File: test_metaframes.py

package info (click to toggle)
sunpy 7.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,252 kB
  • sloc: python: 40,837; ansic: 1,710; makefile: 36
file content (324 lines) | stat: -rw-r--r-- 12,732 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import pickle

import pytest
from hypothesis import given, settings, HealthCheck

import astropy.units as u
from astropy.coordinates import HeliocentricMeanEcliptic, SkyCoord, frame_transform_graph
from astropy.tests.helper import assert_quantity_allclose
from astropy.time import Time, TimeDelta

import sunpy.coordinates.frames as f
from sunpy.coordinates.metaframes import RotatedSunFrame, _rotatedsun_cache
from sunpy.coordinates.tests.helpers import assert_longitude_allclose
from sunpy.coordinates.tests.strategies import latitudes, longitudes, times
from sunpy.sun import constants
from sunpy.sun.models import differential_rotation

# NorthOffsetFrame is tested in test_offset_frame.py


###########################
# Tests for RotatedSunFrame
###########################

@pytest.fixture
def indirect_fixture(request):
    return request.getfixturevalue(request.param)


@pytest.fixture
def rot_hgs():
    return (f.HeliographicStonyhurst,
            RotatedSunFrame(lon=1*u.deg, lat=2*u.deg, radius=3*u.AU,
                            base=f.HeliographicStonyhurst(obstime='2001-01-01'),
                            duration=4*u.day))


@pytest.fixture
def rot_hgc():
    return (f.HeliographicCarrington,
            RotatedSunFrame(lon=1*u.deg, lat=2*u.deg, radius=3*u.AU,
                            base=f.HeliographicCarrington(observer='earth', obstime='2001-01-01'),
                            duration=4*u.day))


@pytest.fixture
def rot_hci():
    return (f.HeliocentricInertial,
            RotatedSunFrame(lon=1*u.deg, lat=2*u.deg, distance=3*u.AU,
                            base=f.HeliocentricInertial(obstime='2001-01-01'),
                            duration=4*u.day))


@pytest.fixture
def rot_hcc():
    return (f.Heliocentric,
            RotatedSunFrame(x=1*u.AU, y=2*u.AU, z=3*u.AU,
                            base=f.Heliocentric(observer='earth', obstime='2001-01-01'),
                            duration=4*u.day))


@pytest.fixture
def rot_hpc():
    return (f.Helioprojective,
            RotatedSunFrame(Tx=1*u.deg, Ty=2*u.deg, distance=3*u.AU,
                            base=f.Helioprojective(observer='earth', obstime='2001-01-01'),
                            duration=4*u.day))


# Test a non-SunPy frame
@pytest.fixture
def rot_hme():
    return (HeliocentricMeanEcliptic,
            RotatedSunFrame(lon=1*u.deg, lat=2*u.deg, distance=3*u.AU,
                            base=HeliocentricMeanEcliptic(obstime='2001-01-01', equinox='2001-01-01'),
                            duration=4*u.day))


@pytest.mark.parametrize("indirect_fixture",
                         ["rot_hgs", "rot_hgc", "rot_hci", "rot_hcc", "rot_hpc", "rot_hme"], indirect=True)
def test_class_creation(indirect_fixture):
    base_class, rot_frame = indirect_fixture

    rot_class = type(rot_frame)

    # Check that the RotatedSunFrame class name has both 'RotatedSun' and the name of the base
    assert 'RotatedSun' in rot_class.__name__
    assert base_class.__name__ in rot_class.__name__

    # Check that the base class is in fact the specified class
    assert type(rot_frame.base) == base_class  # NOQA: E721

    # Check that the new class does *not* have the `obstime` frame attribute
    assert 'obstime' not in rot_frame.frame_attributes

    # Check that one-leg transformations have been created
    assert len(frame_transform_graph.get_transform(rot_class, rot_class).transforms) == 1
    assert len(frame_transform_graph.get_transform(f.HeliographicStonyhurst, rot_class).transforms) == 1
    assert len(frame_transform_graph.get_transform(rot_class, f.HeliographicStonyhurst).transforms) == 1

    # Check that the base frame is in the cache
    assert base_class in _rotatedsun_cache

    # Check that the component data has been migrated
    assert rot_frame.has_data
    assert not rot_frame.base.has_data


def test_no_obstime_frame_attribute():
    assert 'obstime' not in RotatedSunFrame.frame_attributes


def test_as_base(rot_hgs):
    # Check the as_base() method
    a = rot_hgs[1].as_base()

    assert type(a) == type(rot_hgs[1].base)  # NOQA: E721

    assert_longitude_allclose(a.lon, rot_hgs[1].lon)
    assert_quantity_allclose(a.lat, rot_hgs[1].lat)
    assert_quantity_allclose(a.radius, rot_hgs[1].radius)


def test_no_base():
    with pytest.raises(TypeError):
        RotatedSunFrame()


def test_no_obstime():
    with pytest.raises(ValueError, match="The base coordinate frame must have a defined `obstime`"):
        RotatedSunFrame(base=f.HeliographicStonyhurst(obstime=None))


def test_default_duration():
    r = RotatedSunFrame(base=f.HeliographicStonyhurst(obstime='2001-01-01'))
    assert_quantity_allclose(r.duration, 0*u.day)


def test_rotated_time_to_duration():
    r1 = RotatedSunFrame(base=f.HeliographicStonyhurst(obstime='2001-01-02'),
                         rotated_time='2001-01-03')
    assert_quantity_allclose(r1.duration, 1*u.day)

    r2 = RotatedSunFrame(base=f.HeliographicStonyhurst(obstime='2001-01-02'),
                         rotated_time='2001-01-01')
    assert_quantity_allclose(r2.duration, -1*u.day)


def test_duration_from_timedelta():
    base_frame = f.HeliographicStonyhurst(obstime='2001-01-01')

    duration_timedelta = TimeDelta(4 * u.day)
    r = RotatedSunFrame(base=base_frame, duration=duration_timedelta)

    # Verify that the duration is correctly converted to a quantity in days
    assert_quantity_allclose(r.duration, 4 * u.day)


def test_duration_with_quantity_hours():
    base_frame = f.HeliographicStonyhurst(obstime='2001-01-01')

    # Testing with Quantity in hours (conversion needed)
    duration_quantity = 96 * u.hour  # 4 days in hours
    r = RotatedSunFrame(base=base_frame, duration=duration_quantity)
    assert_quantity_allclose(r.duration, 4 * u.day)


def test_both_duration_and_rotated_time_provided():
    base_frame = f.HeliographicStonyhurst(obstime='2001-01-01')

    with pytest.raises(ValueError, match="Specify either `duration` or `rotated_time`, not both."):
        RotatedSunFrame(base=base_frame, duration=TimeDelta(1*u.day), rotated_time=Time('2001-01-02'))


def test_duration_calculation():

    base_time = Time('2001-01-01')
    base_frame = f.HeliographicStonyhurst(obstime=base_time)
    rotated_time = Time('2001-01-02')
    r = RotatedSunFrame(base=base_frame, rotated_time=rotated_time)
    expected_duration = (rotated_time.utc - base_time).to('day')
    assert r.duration == expected_duration


def test_rotated_time_property():
    r1 = RotatedSunFrame(base=f.HeliographicStonyhurst(obstime='2001-01-02'), duration=1*u.day)
    assert r1.rotated_time == Time('2001-01-03')

    r2 = RotatedSunFrame(base=f.HeliographicStonyhurst(obstime='2001-01-02'), duration=-1*u.day)
    assert r2.rotated_time == Time('2001-01-01')


def test_scalar_base_and_array_duration():
    scalar_base = f.HeliographicStonyhurst(1*u.deg, 2*u.deg, obstime='2001-01-02')
    array_duration = [1, -1]*u.day
    r = RotatedSunFrame(base=scalar_base, duration=array_duration)

    assert not r.data.isscalar
    assert r.data.shape == array_duration.shape
    assert_quantity_allclose(r.cartesian[0].xyz, scalar_base.cartesian.xyz)
    assert_quantity_allclose(r.cartesian[1].xyz, scalar_base.cartesian.xyz)


def test_base_skycoord(rot_hgs):
    # Check that RotatedSunFrame can be instantiated from a SkyCoord
    s = SkyCoord(1*u.deg, 2*u.deg, 3*u.AU, frame=f.HeliographicStonyhurst, obstime='2001-01-01')
    r = RotatedSunFrame(base=s)

    assert type(r) == type(rot_hgs[1])  # NOQA: E721
    assert r.has_data
    assert not r.base.has_data

    assert_longitude_allclose(r.lon, s.lon)
    assert_quantity_allclose(r.lat, s.lat)
    assert_quantity_allclose(r.radius, s.radius)


def test_default_rotation_model():
    r = RotatedSunFrame(base=f.HeliographicStonyhurst(obstime='2001-01-01'))
    assert r.rotation_model == "howard"


def test_alternate_rotation_model():
    r = RotatedSunFrame(base=f.HeliographicStonyhurst(obstime='2001-01-01'),
                        rotation_model="allen")
    assert r.rotation_model == "allen"


@pytest.mark.parametrize("frame", [f.HeliographicStonyhurst,
                                   f.HeliographicCarrington,
                                   f.HeliocentricInertial])
@given(lon=longitudes(), lat=latitudes(),
       obstime=times(), rotated_time1=times(), rotated_time2=times())
@settings(deadline=None, max_examples=10, suppress_health_check=[HealthCheck.too_slow] )
def test_rotatedsun_transforms(frame, lon, lat, obstime, rotated_time1, rotated_time2):
    # Tests the transformations (to, from, and loopback) for consistency with `differential_rotation` output

    if hasattr(frame, 'observer'):
        base = frame(lon=lon, lat=lat, observer='earth', obstime=obstime)
    else:
        base = frame(lon=lon, lat=lat, obstime=obstime)

    # Map any 2D coordinate to the surface of the Sun
    if base.spherical.distance.unit is u.one and u.allclose(base.spherical.distance, 1*u.one):
        newrepr = base.spherical * constants.radius
        base = base.realize_frame(newrepr)

    # Test the RotatedSunFrame->base transformation
    rsf1 = RotatedSunFrame(base=base, rotated_time=rotated_time1)
    result1 = rsf1.transform_to(base)

    desired_delta_lon1 = differential_rotation((rotated_time1 - obstime).to(u.day), lat)

    assert_longitude_allclose(result1.lon, rsf1.lon + desired_delta_lon1, atol=1e-5*u.deg)
    assert_quantity_allclose(base.lat, result1.lat, atol=1e-10*u.deg)
    # Use the `spherical` property since the name of the component varies with frame
    assert_quantity_allclose(base.spherical.distance, result1.spherical.distance)

    # Test the base->RotatedSunFrame transformation
    rsf2 = RotatedSunFrame(base=base, rotated_time=rotated_time2)
    result2 = base.transform_to(rsf2)

    desired_delta_lon2 = -differential_rotation((rotated_time2 - obstime).to(u.day), lat)

    assert_longitude_allclose(result2.lon, rsf2.lon + desired_delta_lon2, atol=1e-5*u.deg)
    assert_quantity_allclose(base.lat, result2.lat, atol=1e-10*u.deg)
    # Use the `spherical` property since the name of the component varies with frame
    assert_quantity_allclose(base.spherical.distance, result2.spherical.distance)

    # Test the RotatedSunFrame->RotatedSunFrame transformation
    result3 = rsf1.transform_to(rsf2)

    desired_delta_lon3 = desired_delta_lon1 + desired_delta_lon2

    assert_longitude_allclose(result3.lon, rsf1.lon + desired_delta_lon3, atol=1e-5*u.deg)
    assert_quantity_allclose(result3.lat, result1.lat, atol=1e-10*u.deg)
    # Use the `spherical` property since the name of the component varies with frame
    assert_quantity_allclose(result3.spherical.distance, result1.spherical.distance)


@pytest.mark.parametrize("indirect_fixture",
                         ["rot_hgs", "rot_hci"], indirect=True)
def test_obstime_change(indirect_fixture):
    base_class, rot_frame = indirect_fixture

    # Transforming a RotatedSun coordinate to a different obstime should give the same answer
    # as first transforming to its base and then transforming to the different obstime
    new_frame = base_class(obstime='2001-01-31')
    new_implicit = rot_frame.transform_to(new_frame)
    new_explicit = rot_frame.transform_to(rot_frame.base).transform_to(new_frame)

    assert_longitude_allclose(new_implicit.lon, new_explicit.lon, atol=1e-10*u.deg)


@pytest.mark.parametrize("indirect_fixture",
                         ["rot_hgs", "rot_hci"], indirect=True)
def test_obstime_change_loopback(indirect_fixture):
    base_class, rot_frame = indirect_fixture

    # Doing a explicit loopback transformation through an intermediate frame with a different
    # obstime should get back to the original coordinate
    int_frame = base_class(obstime='2001-01-31')
    loopback = rot_frame.transform_to(int_frame).transform_to(rot_frame)

    assert_longitude_allclose(loopback.lon, rot_frame.lon, atol=1e-10*u.deg)


@pytest.mark.parametrize("indirect_fixture",
                         ["rot_hgs", "rot_hgc", "rot_hci", "rot_hcc", "rot_hpc", "rot_hme"], indirect=True)
def test_transformation_to_nonobserver_frame(indirect_fixture):
    base_class, rot_frame = indirect_fixture

    hgs_frame = f.HeliographicStonyhurst(obstime='2020-01-01')
    hgs_coord = rot_frame.transform_to(hgs_frame)

    assert hgs_coord.obstime == hgs_frame.obstime


def test_pickle_rotatedsunframe():
    base_coord = SkyCoord(1*u.deg, 2*u.deg, obstime="2003-04-05", rsun=600*u.Mm,
                          frame='heliographic_stonyhurst')
    rotated_coord = RotatedSunFrame(base=base_coord, duration=7*u.day)
    pickled_coord = pickle.loads(pickle.dumps(rotated_coord))
    assert pickled_coord == rotated_coord