idaFoodWeb_bnd_omp num_threads
* where num_threads is the desired number of threads.
*
* -----------------------------------------------------------------
* References:
* [1] Peter N. Brown and Alan C. Hindmarsh,
* Reduced Storage Matrix Methods in Stiff ODE systems, Journal
* of Applied Mathematics and Computation, Vol. 31 (May 1989),
* pp. 40-91.
*
* [2] Peter N. Brown, Alan C. Hindmarsh, and Linda R. Petzold,
* Using Krylov Methods in the Solution of Large-Scale
* Differential-Algebraic Systems, SIAM J. Sci. Comput., 15
* (1994), pp. 1467-1488.
*
* [3] Peter N. Brown, Alan C. Hindmarsh, and Linda R. Petzold,
* Consistent Initial Condition Calculation for Differential-
* Algebraic Systems, SIAM J. Sci. Comput., 19 (1998),
* pp. 1495-1512.
* -----------------------------------------------------------------
*/
#include <ida/ida.h>
#include <math.h>
#include <nvector/nvector_openmp.h>
#include <stdio.h>
#include <stdlib.h>
#include <sundials/sundials_direct.h>
#include <sundials/sundials_types.h>
#include <sunlinsol/sunlinsol_band.h>
#include <sunmatrix/sunmatrix_band.h>
#ifdef _OPENMP
#include <omp.h>
#endif
/* Problem Constants. */
#define NPREY 1 /* No. of prey (= no. of predators). */
#define NUM_SPECIES 2 * NPREY
#define PI SUN_RCONST(3.1415926535898)
#define FOURPI (SUN_RCONST(4.0) * PI)
#define MX 20 /* MX = number of x mesh points */
#define MY 20 /* MY = number of y mesh points */
#define NSMX (NUM_SPECIES * MX)
#define NEQ (NUM_SPECIES * MX * MY)
#define AA SUN_RCONST(1.0) /* Coefficient in above eqns. for a */
#define EE SUN_RCONST(10000.) /* Coefficient in above eqns. for a */
#define GG SUN_RCONST(0.5e-6) /* Coefficient in above eqns. for a */
#define BB SUN_RCONST(1.0) /* Coefficient in above eqns. for b */
#define DPREY SUN_RCONST(1.0) /* Coefficient in above eqns. for d */
#define DPRED SUN_RCONST(0.05) /* Coefficient in above eqns. for d */
#define ALPHA SUN_RCONST(50.) /* Coefficient alpha in above eqns. */
#define BETA SUN_RCONST(1000.) /* Coefficient beta in above eqns. */
#define AX SUN_RCONST(1.0) /* Total range of x variable */
#define AY SUN_RCONST(1.0) /* Total range of y variable */
#define RTOL SUN_RCONST(1.e-5) /* Relative tolerance */
#define ATOL SUN_RCONST(1.e-5) /* Absolute tolerance */
#define NOUT 6 /* Number of output times */
#define TMULT SUN_RCONST(10.0) /* Multiplier for tout values */
#define TADD SUN_RCONST(0.3) /* Increment for tout values */
#define ZERO SUN_RCONST(0.)
#define ONE SUN_RCONST(1.0)
/*
* User-defined vector and accessor macro: IJ_Vptr.
* IJ_Vptr is defined in order to express the underlying 3-D structure of
* the dependent variable vector from its underlying 1-D storage (an N_Vector).
* IJ_Vptr(vv,i,j) returns a pointer to the location in vv corresponding to
* species index is = 0, x-index ix = i, and y-index jy = j.
*/
#define IJ_Vptr(vv, i, j) (&NV_Ith_OMP(vv, (i) * NUM_SPECIES + (j) * NSMX))
/* Type: UserData. Contains problem constants, etc. */
typedef struct
{
sunindextype Neq, ns, np, mx, my;
sunrealtype dx, dy, **acoef;
sunrealtype cox[NUM_SPECIES], coy[NUM_SPECIES], bcoef[NUM_SPECIES];
N_Vector rates;
int nthreads;
}* UserData;
/* Prototypes for functions called by the IDA Solver. */
static int resweb(sunrealtype time, N_Vector cc, N_Vector cp, N_Vector resval,
void* user_data);
/* Prototypes for private Helper Functions. */
static void InitUserData(UserData webdata);
static void SetInitialProfiles(N_Vector cc, N_Vector cp, N_Vector id,
UserData webdata);
static void PrintHeader(sunindextype mu, sunindextype ml, sunrealtype rtol,
sunrealtype atol);
static void PrintOutput(void* ida_mem, N_Vector c, sunrealtype t);
static void PrintFinalStats(void* ida_mem);
static void Fweb(sunrealtype tcalc, N_Vector cc, N_Vector crate,
UserData webdata);
static void WebRates(sunrealtype xx, sunrealtype yy, sunrealtype* cxy,
sunrealtype* ratesxy, UserData webdata);
static sunrealtype dotprod(sunindextype size, sunrealtype* x1, sunrealtype* x2);
static int check_retval(void* returnvalue, char* funcname, int opt);
/*
*--------------------------------------------------------------------
* MAIN PROGRAM
*--------------------------------------------------------------------
*/
int main(int argc, char* argv[])
{
void* ida_mem;
SUNMatrix A;
SUNLinearSolver LS;
UserData webdata;
N_Vector cc, cp, id;
int iout, retval;
sunindextype mu, ml;
sunrealtype rtol, atol, t0, tout, tret;
int num_threads;
SUNContext ctx;
ida_mem = NULL;
A = NULL;
LS = NULL;
webdata = NULL;
cc = cp = id = NULL;
/* Set the number of threads to use */
num_threads = 1; /* default value */
#ifdef _OPENMP
num_threads =
omp_get_max_threads(); /* overwrite with OMP_NUM_THREADS enviroment variable */
#endif
if (argc > 1)
{ /* overwrite with command line value, if supplied */
num_threads = (int)strtol(argv[1], NULL, 0);
}
/* Create the SUNDIALS context object for this simulation */
retval = SUNContext_Create(SUN_COMM_NULL, &ctx);
if (check_retval(&retval, "SUNContext_Create", 1)) { return 1; }
/* Allocate and initialize user data block webdata. */
webdata = (UserData)malloc(sizeof *webdata);
webdata->rates = N_VNew_OpenMP(NEQ, num_threads, ctx);
webdata->acoef = SUNDlsMat_newDenseMat(NUM_SPECIES, NUM_SPECIES);
webdata->nthreads = num_threads;
InitUserData(webdata);
/* Allocate N-vectors and initialize cc, cp, and id. */
cc = N_VNew_OpenMP(NEQ, num_threads, ctx);
if (check_retval((void*)cc, "N_VNew_OpenMP", 0)) { return (1); }
cp = N_VNew_OpenMP(NEQ, num_threads, ctx);
if (check_retval((void*)cp, "N_VNew_OpenMP", 0)) { return (1); }
id = N_VNew_OpenMP(NEQ, num_threads, ctx);
if (check_retval((void*)id, "N_VNew_OpenMP", 0)) { return (1); }
SetInitialProfiles(cc, cp, id, webdata);
/* Set remaining inputs to IDAMalloc. */
t0 = ZERO;
rtol = RTOL;
atol = ATOL;
/* Call IDACreate and IDAMalloc to initialize IDA. */
ida_mem = IDACreate(ctx);
if (check_retval((void*)ida_mem, "IDACreate", 0)) { return (1); }
retval = IDASetUserData(ida_mem, webdata);
if (check_retval(&retval, "IDASetUserData", 1)) { return (1); }
retval = IDASetId(ida_mem, id);
if (check_retval(&retval, "IDASetId", 1)) { return (1); }
retval = IDAInit(ida_mem, resweb, t0, cc, cp);
if (check_retval(&retval, "IDAInit", 1)) { return (1); }
retval = IDASStolerances(ida_mem, rtol, atol);
if (check_retval(&retval, "IDASStolerances", 1)) { return (1); }
/* Setup band matrix and linear solver, and attach to IDA. */
mu = ml = NSMX;
A = SUNBandMatrix(NEQ, mu, ml, ctx);
if (check_retval((void*)A, "SUNBandMatrix", 0)) { return (1); }
LS = SUNLinSol_Band(cc, A, ctx);
if (check_retval((void*)LS, "SUNLinSol_Band", 0)) { return (1); }
retval = IDASetLinearSolver(ida_mem, LS, A);
if (check_retval(&retval, "IDASetLinearSolver", 1)) { return (1); }
/* Call IDACalcIC (with default options) to correct the initial values. */
tout = SUN_RCONST(0.001);
retval = IDACalcIC(ida_mem, IDA_YA_YDP_INIT, tout);
if (check_retval(&retval, "IDACalcIC", 1)) { return (1); }
/* Print heading, basic parameters, and initial values. */
PrintHeader(mu, ml, rtol, atol);
PrintOutput(ida_mem, cc, ZERO);
/* Loop over iout, call IDASolve (normal mode), print selected output. */
for (iout = 1; iout <= NOUT; iout++)
{
retval = IDASolve(ida_mem, tout, &tret, cc, cp, IDA_NORMAL);
if (check_retval(&retval, "IDASolve", 1)) { return (retval); }
PrintOutput(ida_mem, cc, tret);
if (iout < 3) { tout *= TMULT; }
else { tout += TADD; }
}
/* Print final statistics and free memory. */
PrintFinalStats(ida_mem);
printf("num_threads = %i\n\n", num_threads);
/* Free memory */
IDAFree(&ida_mem);
SUNLinSolFree(LS);
SUNMatDestroy(A);
N_VDestroy_OpenMP(cc);
N_VDestroy_OpenMP(cp);
N_VDestroy_OpenMP(id);
SUNDlsMat_destroyMat(webdata->acoef);
N_VDestroy_OpenMP(webdata->rates);
free(webdata);
SUNContext_Free(&ctx);
return (0);
}
/* Define lines for readability in later routines */
#define acoef (webdata->acoef)
#define bcoef (webdata->bcoef)
#define cox (webdata->cox)
#define coy (webdata->coy)
/*
*--------------------------------------------------------------------
* FUNCTIONS CALLED BY IDA
*--------------------------------------------------------------------
*/
/*
* resweb: System residual function for predator-prey system.
* This routine calls Fweb to get all the right-hand sides of the
* equations, then loads the residual vector accordingly,
* using cp in the case of prey species.
*/
static int resweb(sunrealtype tt, N_Vector cc, N_Vector cp, N_Vector res,
void* user_data)
{
sunindextype jx, jy, is, yloc, loc, np;
sunrealtype *resv, *cpv;
UserData webdata;
jx = jy = is = 0;
webdata = (UserData)user_data;
cpv = NV_DATA_OMP(cp);
resv = NV_DATA_OMP(res);
np = webdata->np;
/* Call Fweb to set res to vector of right-hand sides. */
Fweb(tt, cc, res, webdata);
/* Loop over all grid points, setting residual values appropriately
for differential or algebraic components. */
#pragma omp parallel for default(shared) private(jy, yloc, jx, loc, is) \
schedule(static) num_threads(webdata->nthreads)
for (jy = 0; jy < MY; jy++)
{
yloc = NSMX * jy;
for (jx = 0; jx < MX; jx++)
{
loc = yloc + NUM_SPECIES * jx;
for (is = 0; is < NUM_SPECIES; is++)
{
if (is < np) { resv[loc + is] = cpv[loc + is] - resv[loc + is]; }
else { resv[loc + is] = -resv[loc + is]; }
}
}
}
return (0);
}
/*
*--------------------------------------------------------------------
* PRIVATE FUNCTIONS
*--------------------------------------------------------------------
*/
/*
* InitUserData: Load problem constants in webdata (of type UserData).
*/
static void InitUserData(UserData webdata)
{
sunindextype i, j, np;
sunrealtype *a1, *a2, *a3, *a4, dx2, dy2;
webdata->mx = MX;
webdata->my = MY;
webdata->ns = NUM_SPECIES;
webdata->np = NPREY;
webdata->dx = AX / (MX - 1);
webdata->dy = AY / (MY - 1);
webdata->Neq = NEQ;
/* Set up the coefficients a and b, and others found in the equations. */
np = webdata->np;
dx2 = (webdata->dx) * (webdata->dx);
dy2 = (webdata->dy) * (webdata->dy);
for (i = 0; i < np; i++)
{
a1 = &(acoef[i][np]);
a2 = &(acoef[i + np][0]);
a3 = &(acoef[i][0]);
a4 = &(acoef[i + np][np]);
/* Fill in the portion of acoef in the four quadrants, row by row. */
for (j = 0; j < np; j++)
{
*a1++ = -GG;
*a2++ = EE;
*a3++ = ZERO;
*a4++ = ZERO;
}
/* Reset the diagonal elements of acoef to -AA. */
acoef[i][i] = -AA;
acoef[i + np][i + np] = -AA;
/* Set coefficients for b and diffusion terms. */
bcoef[i] = BB;
bcoef[i + np] = -BB;
cox[i] = DPREY / dx2;
cox[i + np] = DPRED / dx2;
coy[i] = DPREY / dy2;
coy[i + np] = DPRED / dy2;
}
}
/*
* SetInitialProfiles: Set initial conditions in cc, cp, and id.
* A polynomial profile is used for the prey cc values, and a constant
* (1.0e5) is loaded as the initial guess for the predator cc values.
* The id values are set to 1 for the prey and 0 for the predators.
* The prey cp values are set according to the given system, and
* the predator cp values are set to zero.
*/
static void SetInitialProfiles(N_Vector cc, N_Vector cp, N_Vector id,
UserData webdata)
{
sunindextype loc, yloc, is, jx, jy, np;
sunrealtype xx, yy, xyfactor;
sunrealtype *ccv, *cpv, *idv;
ccv = NV_DATA_OMP(cc);
cpv = NV_DATA_OMP(cp);
idv = NV_DATA_OMP(id);
np = webdata->np;
/* Loop over grid, load cc values and id values. */
for (jy = 0; jy < MY; jy++)
{
yy = jy * webdata->dy;
yloc = NSMX * jy;
for (jx = 0; jx < MX; jx++)
{
xx = jx * webdata->dx;
xyfactor = SUN_RCONST(16.0) * xx * (ONE - xx) * yy * (ONE - yy);
xyfactor *= xyfactor;
loc = yloc + NUM_SPECIES * jx;
for (is = 0; is < NUM_SPECIES; is++)
{
if (is < np)
{
ccv[loc + is] = SUN_RCONST(10.0) + (sunrealtype)(is + 1) * xyfactor;
idv[loc + is] = ONE;
}
else
{
ccv[loc + is] = SUN_RCONST(1.0e5);
idv[loc + is] = ZERO;
}
}
}
}
/* Set c' for the prey by calling the function Fweb. */
Fweb(ZERO, cc, cp, webdata);
/* Set c' for predators to 0. */
for (jy = 0; jy < MY; jy++)
{
yloc = NSMX * jy;
for (jx = 0; jx < MX; jx++)
{
loc = yloc + NUM_SPECIES * jx;
for (is = np; is < NUM_SPECIES; is++) { cpv[loc + is] = ZERO; }
}
}
}
/*
* Print first lines of output (problem description)
*/
static void PrintHeader(sunindextype mu, sunindextype ml, sunrealtype rtol,
sunrealtype atol)
{
printf("\nidaFoodWeb_bnd_omp: Predator-prey DAE OpenMP example problem for "
"IDA \n\n");
printf("Number of species ns: %d", NUM_SPECIES);
printf(" Mesh dimensions: %d x %d", MX, MY);
printf(" System size: %d\n", NEQ);
#if defined(SUNDIALS_EXTENDED_PRECISION)
printf("Tolerance parameters: rtol = %Lg atol = %Lg\n", rtol, atol);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
printf("Tolerance parameters: rtol = %g atol = %g\n", rtol, atol);
#else
printf("Tolerance parameters: rtol = %g atol = %g\n", rtol, atol);
#endif
printf("Linear solver: SUNBAND, Band parameters mu = %ld, ml = %ld\n",
(long int)mu, (long int)ml);
printf("CalcIC called to correct initial predator concentrations.\n\n");
printf("-----------------------------------------------------------\n");
printf(" t bottom-left top-right");
printf(" | nst k h\n");
printf("-----------------------------------------------------------\n\n");
}
/*
* PrintOutput: Print output values at output time t = tt.
* Selected run statistics are printed. Then values of the concentrations
* are printed for the bottom left and top right grid points only.
*/
static void PrintOutput(void* ida_mem, N_Vector c, sunrealtype t)
{
int i, kused, retval;
long int nst;
sunrealtype *c_bl, *c_tr, hused;
retval = IDAGetLastOrder(ida_mem, &kused);
check_retval(&retval, "IDAGetLastOrder", 1);
retval = IDAGetNumSteps(ida_mem, &nst);
check_retval(&retval, "IDAGetNumSteps", 1);
retval = IDAGetLastStep(ida_mem, &hused);
check_retval(&retval, "IDAGetLastStep", 1);
c_bl = IJ_Vptr(c, 0, 0);
c_tr = IJ_Vptr(c, MX - 1, MY - 1);
#if defined(SUNDIALS_EXTENDED_PRECISION)
printf("%8.2Le %12.4Le %12.4Le | %3ld %1d %12.4Le\n", t, c_bl[0], c_tr[0],
nst, kused, hused);
for (i = 1; i < NUM_SPECIES; i++)
printf(" %12.4Le %12.4Le |\n", c_bl[i], c_tr[i]);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
printf("%8.2e %12.4e %12.4e | %3ld %1d %12.4e\n", t, c_bl[0], c_tr[0], nst,
kused, hused);
for (i = 1; i < NUM_SPECIES; i++)
{
printf(" %12.4e %12.4e |\n", c_bl[i], c_tr[i]);
}
#else
printf("%8.2e %12.4e %12.4e | %3ld %1d %12.4e\n", t, c_bl[0], c_tr[0], nst,
kused, hused);
for (i = 1; i < NUM_SPECIES; i++)
printf(" %12.4e %12.4e |\n", c_bl[i], c_tr[i]);
#endif
printf("\n");
}
/*
* PrintFinalStats: Print final run data contained in iopt.
*/
static void PrintFinalStats(void* ida_mem)
{
long int nst, nre, nreLS, nni, nje, netf, ncfn;
int retval;
retval = IDAGetNumSteps(ida_mem, &nst);
check_retval(&retval, "IDAGetNumSteps", 1);
retval = IDAGetNumNonlinSolvIters(ida_mem, &nni);
check_retval(&retval, "IDAGetNumNonlinSolvIters", 1);
retval = IDAGetNumResEvals(ida_mem, &nre);
check_retval(&retval, "IDAGetNumResEvals", 1);
retval = IDAGetNumErrTestFails(ida_mem, &netf);
check_retval(&retval, "IDAGetNumErrTestFails", 1);
retval = IDAGetNumNonlinSolvConvFails(ida_mem, &ncfn);
check_retval(&retval, "IDAGetNumNonlinSolvConvFails", 1);
retval = IDAGetNumJacEvals(ida_mem, &nje);
check_retval(&retval, "IDAGetNumJacEvals", 1);
retval = IDAGetNumLinResEvals(ida_mem, &nreLS);
check_retval(&retval, "IDAGetNumLinResEvals", 1);
printf("-----------------------------------------------------------\n");
printf("Final run statistics: \n\n");
printf("Number of steps = %ld\n", nst);
printf("Number of residual evaluations = %ld\n", nre + nreLS);
printf("Number of Jacobian evaluations = %ld\n", nje);
printf("Number of nonlinear iterations = %ld\n", nni);
printf("Number of error test failures = %ld\n", netf);
printf("Number of nonlinear conv. failures = %ld\n", ncfn);
}
/*
* Fweb: Rate function for the food-web problem.
* This routine computes the right-hand sides of the system equations,
* consisting of the diffusion term and interaction term.
* The interaction term is computed by the function WebRates.
*/
static void Fweb(sunrealtype tcalc, N_Vector cc, N_Vector crate, UserData webdata)
{
sunindextype jx, jy, is, idyu, idyl, idxu, idxl;
sunrealtype xx, yy, *cxy, *ratesxy, *cratexy, dcyli, dcyui, dcxli, dcxui;
/* Loop over grid points, evaluate interaction vector (length ns),
form diffusion difference terms, and load crate. */
jx = jy = is = 0;
for (jy = 0; jy < MY; jy++)
{
yy = (webdata->dy) * jy;
idyu = (jy != MY - 1) ? NSMX : -NSMX;
idyl = (jy != 0) ? NSMX : -NSMX;
for (jx = 0; jx < MX; jx++)
{
xx = (webdata->dx) * jx;
idxu = (jx != MX - 1) ? NUM_SPECIES : -NUM_SPECIES;
idxl = (jx != 0) ? NUM_SPECIES : -NUM_SPECIES;
cxy = IJ_Vptr(cc, jx, jy);
ratesxy = IJ_Vptr(webdata->rates, jx, jy);
cratexy = IJ_Vptr(crate, jx, jy);
/* Get interaction vector at this grid point. */
WebRates(xx, yy, cxy, ratesxy, webdata);
/* Loop over species, do differencing, load crate segment. */
#pragma omp parallel for default(shared) private(is, dcyli, dcyui, dcxli, dcxui) \
schedule(static) num_threads(webdata->nthreads)
for (is = 0; is < NUM_SPECIES; is++)
{
/* Differencing in y. */
dcyli = *(cxy + is) - *(cxy - idyl + is);
dcyui = *(cxy + idyu + is) - *(cxy + is);
/* Differencing in x. */
dcxli = *(cxy + is) - *(cxy - idxl + is);
dcxui = *(cxy + idxu + is) - *(cxy + is);
/* Compute the crate values at (xx,yy). */
cratexy[is] = coy[is] * (dcyui - dcyli) + cox[is] * (dcxui - dcxli) +
ratesxy[is];
} /* End is loop */
} /* End of jx loop */
} /* End of jy loop */
}
/*
* WebRates: Evaluate reaction rates at a given spatial point.
* At a given (x,y), evaluate the array of ns reaction terms R.
*/
static void WebRates(sunrealtype xx, sunrealtype yy, sunrealtype* cxy,
sunrealtype* ratesxy, UserData webdata)
{
int is;
sunrealtype fac;
for (is = 0; is < NUM_SPECIES; is++)
{
ratesxy[is] = dotprod(NUM_SPECIES, cxy, acoef[is]);
}
fac = ONE + ALPHA * xx * yy + BETA * sin(FOURPI * xx) * sin(FOURPI * yy);
for (is = 0; is < NUM_SPECIES; is++)
{
ratesxy[is] = cxy[is] * (bcoef[is] * fac + ratesxy[is]);
}
}
/*
* dotprod: dot product routine for sunrealtype arrays, for use by WebRates.
*/
static sunrealtype dotprod(sunindextype size, sunrealtype* x1, sunrealtype* x2)
{
sunindextype i;
sunrealtype *xx1, *xx2, temp = ZERO;
xx1 = x1;
xx2 = x2;
for (i = 0; i < size; i++) { temp += (*xx1++) * (*xx2++); }
return (temp);
}
/*
* Check function return value...
* opt == 0 means SUNDIALS function allocates memory so check if
* returned NULL pointer
* opt == 1 means SUNDIALS function returns an integer value so check if
* retval < 0
* opt == 2 means function allocates memory so check if returned
* NULL pointer
*/
static int check_retval(void* returnvalue, char* funcname, int opt)
{
int* retval;
if (opt == 0 && returnvalue == NULL)
{
/* Check if SUNDIALS function returned NULL pointer - no memory allocated */
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return (1);
}
else if (opt == 1)
{
/* Check if retval < 0 */
retval = (int*)returnvalue;
if (*retval < 0)
{
fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with retval = %d\n\n",
funcname, *retval);
return (1);
}
}
else if (opt == 2 && returnvalue == NULL)
{
/* Check if function returned NULL pointer - no memory allocated */
fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL pointer\n\n",
funcname);
return (1);
}
return (0);
}
|