File: 2011_06_07_sampledata_overview.py

package info (click to toggle)
sunpy 2.0.7-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 17,716 kB
  • sloc: python: 36,852; ansic: 1,776; makefile: 19
file content (124 lines) | stat: -rw-r--r-- 4,744 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
========================
Sample data set overview
========================

An overview of the coordinated sample data set.
"""
import matplotlib.pyplot as plt

import astropy.units as u

import sunpy.data.sample as sample_data
import sunpy.map
import sunpy.timeseries

###############################################################################
# On 2011 June 7, various solar instruments observed a spectacular solar
# eruption from NOAA AR 11226. The event included an M2.5 flare, a
# filament eruption, a coronal mass ejection, and a global coronal EUV wave (IAU standard:
# SOL2011-06-07T06:24:00L045C112). This event was spectacular because it
# features the ejection of a large amount of prominence material, much of which
# failed to escape and fell back to the solar surface.
# This event received some press coverage (e.g. `National Geographics
# <https://news.nationalgeographic.com/news/2011/06/110608-solar-flare-sun-science-space/>`_,
# `Discover Magazine <http://blogs.discovermagazine.com/badastronomy/2011/06/07/the-sun-lets-loose-a-huge-explosion/>`_)
# and the literature contains a number of a papers about it (e.g. `Li et al.
# <https://iopscience.iop.org/article/10.1088/0004-637X/746/1/13/meta>`_,
# `Inglis et al. <https://iopscience.iop.org/article/10.1088/0004-637X/777/1/30/meta>`_)

###############################################################################
# The following image of the flare is now fairly iconic.
aia_cutout03_map = sunpy.map.Map(sample_data.AIA_193_CUTOUT03_IMAGE)
fig = plt.figure()
ax = fig.add_subplot(111, projection=aia_cutout03_map)
aia_cutout03_map.plot()
plt.show()

###############################################################################
# Let's take a look at the GOES XRS data.
goes = sunpy.timeseries.TimeSeries(sample_data.GOES_XRS_TIMESERIES)
fig = plt.figure()
goes.plot()
plt.show()

###############################################################################
# Next let's investigate the AIA full disk images that are available. Please
# note that these images are not at the full AIA resolution.

aia_131_map = sunpy.map.Map(sample_data.AIA_131_IMAGE)
aia_171_map = sunpy.map.Map(sample_data.AIA_171_IMAGE)
aia_211_map = sunpy.map.Map(sample_data.AIA_211_IMAGE)
aia_335_map = sunpy.map.Map(sample_data.AIA_335_IMAGE)
aia_094_map = sunpy.map.Map(sample_data.AIA_094_IMAGE)
aia_1600_map = sunpy.map.Map(sample_data.AIA_1600_IMAGE)

fig = plt.figure(figsize=(6, 28))
ax = fig.add_subplot(611, projection=aia_131_map)
aia_131_map.plot(clip_interval=(0.5, 99.9)*u.percent)
aia_131_map.draw_grid()

ax = fig.add_subplot(612, projection=aia_171_map)
aia_171_map.plot(clip_interval=(0.5, 99.9)*u.percent)
aia_171_map.draw_grid()

ax = fig.add_subplot(613, projection=aia_211_map)
aia_211_map.plot(clip_interval=(0.5, 99.9)*u.percent)
aia_211_map.draw_grid()

ax = fig.add_subplot(614, projection=aia_335_map)
aia_335_map.plot(clip_interval=(0.5, 99.9)*u.percent)
aia_335_map.draw_grid()

ax = fig.add_subplot(615, projection=aia_094_map)
aia_094_map.plot(clip_interval=(0.5, 99.9)*u.percent)
aia_094_map.draw_grid()

ax = fig.add_subplot(616, projection=aia_1600_map)
aia_1600_map.plot(clip_interval=(0.5, 99.9)*u.percent)
aia_1600_map.draw_grid()

fig.tight_layout(pad=8.50)
plt.show()

###############################################################################
# We also provide a series of AIA cutouts so that you can get a sense of the
# dynamics of the in-falling material.
aia_cutout01_map = sunpy.map.Map(sample_data.AIA_193_CUTOUT01_IMAGE)
aia_cutout02_map = sunpy.map.Map(sample_data.AIA_193_CUTOUT02_IMAGE)
aia_cutout03_map = sunpy.map.Map(sample_data.AIA_193_CUTOUT03_IMAGE)
aia_cutout04_map = sunpy.map.Map(sample_data.AIA_193_CUTOUT04_IMAGE)
aia_cutout05_map = sunpy.map.Map(sample_data.AIA_193_CUTOUT05_IMAGE)

fig = plt.figure(figsize=(6, 28))
ax = fig.add_subplot(511, projection=aia_cutout01_map)
aia_cutout01_map.plot()

ax = fig.add_subplot(512, projection=aia_cutout02_map)
aia_cutout02_map.plot()

ax = fig.add_subplot(513, projection=aia_cutout03_map)
aia_cutout03_map.plot()

ax = fig.add_subplot(514, projection=aia_cutout04_map)
aia_cutout04_map.plot()

ax = fig.add_subplot(515, projection=aia_cutout05_map)
aia_cutout05_map.plot()

fig.tight_layout(pad=5.50)
plt.show()

###############################################################################
# There are a number of other data sources available as well, such as SWAP.
swap_map = sunpy.map.Map(sample_data.SWAP_LEVEL1_IMAGE)
fig = plt.figure()
swap_map.plot()
plt.show()

###############################################################################
# And also RHESSI.
rhessi_map = sunpy.map.Map(sample_data.RHESSI_IMAGE)
fig = plt.figure()
rhessi_map.plot()
plt.show()