1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
|
"""
===============
Resampling Maps
===============
How to resample a map using the resample method, which implements interpolation, or
using superpixels, which combines pixels.
"""
import matplotlib.pyplot as plt
import astropy.units as u
import sunpy.data.sample
import sunpy.map
###############################################################################
# We start with the sample data.
aia_map = sunpy.map.Map(sunpy.data.sample.AIA_171_IMAGE)
##############################################################################
# To reduce the angular resolution of the map you can use the `~sunpy.map.GenericMap.resample` method,
# specifying the new dimensions in pixels. By default, this method uses linear interpolation
# but this can be changed with the ``method`` argument ('nearest', 'linear' or 'spline').
new_dimensions = [40, 40] * u.pixel
aia_resampled_map = aia_map.resample(new_dimensions)
##############################################################################
# Let's plot the result.
plt.figure()
aia_resampled_map.plot()
plt.show()
##############################################################################
# Another way to resample is by using the `~sunpy.map.GenericMap.superpixel` method.
# This can be used to increase the signal to noise ratio by reducing the
# resolution of the image by combining pixels. This means that the new dimension
# must divide the original size exactly.
# For example you can reduce the AIA map resolution by a factor of 16.
new_dimensions = u.Quantity(aia_map.dimensions) / 16
aia_superpixel_map = aia_map.superpixel(new_dimensions)
##############################################################################
# Let's plot the result.
plt.figure()
aia_superpixel_map.plot()
plt.show()
|