1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
|
"""
========================
Creating Carrington Maps
========================
In this example we use the `reproject` generate a map in heliographic Carrington coordinates from a full-disk AIA image.
You will need `reproject <https://reproject.readthedocs.io/en/stable/>`__ v0.6 or higher installed.
"""
# sphinx_gallery_thumbnail_number = 2
import matplotlib.pyplot as plt
import sunpy.data.sample
import sunpy.map
from sunpy.map.header_helper import make_heliographic_header
###############################################################################
# We will start with using sunpy's sample data for this example.
aia_map = sunpy.map.Map(sunpy.data.sample.AIA_193_IMAGE)
plt.figure()
aia_map.plot()
###############################################################################
# Reproject works by transforming an input image to a desired World Coordinate
# System (WCS) projection. Here we use :func:`sunpy.map.header_helper.make_heliographic_header`
# to create a FITS WCS header based on a heliographic Carrington reference
# coordinate.
shape = (720, 1440)
carr_header = make_heliographic_header(aia_map.date, aia_map.observer_coordinate, shape, frame='carrington')
###############################################################################
# With the new header, re-project the data into the new coordinate system.
# The :meth:`~sunpy.map.GenericMap.reproject_to` defaults to using
# the fast :func:`reproject.reproject_interp` algorithm, but a different
# algorithm can be specified (e.g., :func:`reproject.reproject_adaptive`).
outmap = aia_map.reproject_to(carr_header)
###############################################################################
# Plot the result.
plt.figure()
outmap.plot()
outmap.draw_limb(color='blue')
plt.show()
|