1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
|
"""
Test Generic Map
"""
import re
import tempfile
from copy import deepcopy
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pytest
from hypothesis import HealthCheck, given, settings
from matplotlib.figure import Figure
from matplotlib.transforms import Affine2D
import astropy.units as u
import astropy.wcs
from astropy.coordinates import Latitude, SkyCoord
from astropy.io import fits
from astropy.io.fits.verify import VerifyWarning
from astropy.tests.helper import assert_quantity_allclose
from astropy.visualization import wcsaxes
from astropy.wcs import InconsistentAxisTypesError
import sunpy
import sunpy.coordinates
import sunpy.map
import sunpy.sun
from sunpy.coordinates import HeliographicCarrington, HeliographicStonyhurst, sun
from sunpy.data.test import get_dummy_map_from_header, get_test_filepath
from sunpy.image.resample import reshape_image_to_4d_superpixel
from sunpy.image.transform import _rotation_registry
from sunpy.map.mapbase import GenericMap
from sunpy.map.sources import AIAMap
from sunpy.tests.helpers import asdf_entry_points, figure_test
from sunpy.time import parse_time
from sunpy.util import SunpyUserWarning
from sunpy.util.exceptions import SunpyDeprecationWarning, SunpyMetadataWarning
from sunpy.util.metadata import ModifiedItem
from .strategies import matrix_meta
try:
import opencv
except ImportError:
opencv = None
def test_fits_data_comparison(aia171_test_map):
"""Make sure the data is the same when read with astropy.io.fits and sunpy"""
with pytest.warns(VerifyWarning, match="Invalid 'BLANK' keyword in header."):
hdulist = fits.open(get_test_filepath('aia_171_level1.fits'))
np.testing.assert_allclose(aia171_test_map.data, hdulist[0].data)
hdulist.close()
def test_header_fits_io():
with pytest.warns(VerifyWarning, match="Invalid 'BLANK' keyword in header."):
with fits.open(get_test_filepath('aia_171_level1.fits')) as hdu:
AIAMap(hdu[0].data, hdu[0].header)
def test_get_item(generic_map):
with pytest.raises(NotImplementedError):
generic_map[10, 10]
def test_wcs(aia171_test_map):
wcs = aia171_test_map.wcs
assert isinstance(wcs, astropy.wcs.WCS)
assert wcs.array_shape == aia171_test_map.data.shape
assert all(wcs.wcs.crpix - 1 ==
[aia171_test_map.reference_pixel.x.value, aia171_test_map.reference_pixel.y.value])
assert u.allclose(wcs.wcs.cdelt * (u.Unit(wcs.wcs.cunit[0])/u.pix),
u.Quantity(aia171_test_map.scale))
assert u.allclose(wcs.wcs.crval * u.Unit(wcs.wcs.cunit[0]),
u.Quantity([aia171_test_map._reference_longitude, aia171_test_map._reference_latitude]))
assert set(wcs.wcs.ctype) == {
aia171_test_map.coordinate_system.axis1, aia171_test_map.coordinate_system.axis2}
np.testing.assert_allclose(wcs.wcs.pc, aia171_test_map.rotation_matrix)
def test_wcs_pv():
# Test that PVi_m values are preserved in the reconstructed WCS
zpn_header = {
'ctype1': 'HPLN-ZPN',
'ctype2': 'HPLT-ZPN',
'cunit1': 'arcsec',
'cunit2': 'arcsec',
'pv1_0': 0,
'pv1_1': 0,
'pv1_2': 90,
'pv1_3': 180,
'pv2_1': 1,
'pv2_5': 0.2,
'pv2_10': 0.1,
'date-obs': '2025-01-01',
'hglt_obs': 0,
'hgln_obs': 0,
'dsun_obs': 1e13,
}
zpn_map = sunpy.map.Map((np.zeros((10, 10)), zpn_header))
pv_values = zpn_map.wcs.wcs.get_pv()
assert len(pv_values) == 7
assert pv_values[0] == (1, 0, 0)
assert pv_values[1] == (1, 1, 0)
assert pv_values[2] == (1, 2, 90)
assert pv_values[3] == (1, 3, 180)
assert pv_values[4] == (2, 1, 1.0)
assert pv_values[5] == (2, 5, 0.2)
assert pv_values[6] == (2, 10, 0.1)
def test_wcs_cache(aia171_test_map):
wcs1 = aia171_test_map.wcs
wcs2 = aia171_test_map.wcs
# Check that without any changes to the header, retrieving the wcs twice
# returns the same object instead of recomputing the wcs
assert wcs1 is wcs2
# Change the header and make sure the wcs is re-computed
new_crpix = 20
assert new_crpix != wcs2.wcs.crpix[0]
aia171_test_map.meta['crpix1'] = new_crpix
new_wcs = aia171_test_map.wcs
assert new_wcs.wcs.crpix[0] == new_crpix
def test_wcs_error_not_cached(aia171_test_map):
# Create a cached value for the property
_ = aia171_test_map.wcs
# Modify the WCS in a bad way
aia171_test_map.meta['ctype1'] = 'HPLN-ARC'
# Try and fail to recalculate the property
with pytest.raises(InconsistentAxisTypesError):
_ = aia171_test_map.wcs
# Try again and fail again to recalculate the property
with pytest.raises(InconsistentAxisTypesError):
_ = aia171_test_map.wcs
def test_obs_coord_cache(aia171_test_map):
coord1 = aia171_test_map.observer_coordinate
coord2 = aia171_test_map.observer_coordinate
assert coord1 is coord2
# Change metadata, and check that the coordinate changes
aia171_test_map.meta['haex_obs'] += 10
new_coord = aia171_test_map.observer_coordinate
assert new_coord.lon != coord2.lon
assert new_coord.lat != coord2.lat
assert new_coord.radius != coord2.radius
def test_header_immutability(aia171_test_map):
# Check that accessing the wcs of a map doesn't modify the meta data
assert 'KEYCOMMENTS' in aia171_test_map.meta
aia171_test_map.wcs
assert 'KEYCOMMENTS' in aia171_test_map.meta
def test_dtype(generic_map):
assert generic_map.dtype == np.float64
def test_min(generic_map):
assert generic_map.min() == 0
def test_max(generic_map):
assert generic_map.max() == 35
def test_mean(generic_map):
assert generic_map.mean() == 17.5
def test_std(generic_map):
np.testing.assert_allclose(generic_map.std(), 10.388294694831615)
def test_unit(generic_map):
assert generic_map.unit == u.DN / u.s
generic_map.meta['bunit'] = 'not a unit'
with pytest.warns(SunpyMetadataWarning, match='Could not parse unit string "not a unit"'):
assert generic_map.unit is None
# ==============================================================================
# Test the default value of a load of properties
# TODO: Test the header keyword extraction
# ==============================================================================
def test_name(generic_map):
assert isinstance(generic_map.name, str)
def test_nickname(generic_map):
assert generic_map.nickname == 'bar'
def test_nickname_set(generic_map):
assert generic_map.nickname == 'bar'
generic_map.nickname = 'hi'
assert generic_map.nickname == 'hi'
date_dict = {'DATE-AVG': parse_time('2020-01-01'),
'DATE-OBS': parse_time('2020-02-01'),
'DATE-BEG': parse_time('2020-03-01'),
'DATE-END': parse_time('2020-03-03')}
date_begend = date_dict['DATE-BEG'] + (date_dict['DATE-END'] - date_dict['DATE-BEG']) / 2
@pytest.mark.parametrize(("keys", "expected_date"),
[(['DATE-AVG', 'DATE-OBS', 'DATE-BEG', 'DATE-END'], date_dict['DATE-OBS']),
(['DATE-AVG', 'DATE-BEG', 'DATE-END'], date_dict['DATE-BEG']),
(['DATE-BEG', 'DATE-END'], date_dict['DATE-BEG']),
(['DATE-BEG'], date_dict['DATE-BEG']),
(['DATE-END'], date_dict['DATE-END']),
([], 'now')
])
def test_date(generic_map, keys, expected_date):
# Remove pre-existing date keys
for key in date_dict:
generic_map.meta.pop(key, None)
# Add new date keys
for key in keys:
generic_map.meta[key] = date_dict[key].isot
# Check date is the correct value
if expected_date == 'now':
expected_date = parse_time('now')
# Check equal to within a tolerance as parse_time('now') is run
# at slightly different times in .date and the line above
with pytest.warns(SunpyMetadataWarning, match='Missing metadata for observation time'):
assert generic_map.date - expected_date < 1*u.s
else:
assert generic_map.date == expected_date
def test_date_scale(generic_map):
# Check that default time scale is UTC
assert 'timesys' not in generic_map.meta
assert generic_map.date.scale == 'utc'
generic_map.meta['timesys'] = 'tai'
assert generic_map.date.scale == 'tai'
def test_date_aia(aia171_test_map):
assert aia171_test_map.date == parse_time('2011-02-15T00:00:00.34')
def test_detector(generic_map):
assert generic_map.detector == 'bar'
def test_timeunit(generic_map):
assert generic_map.timeunit == u.Unit('s')
generic_map.meta['timeunit'] = 'h'
assert generic_map.timeunit == u.Unit('h')
def test_exposure_time(generic_map):
exptime = 2 * u.s
generic_map.meta['exptime'] = exptime.to_value('s')
assert generic_map.exposure_time == exptime
exptime = 3 * u.s
# XPOSURE should take priority over EXPTIME
generic_map.meta['xposure'] = exptime.to_value('s')
assert generic_map.exposure_time == exptime
del generic_map.meta['exptime']
del generic_map.meta['xposure']
assert generic_map.exposure_time is None
# Test that an exposure time of 0.0 s does not yield None
generic_map.meta['exptime'] = 0.0
assert generic_map.exposure_time == 0.0 * u.s
def test_dsun(generic_map):
assert_quantity_allclose(generic_map.dsun, sun.earth_distance(generic_map.date))
def test_rsun_meters(generic_map):
assert generic_map.rsun_meters == sunpy.sun.constants.radius
def test_rsun_obs_without_rsun_ref(generic_map):
assert_quantity_allclose(generic_map.rsun_obs,
sun.angular_radius(generic_map.date))
def test_rsun_obs_with_rsun_ref(generic_map):
generic_map.meta['rsun_ref'] = sunpy.sun.constants.radius.to_value(u.m)
# The following should not raise a warning because we can calculate it exactly
assert_quantity_allclose(generic_map.rsun_obs, sun.angular_radius(generic_map.date))
def test_coordinate_system(generic_map):
assert generic_map.coordinate_system == ('HPLN-TAN', 'HPLT-TAN')
def test_default_coordinate_system(generic_map):
generic_map.meta.pop('ctype1')
with pytest.warns(SunpyMetadataWarning, match='Missing CTYPE1 from metadata'):
assert generic_map.coordinate_system == ('HPLN-TAN', 'HPLT-TAN')
generic_map.meta.pop('ctype2')
generic_map.meta['ctype1'] = 'HPLN-TAN'
with pytest.warns(SunpyMetadataWarning, match='Missing CTYPE2 from metadata'):
assert generic_map.coordinate_system == ('HPLN-TAN', 'HPLT-TAN')
@pytest.mark.skipif(pytest.__version__ < "8.0.0", reason="pytest >= 8.0.0 raises two warnings for this test")
def test_coordinate_system_solar_x_solar_y(generic_map):
generic_map.meta['ctype1'] = 'SOLAR-X'
generic_map.meta['ctype2'] = 'SOLAR-Y'
with pytest.warns(SunpyDeprecationWarning, match="CTYPE1 value 'solar-x'/'solar_x' is deprecated") :
with pytest.warns(SunpyDeprecationWarning, match="CTYPE2 value 'solar-y'/'solar_y' is deprecated") :
assert generic_map.coordinate_system == ('HPLN-TAN', 'HPLT-TAN')
def test_carrington_longitude(generic_map):
assert u.allclose(generic_map.carrington_longitude, sun.L0(generic_map.date))
def test_heliographic_latitude(generic_map):
assert u.allclose(generic_map.heliographic_latitude, Latitude(sun.B0(generic_map.date)))
def test_heliographic_longitude(generic_map):
# Needs a small tolerance to account for 32bit rounding errors
assert u.allclose(generic_map.heliographic_longitude, 0 * u.deg, atol=1e-15*u.deg)
def test_units(generic_map):
assert generic_map.spatial_units == ('arcsec', 'arcsec')
def test_cmap(generic_map):
assert generic_map.cmap == matplotlib.colormaps['gray']
def test_coordinate_frame(aia171_test_map):
frame = aia171_test_map.coordinate_frame
assert isinstance(frame, sunpy.coordinates.Helioprojective)
assert frame.observer.lat == aia171_test_map.observer_coordinate.frame.lat
assert frame.observer.lon == aia171_test_map.observer_coordinate.frame.lon
assert frame.observer.radius == aia171_test_map.observer_coordinate.frame.radius
assert frame.obstime == aia171_test_map.reference_date
def test_heliographic_longitude_crln(hmi_test_map):
assert_quantity_allclose(hmi_test_map.heliographic_longitude,
hmi_test_map.carrington_longitude - sun.L0(hmi_test_map.reference_date),
rtol=1e-3) # A tolerance is needed because L0 is for Earth, not SDO
def test_observer_hgln_crln_priority():
"""
When extracting the observer information from a FITS header, ensure
Stonyhurst (HG) coordinates are preferred over Carrington (CR) if present
(if not overridden by an instrument-specific `Map` subclass). Note that
`Map` creates a custom FITS header with a sanitized observer location, so
we also test a directly-instantiated `WCS` object in the coordinates
module.
"""
data = np.ones([6, 6], dtype=np.float64)
header = {'CRVAL1': 0,
'CRVAL2': 0,
'CRPIX1': 5,
'CRPIX2': 5,
'CDELT1': 10,
'CDELT2': 10,
'CUNIT1': 'arcsec',
'CUNIT2': 'arcsec',
'PC1_1': 0,
'PC1_2': -1,
'PC2_1': 1,
'PC2_2': 0,
'NAXIS1': 6,
'NAXIS2': 6,
'CTYPE1': 'HPLN-TAN',
'CTYPE2': 'HPLT-TAN',
'date-obs': '1970-01-01T00:00:00',
'mjd-obs': 40587,
'hglt_obs': 0,
'hgln_obs': 0,
'crlt_obs': 2,
'crln_obs': 2,
'dsun_obs': 10,
'rsun_ref': 690000000}
generic_map = sunpy.map.Map((data, header))
c = generic_map.pixel_to_world(0*u.pix, 0*u.pix)
assert c.observer.lon == 0 * u.deg
# Note: don't test whether crlt or hglt is used---according to
# coordinates.wcs_utils._set_wcs_aux_obs_coord, those are expected to
# always be the same and so the same one is always used
c = generic_map.wcs.pixel_to_world(0, 0)
assert c.observer.lon == 0 * u.deg
def test_remove_observers(aia171_test_map):
aia171_test_map._remove_existing_observer_location()
with pytest.warns(SunpyMetadataWarning,
match='Missing metadata for observer: assuming Earth-based observer.*'):
aia171_test_map.observer_coordinate
def test_partially_missing_observers(generic_map):
generic_map.meta['hglt_obs'] = 0
generic_map.meta['hgln_obs'] = 0
generic_map.meta['crlt_obs'] = 0
generic_map.meta['crln_obs'] = 0
generic_map.meta.pop('dsun_obs')
with pytest.warns(SunpyMetadataWarning,
match="Missing metadata for observer: assuming Earth-based observer.\n"
"For frame 'heliographic_stonyhurst' the following metadata is missing: dsun_obs\n"
"For frame 'heliographic_carrington' the following metadata is missing: dsun_obs\n"):
generic_map.observer_coordinate
# ==============================================================================
# Test Rotation WCS conversion
# ==============================================================================
def test_rotation_matrix_pci_j(generic_map):
np.testing.assert_allclose(generic_map.rotation_matrix, np.array([[0., -1.], [1., 0.]]))
def test_rotation_matrix_crota(aia171_test_map):
np.testing.assert_allclose(aia171_test_map.rotation_matrix,
np.array([[9.99999943e-01, -3.38820761e-04],
[3.38820761e-04, 9.99999943e-01]]))
_PC_KEYWORDS = ['PC1_1', 'PC1_2', 'PC2_1', 'PC2_2']
_CD_KEYWORDS = ['CD1_1', 'CD1_2', 'CD2_1', 'CD2_2']
@pytest.mark.parametrize('key', ['PC', 'CD'])
@pytest.mark.parametrize('i', [1, 2])
@pytest.mark.parametrize('j', [1, 2])
def test_rotation_matrix_defaults(generic_map, i, j, key):
# Check that missing rotation keywords are set to correct defaults
#
# Relevant bit of the FITS standard:
#
# > PCi_j – [floating point; defaults: 1.0 when i = j, 0.0 otherwise]
# > if any CDi_j keywords are present in the HDU, all other unspecified CDi_j keywords shall default to zero
for keyword in _PC_KEYWORDS + _CD_KEYWORDS:
if keyword in generic_map.meta:
del generic_map.meta[keyword]
keyword = f'{key}{i}_{j}'
# Arbitrary number
generic_map.meta[keyword] = 1.2
if key == 'CD':
expected = np.zeros((2, 2))
expected[i-1, j-1] = 0.12
elif key == 'PC':
expected = np.eye(2)
expected[i-1, j-1] = 1.2
rot_mat = generic_map.rotation_matrix
np.testing.assert_equal(rot_mat, expected)
def test_rotation_matrix_cd_cdelt():
data = np.ones([6, 6], dtype=np.float64)
header = {
'CRVAL1': 0,
'CRVAL2': 0,
'CRPIX1': 5,
'CRPIX2': 5,
'CDELT1': 2,
'CDELT2': 3,
'CD1_1': 1,
'CD1_2': -2,
'CD2_1': 3,
'CD2_2': 6,
'NAXIS1': 6,
'NAXIS2': 6,
'CUNIT1': 'arcsec',
'CUNIT2': 'arcsec',
'CTYPE1': 'HPLN-TAN',
'CTYPE2': 'HPLT-TAN',
}
cd_map = sunpy.map.Map((data, header))
np.testing.assert_allclose(cd_map.rotation_matrix, np.array([[0.5, -1.], [1., 2.]]))
def test_rotation_matrix_cd_cdelt_square():
data = np.ones([6, 6], dtype=np.float64)
header = {
'CRVAL1': 0,
'CRVAL2': 0,
'CRPIX1': 5,
'CRPIX2': 5,
'CDELT1': 10,
'CDELT2': 10,
'CD1_1': 0,
'CD1_2': -10,
'CD2_1': 10,
'CD2_2': 0,
'NAXIS1': 6,
'NAXIS2': 6,
'CUNIT1': 'arcsec',
'CUNIT2': 'arcsec',
'CTYPE1': 'HPLN-TAN',
'CTYPE2': 'HPLT-TAN',
}
cd_map = sunpy.map.Map((data, header))
np.testing.assert_allclose(cd_map.rotation_matrix, np.array([[0., -1], [1., 0]]))
def test_swap_cd():
amap = get_dummy_map_from_header(get_test_filepath('swap_lv1_20140606_000113.header'))
np.testing.assert_allclose(amap.rotation_matrix, np.array([[1., 0], [0, 1.]]))
@pytest.mark.filterwarnings('ignore:Missing metadata for observer')
def test_crota_scale():
# Test non-zero crota and unequal CDELT{1,2}
n = 6
data = np.ones([n, n], dtype=np.float64)
header = {
'CRVAL1': 0,
'CRVAL2': 0,
'CRPIX1': (n + 1) / 2,
'CRPIX2': (n + 1) / 2,
'NAXIS1': n,
'NAXIS2': n,
'CUNIT1': 'arcsec',
'CUNIT2': 'arcsec',
'CTYPE1': 'HPLN-TAN',
'CTYPE2': 'HPLT-TAN',
'DATE-OBS': '2020-01-01 00:00:00'
}
header.update({'CROTA2': 0, 'CDELT1': 1, 'CDELT2': 2})
map1 = sunpy.map.Map(data, header)
header.update({'CROTA2': 90, 'CDELT1': 2, 'CDELT2': 1})
map2 = sunpy.map.Map(data, header)
# Lower left coord
coord1 = map1.pixel_to_world(*(-0.5, -0.5) * u.pix)
# After rotating by 90 deg about the center of the map (CRPIX),
# this should map to the lower right coordinate
coord2 = map2.pixel_to_world(*(-0.5, n - 0.5) * u.pix)
assert coord1.separation(coord2) < 1e-6 * u.arcsec
def test_world_to_pixel(generic_map):
"""Make sure conversion from data units to pixels is internally consistent"""
test_pixel = generic_map.world_to_pixel(generic_map.reference_coordinate)
assert_quantity_allclose(test_pixel, generic_map.reference_pixel)
def test_world_to_pixel_error(generic_map):
strerr = 'Expected the following order of world arguments: SkyCoord'
with pytest.raises(ValueError, match=strerr):
generic_map.world_to_pixel(1)
def test_world_pixel_roundtrip(simple_map):
pix = 1 * u.pix, 1 * u.pix
coord = simple_map.pixel_to_world(*pix)
pix_roundtrip = simple_map.world_to_pixel(coord)
assert u.allclose(pix_roundtrip.x, pix[0], atol=1e-10 * u.pix)
assert u.allclose(pix_roundtrip.y, pix[1], atol=1e-10 * u.pix)
def test_swapped_ctypes(simple_map):
# Check that CTYPES different from normal work fine
simple_map.meta['ctype1'] = 'HPLT-TAN' # Usually HPLN
simple_map.meta['ctype2'] = 'HPLN-TAN' # Usually HPLT
assert u.allclose(simple_map.bottom_left_coord.Tx, -4 * u.arcsec)
assert u.allclose(simple_map.bottom_left_coord.Ty, -8 * u.arcsec)
assert u.allclose(simple_map.top_right_coord.Tx, 4 * u.arcsec)
assert u.allclose(simple_map.top_right_coord.Ty, 8 * u.arcsec)
# Put them back
simple_map.meta['ctype1'] = 'HPLN-TAN' # Usually HPLN
simple_map.meta['ctype2'] = 'HPLT-TAN' # Usually HPLT
assert u.allclose(simple_map.bottom_left_coord.Tx, -8 * u.arcsec)
assert u.allclose(simple_map.bottom_left_coord.Ty, -4 * u.arcsec)
assert u.allclose(simple_map.top_right_coord.Tx, 8 * u.arcsec)
assert u.allclose(simple_map.top_right_coord.Ty, 4 * u.arcsec)
def test_save(aia171_test_map):
"""Tests the map save function"""
aiamap = aia171_test_map
afilename = tempfile.NamedTemporaryFile(suffix='fits').name
aiamap.save(afilename, filetype='fits', overwrite=True)
loaded_save = sunpy.map.Map(afilename)
assert isinstance(loaded_save, sunpy.map.sources.AIAMap)
# Compare metadata without considering ordering of keys
assert loaded_save.meta.keys() == aiamap.meta.keys()
for k in aiamap.meta:
assert loaded_save.meta[k] == aiamap.meta[k]
assert_quantity_allclose(loaded_save.data, aiamap.data)
@asdf_entry_points
def test_save_asdf(tmpdir, aia171_test_map):
outpath = tmpdir/ "save_asdf.asdf"
aia171_test_map.save(outpath, filetype= "asdf")
loaded_save_asdf = sunpy.map.Map(str(outpath))
assert isinstance(loaded_save_asdf, sunpy.map.sources.AIAMap)
# Compare metadata without considering ordering of keys
assert dict(loaded_save_asdf.meta) == dict(aia171_test_map.meta)
np.testing.assert_array_equal(loaded_save_asdf.data, aia171_test_map.data)
def test_save_compressed(aia171_test_map):
"""Tests the map save function"""
aiamap = aia171_test_map
afilename = tempfile.NamedTemporaryFile(suffix='fits').name
aiamap.save(afilename, filetype='fits', hdu_type=fits.CompImageHDU, overwrite=True)
loaded_save = sunpy.map.Map(afilename)
# We expect that round tripping to CompImageHDU will change the header and
# the data a little.
assert isinstance(loaded_save, sunpy.map.sources.AIAMap)
def test_shift_applied(generic_map):
"""Test that adding a shift actually updates the reference coordinate"""
original_reference_coord = (generic_map.reference_coordinate.Tx,
generic_map.reference_coordinate.Ty)
x_shift = 5 * u.arcsec
y_shift = 13 * u.arcsec
shifted_map = generic_map.shift_reference_coord(x_shift, y_shift)
assert shifted_map.reference_coordinate.Tx - x_shift == original_reference_coord[0]
assert shifted_map.reference_coordinate.Ty - y_shift == original_reference_coord[1]
crval1 = ((generic_map.meta.get('crval1') * generic_map.spatial_units[0] +
x_shift).to(shifted_map.spatial_units[0])).value
assert shifted_map.meta.get('crval1') == crval1
crval2 = ((generic_map.meta.get('crval2') * generic_map.spatial_units[1] +
y_shift).to(shifted_map.spatial_units[1])).value
assert shifted_map.meta.get('crval2') == crval2
def test_set_shift(generic_map):
"""Test that previously applied shift is stored in the shifted_value property"""
x_shift = 5 * u.arcsec
y_shift = 13 * u.arcsec
shifted_map = generic_map.shift_reference_coord(x_shift, y_shift)
mod_crval1 = shifted_map.meta.modified_items['crval1']
mod_crval2 = shifted_map.meta.modified_items['crval2']
assert x_shift == (mod_crval1.current - mod_crval1.original) * shifted_map.spatial_units[0]
assert y_shift == (mod_crval2.current - mod_crval2.original) * shifted_map.spatial_units[1]
def test_shift_history(generic_map):
"""Test the shifted_value is added to a non-zero previous shift"""
x_shift1 = 5 * u.arcsec
y_shift1 = 13 * u.arcsec
shifted_map1 = generic_map.shift_reference_coord(x_shift1, y_shift1)
x_shift2 = -28.5 * u.arcsec
y_shift2 = 120 * u.arcsec
final_shifted_map = shifted_map1.shift_reference_coord(x_shift2, y_shift2)
mod_crval1 = final_shifted_map.meta.modified_items['crval1']
mod_crval2 = final_shifted_map.meta.modified_items['crval2']
delta_crval1 = (mod_crval1.current - mod_crval1.original) * final_shifted_map.spatial_units[0]
delta_crval2 = (mod_crval2.current - mod_crval2.original) * final_shifted_map.spatial_units[1]
assert x_shift1 + x_shift2 == delta_crval1
assert y_shift1 + y_shift2 == delta_crval2
def test_corners(simple_map):
# These are the centers of the corner pixels
assert u.allclose(simple_map.top_right_coord.Tx, 8 * u.arcsec)
assert u.allclose(simple_map.top_right_coord.Ty, 4 * u.arcsec)
assert u.allclose(simple_map.bottom_left_coord.Tx, -8 * u.arcsec)
assert u.allclose(simple_map.bottom_left_coord.Ty, -4 * u.arcsec)
def test_center(simple_map):
assert u.allclose(simple_map.center.Tx, 0 * u.arcsec, atol=1e-26 * u.arcsec)
assert u.allclose(simple_map.center.Ty, 0 * u.arcsec)
def test_dimensions(simple_map):
assert simple_map.dimensions[0] == 9 * u.pix
assert simple_map.dimensions[1] == 9 * u.pix
pixel_corners = [
[([0, 0] * u.pix, [0, 0] * u.pix), np.array([[0]])],
[([-1, -1] * u.pix, [0, 0] * u.pix), np.array([[0]])],
# 0.5, 0.5 is the edge of the first pixel, so make sure
# we don't include any other pixels
[([0, 0] * u.pix, [0.5, 0.5] * u.pix), np.array([[0]])],
[([0, 0] * u.pix, [0, 0.51] * u.pix), np.array([[0],
[9]])],
[([0, 0] * u.pix, [0.51, 0] * u.pix), np.array([[0, 1]])],
[([0, 0] * u.pix, [0.51, 0.51] * u.pix), np.array([[0, 1],
[9, 10]])],
[([0.1, 0.1] * u.pix, [1.6, 1.4] * u.pix), np.array([[0, 1, 2],
[9, 10, 11]])],
[([0, 0] * u.pix, [20, 20] * u.pix), np.arange(81).reshape((9, 9))],
]
@pytest.mark.parametrize(("rect", "submap_out"), pixel_corners)
def test_submap_pixel(simple_map, rect, submap_out):
# Check that result is the same specifying corners either way round
for r in [dict(bottom_left=rect[0], top_right=rect[1]),
dict(bottom_left=rect[1], top_right=rect[0])]:
submap = simple_map.submap(**r)
np.testing.assert_equal(submap.data, submap_out)
# The (0.5, 0.5) case is skipped as boundary points cannot reliably tested when
# converting to world coordinates due to round-off error when round-tripping
# through pixel_to_world -> world_to_pixel
@pytest.mark.parametrize(("rect", "submap_out"), pixel_corners[:2] + pixel_corners[3:])
def test_submap_world(simple_map, rect, submap_out):
# Check that coordinates behave the same way
corner1 = simple_map.pixel_to_world(*rect[0])
corner2 = simple_map.pixel_to_world(*rect[1])
corners = simple_map.pixel_to_world(u.Quantity([rect[0][0], rect[1][0]]),
u.Quantity([rect[0][1], rect[1][1]]))
for r in [dict(bottom_left=corner1, top_right=corner2),
dict(bottom_left=corner2, top_right=corner1),
dict(bottom_left=corners, ),
]:
submap = simple_map.submap(**r)
np.testing.assert_equal(submap.data, submap_out)
@pytest.mark.parametrize('test_map', ["aia171_roll_map", "aia171_test_map",
"hmi_test_map", "aia171_test_map_with_mask"],
indirect=['test_map'])
def test_submap_world_corners(test_map):
"""
This test checks that when an unaligned map is cropped with submap that the
resulting map contains all four corners of the input world coordinate
bounding box.
"""
corners = SkyCoord(Tx=[300, 300, 800, 800], Ty=[0, 500, 500, 0],
unit=u.arcsec, frame=test_map.coordinate_frame)
submap = test_map.submap(corners[0], top_right=corners[2])
pix_corners = np.array(submap.wcs.world_to_pixel(corners)).T
for pix_corner in pix_corners:
assert ((-0.5, -0.5) <= pix_corner).all()
assert (pix_corner <= submap.data.shape[::-1]).all()
if test_map.mask is not None:
assert submap.mask.shape == submap.data.shape
@pytest.mark.parametrize('test_map', ["aia171_test_map", "heliographic_test_map"],
indirect=['test_map'])
def test_submap_hgs_corners(test_map):
"""
This test checks that when an unaligned map is cropped with submap that the
resulting map contains all four corners of the input world coordinate
bounding box.
"""
corners = SkyCoord([10, 10, 40, 40], [-10, 30, 30, -10],
unit=u.deg, frame="heliographic_stonyhurst",
obstime=test_map.date)
submap = test_map.submap(corners[0], top_right=corners[2])
pix_corners = np.array(submap.wcs.world_to_pixel(corners)).T
for pix_corner in pix_corners:
assert ((-0.5, -0.5) <= pix_corner).all()
assert (pix_corner <= submap.data.shape[::-1]).all()
# Check that submap works with units convertible to pix but that aren't pix
@pytest.mark.parametrize('unit', [u.pix, u.mpix * 1e3])
def test_submap_data_header(generic_map, unit):
"""Check data and header information for a submap"""
width = generic_map.data.shape[1]
height = generic_map.data.shape[0]
# Create a submap of the top-right quadrant of the image
submap = generic_map.submap([width / 2., height / 2.] * unit, top_right=[width, height] * unit)
# Check to see if submap properties were updated properly
assert submap.reference_pixel.x.value == generic_map.meta['crpix1'] - 1 - width / 2.
assert submap.reference_pixel.y.value == generic_map.meta['crpix2'] - 1 - height / 2.
assert submap.data.shape[1] == width / 2.
assert submap.data.shape[0] == height / 2.
# Check to see if header was updated
assert submap.meta['naxis1'] == width / 2.
assert submap.meta['naxis2'] == height / 2.
# Check data
assert (generic_map.data[height // 2:height, width // 2:width] == submap.data).all()
def test_reference_coordinate(simple_map):
assert simple_map.reference_pixel.x == 4 * u.pix
assert simple_map.reference_pixel.y == 4 * u.pix
@pytest.mark.parametrize('shape', [[1, 1], [3, 3]])
def test_resample(simple_map, shape):
resampled = simple_map.resample(shape * u.pix, method='linear')
assert np.mean(resampled.data) == np.mean(simple_map.data)
if shape == [1, 1]:
# Should be the mean of [0,1,2,...78,79,80]
assert resampled.data == np.array([[40]])
# Check that the corner coordinates of the input and output are the same
resampled_lower_left = resampled.pixel_to_world(-0.5 * u.pix, -0.5 * u.pix)
original_lower_left = simple_map.pixel_to_world(-0.5 * u.pix, -0.5 * u.pix)
assert u.allclose(resampled_lower_left.Tx, original_lower_left.Tx)
assert u.allclose(resampled_lower_left.Ty, original_lower_left.Ty)
resampled_upper_right = resampled.pixel_to_world((shape[0] - 0.5) * u.pix,
(shape[1] - 0.5) * u.pix)
original_upper_right = simple_map.pixel_to_world(8.5 * u.pix, 8.5 * u.pix)
assert u.allclose(resampled_upper_right.Tx, original_upper_right.Tx)
assert u.allclose(resampled_upper_right.Ty, original_upper_right.Ty)
resample_test_data = [('linear', (100, 200) * u.pixel),
('nearest', (512, 128) * u.pixel),
('spline', (200, 200) * u.pixel)]
@pytest.mark.parametrize(("sample_method", "new_dimensions"), resample_test_data)
def test_resample_dimensions(generic_map, sample_method, new_dimensions):
"""Check that resampled map has expected dimensions."""
resampled_map = generic_map.resample(new_dimensions, method=sample_method)
assert resampled_map.dimensions[0] == new_dimensions[0]
assert resampled_map.dimensions[1] == new_dimensions[1]
@pytest.mark.parametrize(("sample_method", "new_dimensions"), resample_test_data)
def test_resample_metadata(generic_map, sample_method, new_dimensions):
"""
Check that the resampled map has correctly adjusted metadata.
"""
resampled_map = generic_map.resample(new_dimensions, method=sample_method)
scale_x = generic_map.data.shape[1] / resampled_map.data.shape[1]
scale_y = generic_map.data.shape[0] / resampled_map.data.shape[0]
assert resampled_map.meta['cdelt1'] == scale_x * generic_map.meta['cdelt1']
assert resampled_map.meta['cdelt2'] == scale_y * generic_map.meta['cdelt2']
assert resampled_map.meta['pc1_1'] == generic_map.meta['pc1_1']
assert resampled_map.meta['pc1_2'] == scale_y / scale_x * generic_map.meta['pc1_2']
assert resampled_map.meta['pc2_1'] == scale_x / scale_y * generic_map.meta['pc2_1']
assert resampled_map.meta['pc2_2'] == generic_map.meta['pc2_2']
# TODO: we should really test the numbers here, not just that the correct
# header values have been modified. However, I am lazy and we have figure
# tests.
assert resampled_map.meta['crpix1'] != generic_map.meta['crpix1']
assert resampled_map.meta['crpix2'] != generic_map.meta['crpix2']
assert u.allclose(resampled_map.meta['crval1'], generic_map.meta['crval1'])
assert u.allclose(resampled_map.meta['crval2'], generic_map.meta['crval2'])
assert resampled_map.meta['naxis1'] == new_dimensions[0].value
assert resampled_map.meta['naxis2'] == new_dimensions[1].value
for key in generic_map.meta:
if key not in ('cdelt1', 'cdelt2', 'pc1_2', 'pc2_1', 'crpix1', 'crpix2', 'crval1',
'crval2', 'naxis1', 'naxis2'):
assert resampled_map.meta[key] == generic_map.meta[key]
@pytest.mark.parametrize(("sample_method", "new_dimensions"), resample_test_data)
def test_resample_simple_map(simple_map, sample_method, new_dimensions):
# Put the reference pixel at the top-right of the bottom-left pixel
simple_map.meta['crpix1'] = 1.5
simple_map.meta['crpix2'] = 1.5
assert list(simple_map.reference_pixel) == [0.5 * u.pix, 0.5 * u.pix]
# Make the superpixel map
new_dims = (9, 6) * u.pix
resamp_map = simple_map.resample(new_dims, method=sample_method)
# Reference pixel should change, but reference coordinate should not
assert u.allclose(list(resamp_map.reference_pixel), [0.5 * u.pix, 0.16666667 * u.pix])
assert resamp_map.reference_coordinate == simple_map.reference_coordinate
def test_superpixel_simple_map(simple_map):
# Put the reference pixel at the top-right of the bottom-left pixel
simple_map.meta['crpix1'] = 1.5
simple_map.meta['crpix2'] = 1.5
assert list(simple_map.reference_pixel) == [0.5 * u.pix, 0.5 * u.pix]
# Make the superpixel map
new_dims = (2, 2) * u.pix
superpix_map = simple_map.superpixel(new_dims)
# Reference pixel should change, but reference coordinate should not
assert list(superpix_map.reference_pixel) == [0 * u.pix, 0 * u.pix]
assert superpix_map.reference_coordinate == simple_map.reference_coordinate
# Check that offset works
superpix_map = simple_map.superpixel(new_dims, offset=[1, 2] * u.pix)
# Reference pixel should change, but reference coordinate should not
assert u.allclose(list(superpix_map.reference_pixel),
[-0.5 * u.pix, -1 * u.pix])
assert superpix_map.reference_coordinate == simple_map.reference_coordinate
@pytest.mark.parametrize('f', [np.sum, np.mean])
def test_superpixel_dims_values(aia171_test_map, f):
dimensions = (2, 2) * u.pix
superpix_map = aia171_test_map.superpixel(dimensions, func=f)
# Check dimensions of new map
old_dims = u.Quantity(aia171_test_map.dimensions)
expected_new_dims = old_dims * (1 * u.pix / dimensions)
assert superpix_map.dimensions[0] == expected_new_dims[0]
assert superpix_map.dimensions[1] == expected_new_dims[1]
# Check value of lower left pixel is calculated correctly
expected = f(aia171_test_map.data[0:2, 0:2])
assert_quantity_allclose(superpix_map.data[0, 0], expected)
@pytest.mark.parametrize(("f", "dimensions"), [(np.sum, (2, 3)*u.pix),
(np.mean, (3, 2)*u.pix)])
def test_superpixel_metadata(generic_map, f, dimensions):
superpix_map = generic_map.superpixel(dimensions, func=f)
scale_x, scale_y = dimensions.value
assert superpix_map.meta['cdelt1'] == scale_x * generic_map.meta['cdelt1']
assert superpix_map.meta['cdelt2'] == scale_y * generic_map.meta['cdelt2']
assert superpix_map.meta['pc1_1'] == generic_map.meta['pc1_1']
assert superpix_map.meta['pc1_2'] == scale_y / scale_x * generic_map.meta['pc1_2']
assert superpix_map.meta['pc2_1'] == scale_x / scale_y * generic_map.meta['pc2_1']
assert superpix_map.meta['pc2_2'] == generic_map.meta['pc2_2']
assert superpix_map.meta['crpix1'] - 0.5 == (generic_map.meta['crpix1'] - 0.5) / scale_x
assert superpix_map.meta['crpix2'] - 0.5 == (generic_map.meta['crpix2'] - 0.5) / scale_y
assert u.allclose(superpix_map.meta['crval1'], generic_map.meta['crval1'])
assert u.allclose(superpix_map.meta['crval2'], generic_map.meta['crval2'])
assert superpix_map.meta['naxis1'] == generic_map.meta['naxis1'] / scale_x
assert superpix_map.meta['naxis2'] == generic_map.meta['naxis2'] / scale_y
for key in generic_map.meta:
if key not in ('cdelt1', 'cdelt2', 'pc1_2', 'pc2_1', 'crpix1', 'crpix2', 'crval1',
'crval2', 'naxis1', 'naxis2'):
assert superpix_map.meta[key] == generic_map.meta[key]
def test_superpixel_masked(aia171_test_map_with_mask):
input_dims = u.Quantity(aia171_test_map_with_mask.dimensions)
dimensions = (2, 2) * u.pix
# Test that the mask is respected
superpix_map = aia171_test_map_with_mask.superpixel(dimensions)
assert superpix_map.mask is not None
# Check the shape of the mask
expected_shape = input_dims * (1 * u.pix / dimensions)
assert np.all(superpix_map.mask.shape * u.pix == expected_shape)
# Test that the offset is respected
superpix_map = aia171_test_map_with_mask.superpixel(dimensions, offset=(1, 1) * u.pix)
assert superpix_map.dimensions[0] == expected_shape[0] - 1 * u.pix
assert superpix_map.dimensions[1] == expected_shape[1] - 1 * u.pix
dimensions = (7, 9) * u.pix
superpix_map = aia171_test_map_with_mask.superpixel(dimensions, offset=(4, 4) * u.pix)
expected_shape = np.round(input_dims * (1 * u.pix / dimensions))
assert superpix_map.dimensions[0] == expected_shape[0] - 1 * u.pix
assert superpix_map.dimensions[1] == expected_shape[1] - 1 * u.pix
def test_superpixel_masked_conservative_mask_true(aia171_test_map_with_mask):
input_dims = u.Quantity(aia171_test_map_with_mask.dimensions)
dimensions = (2, 2) * u.pix
superpix_map = aia171_test_map_with_mask.superpixel(dimensions, conservative_mask=True)
assert superpix_map.mask is not None
expected_shape = input_dims * (1 * u.pix / dimensions)
assert np.all(superpix_map.mask.shape * u.pix == expected_shape)
# Verify mask values (bin_mask=True)
reshaped_mask = reshape_image_to_4d_superpixel(
aia171_test_map_with_mask.mask,
[dimensions[1].value, dimensions[0].value],
[0, 0],
)
expected_mask = np.any(reshaped_mask, axis=(1, 3))
assert np.array_equal(superpix_map.mask, expected_mask)
def test_superpixel_units(generic_map):
new_dims = (2, 2) * u.pix
super1 = generic_map.superpixel(new_dims)
super2 = generic_map.superpixel(new_dims.to(u.kpix))
assert super1.meta == super2.meta
offset = (1, 2) * u.pix
super1 = generic_map.superpixel(new_dims, offset=offset)
super2 = generic_map.superpixel(new_dims, offset=offset.to(u.kpix))
assert super1.meta == super2.meta
def test_superpixel_fractional_inputs(generic_map):
super1 = generic_map.superpixel((2, 3) * u.pix)
super2 = generic_map.superpixel((2.2, 3.2) * u.pix)
assert np.all(super1.data == super2.data)
assert super1.meta == super2.meta
@pytest.mark.parametrize('method', ['resample', 'superpixel'])
@settings(
max_examples=10,
# Lots of draws can be discarded when checking matrix is non-singular
suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.function_scoped_fixture],
deadline=1000,
)
@given(pc=matrix_meta('pc'))
def test_resample_rotated_map_pc(pc, method, simple_map):
smap = deepcopy(simple_map)
smap.meta.update(pc)
# Check superpixel with a rotated map with unequal resampling
new_dims = (1, 2) * u.pix
new_map = getattr(smap, method)(new_dims)
# Coordinate of the lower left corner should not change
ll_pix = [-0.5, -0.5]*u.pix
assert smap.pixel_to_world(*ll_pix).separation(
new_map.pixel_to_world(*ll_pix)).to(u.arcsec) < 1e-8 * u.arcsec
@pytest.mark.parametrize('method', ['resample', 'superpixel'])
@settings(
max_examples=10,
# Lots of draws can be discarded when checking matrix is non-singular
suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.function_scoped_fixture],
deadline=1000,
)
@given(cd=matrix_meta('cd'))
def test_resample_rotated_map_cd(cd, method, simple_map):
smap = deepcopy(simple_map)
smap.meta.update(cd)
for key in ['cdelt1', 'cdelt2', 'pc1_1', 'pc1_2', 'pc2_1', 'pc2_2']:
del smap.meta[key]
# Check superpixel with a rotated map with unequal resampling
new_dims = (1, 2) * u.pix
new_map = getattr(smap, method)(new_dims)
# Coordinate of the lower left corner should not change
ll_pix = [-0.5, -0.5]*u.pix
assert smap.pixel_to_world(*ll_pix).separation(
new_map.pixel_to_world(*ll_pix)).to(u.arcsec) < 1e-8 * u.arcsec
def test_superpixel_err(generic_map):
with pytest.raises(ValueError, match="Offset is strictly non-negative."):
generic_map.superpixel((2, 2) * u.pix, offset=(-2, 2) * u.pix)
def calc_new_matrix(angle):
c = np.cos(np.deg2rad(angle))
s = np.sin(np.deg2rad(angle))
return np.array([[c, -s], [s, c]])
def test_rotate(aia171_test_map):
# We use order=0 for many of these tests to minimize losing edge pixels due to interpolation
# with NaNs that are used as the default `missing` value
rotated_map_1 = aia171_test_map.rotate(20 * u.deg, order=0)
rotated_map_2 = rotated_map_1.rotate(20 * u.deg, order=0)
np.testing.assert_allclose(rotated_map_1.rotation_matrix,
np.dot(aia171_test_map.rotation_matrix, calc_new_matrix(20).T))
np.testing.assert_allclose(rotated_map_2.rotation_matrix,
np.dot(aia171_test_map.rotation_matrix, calc_new_matrix(40).T))
# Rotation of a map by a non-integral multiple of 90 degrees expands the map
# and assigns the value of NaN to corner regions. The mean will be approximately
# the same, although there will be slight change due to the loss of edge pixels
# due to interpolation with the NaNs.
assert rotated_map_2.data.shape > rotated_map_1.data.shape > aia171_test_map.data.shape
assert np.isnan(rotated_map_1.data[0, 0])
assert np.isnan(rotated_map_2.data[0, 0])
np.testing.assert_allclose(aia171_test_map.mean(), rotated_map_1.mean(), rtol=5e-3)
np.testing.assert_allclose(aia171_test_map.mean(), rotated_map_2.mean(), rtol=5e-3)
# A scaled-up map should have the same mean because the output map should be expanded
rotated_map_3 = aia171_test_map.rotate(0 * u.deg, order=0, scale=2)
np.testing.assert_allclose(aia171_test_map.mean(), rotated_map_3.mean(), rtol=1e-4)
# Mean and std should be equal for a 90 degree rotation as long as 1 pixel is cropped out on
# all sides
rotated_map_4 = aia171_test_map.rotate(90 * u.deg, order=0)
np.testing.assert_allclose(aia171_test_map.data[1:-1, 1:-1].mean(),
rotated_map_4.data[1:-1, 1:-1].mean(), rtol=1e-10)
np.testing.assert_allclose(aia171_test_map.data[1:-1, 1:-1].std(),
rotated_map_4.data[1:-1, 1:-1].std(), rtol=1e-10)
# Rotation of a rectangular map by a large enough angle will change which dimension is larger
aia171_test_map_crop = aia171_test_map.submap(
SkyCoord(
[[0, 0], [1000, 400]] * u.arcsec, frame=aia171_test_map.coordinate_frame))
aia171_test_map_crop_rot = aia171_test_map_crop.rotate(60 * u.deg)
assert aia171_test_map_crop.data.shape[0] < aia171_test_map_crop.data.shape[1]
assert aia171_test_map_crop_rot.data.shape[0] > aia171_test_map_crop_rot.data.shape[1]
# Same test as above, to test the other direction
aia171_test_map_crop = aia171_test_map.submap(
SkyCoord(
[[0, 0], [400, 1000]] * u.arcsec, frame=aia171_test_map.coordinate_frame))
aia171_test_map_crop_rot = aia171_test_map_crop.rotate(60 * u.deg)
assert aia171_test_map_crop.data.shape[0] > aia171_test_map_crop.data.shape[1]
assert aia171_test_map_crop_rot.data.shape[0] < aia171_test_map_crop_rot.data.shape[1]
def test_rotate_with_incompatible_missing_dtype_error():
data = np.arange(0, 100).reshape(10, 10)
coord = SkyCoord(0 * u.arcsec, 0 * u.arcsec, obstime='2013-10-28',
observer='earth', frame=sunpy.coordinates.Helioprojective)
header = sunpy.map.make_fitswcs_header(data, coord)
test_map = sunpy.map.Map(data, header)
with pytest.raises(ValueError, match="The underlying data is integers, but the fill value for "
"missing pixels cannot be cast to an integer"):
test_map.rotate(angle=45 * u.deg, missing=np.nan, order=3)
def test_rotate_crpix_zero_degrees(generic_map):
# Rotating a map by zero degrees should not change the location of the reference pixel at all
rotated_map = generic_map.rotate(0*u.deg)
assert rotated_map.reference_pixel.x == generic_map.reference_pixel.x
assert rotated_map.reference_pixel.y == generic_map.reference_pixel.y
def test_rotate_pad_crpix(generic_map):
rotated_map = generic_map.rotate(30*u.deg)
# This tests that the reference pixel of the map is in the expected place.
assert rotated_map.data.shape != generic_map.data.shape
assert_quantity_allclose(u.Quantity(rotated_map.reference_pixel),
u.Quantity((5.04903811, 6.54903811), u.pix))
def test_rotate_recenter(generic_map):
rotated_map = generic_map.rotate(20 * u.deg, recenter=True)
pixel_array_center = (np.flipud(rotated_map.data.shape) - 1) / 2.0
assert_quantity_allclose(
pixel_array_center * u.pix, u.Quantity(rotated_map.reference_pixel))
def test_rotate_crota_remove(aia171_test_map):
rot_map = aia171_test_map.rotate()
assert rot_map.meta.get('CROTA1', None) is None
assert rot_map.meta.get('CROTA2', None) is None
def test_rotate_scale_cdelt(generic_map):
rot_map = generic_map.rotate(scale=10.)
assert rot_map.meta['CDELT1'] == generic_map.meta['CDELT1'] / 10.
assert rot_map.meta['CDELT2'] == generic_map.meta['CDELT2'] / 10.
def test_rotate_new_matrix(generic_map):
# Rotate by CW90 to go from CCW 90 in generic map to CCW 180
rot_map = generic_map.rotate(rmatrix=np.array([[0, 1], [-1, 0]]))
np.testing.assert_allclose(rot_map.rotation_matrix, np.array([[-1, 0], [0, -1]]))
def test_rotate_rmatrix_angle(generic_map):
with pytest.raises(ValueError, match="You cannot specify both an angle and a rotation matrix."):
generic_map.rotate(angle=5*u.deg, rmatrix=np.array([[1, 0], [0, 1]]))
def test_rotate_invalid_order(generic_map):
with pytest.raises(ValueError, match="Order must be between 0 and 5."):
generic_map.rotate(order=6)
with pytest.raises(ValueError, match="Order must be between 0 and 5."):
generic_map.rotate(order=-1)
def test_rotate_assumed_obstime():
# Create an HPC map that is missing the observing time and has an off-disk reference coordinate
header = {
'crval1': -2000,
'crval2': 0,
'cdelt1': 1,
'cdelt2': 1,
'ctype1': 'HPLN-TAN',
'ctype2': 'HPLT-TAN',
'naxis': 2,
'naxis1': 10,
'naxis2': 10,
'cunit1': 'arcsec',
'cunit2': 'arcsec',
'crpix1': 4.5,
'crpix2': 6.5,
'hglt_obs': 0,
'hgln_obs': 0,
'dsun_obs': 150000000000,
'rsun_ref': 700000000,
}
original = sunpy.map.Map(np.zeros((10, 10)), header)
# Accessing the date makes the assumption of "now" for obstime
with pytest.warns(SunpyMetadataWarning, match="Missing metadata for observation time"):
original.date
# The assumption has already been made, so no further warning should be emitted by rotate()
rotated = original.rotate(0*u.deg)
# The reference coordinate should be unchanged by this 0-degree rotation
# Since the reference coordinate is off-disk, a non-identity transformation would result in NaNs
assert_quantity_allclose(rotated.reference_pixel.x, original.reference_pixel.x)
assert_quantity_allclose(rotated.reference_pixel.y, original.reference_pixel.y)
# The returned map should also be missing observing time
with pytest.warns(SunpyMetadataWarning, match="Missing metadata for observation time"):
rotated.date
def test_as_mpl_axes_aia171(aia171_test_map):
ax = plt.subplot(projection=aia171_test_map)
assert isinstance(ax, wcsaxes.WCSAxes)
assert all([ct1 == ct2 for ct1, ct2 in zip(ax.wcs.wcs.ctype, aia171_test_map.wcs.wcs.ctype)])
def test_plot_with_norm_none(aia171_test_map):
# Confirm that norm == None does not raise an error, see https://github.com/sunpy/sunpy/pull/7261
ax = plt.subplot(projection=aia171_test_map)
aia171_test_map.plot(axes=ax, norm=None, vmin=0, vmax=0)
def test_validate_meta(generic_map):
"""Check to see if_validate_meta displays an appropriate error"""
bad_header = {
'CRVAL1': 0,
'CRVAL2': 0,
'CRPIX1': 5,
'CRPIX2': 5,
'CDELT1': 10,
'CDELT2': 10,
'CUNIT1': 'ARCSEC',
'CUNIT2': 'ARCSEC',
'PC1_1': 0,
'PC1_2': -1,
'PC2_1': 1,
'PC2_2': 0,
'NAXIS1': 6,
'NAXIS2': 6,
'date-obs': '1970/01/01T00:00:00',
'obsrvtry': 'Foo',
'detector': 'bar',
'wavelnth': 10,
'waveunit': 'ANGSTROM'
}
with pytest.warns(SunpyMetadataWarning) as w:
sunpy.map.Map((generic_map.data, bad_header))
assert 'waveunit'.upper() in str(w[0].message)
def test_validate_non_spatial(generic_map):
generic_map.meta['cunit2'] = 'Angstrom'
err_msg = ("Map only supports spherical coordinate systems with angular units "
"(ie. equivalent to arcsec), but this map has units ['arcsec', 'Angstrom']")
with pytest.raises(sunpy.map.MapMetaValidationError, match=re.escape(err_msg)):
sunpy.map.Map(generic_map.data, generic_map.meta)
def test_hg_coord(heliographic_test_map):
assert heliographic_test_map.coordinate_system[0] == "CRLN-CAR"
assert heliographic_test_map.coordinate_system[1] == "CRLT-CAR"
assert isinstance(heliographic_test_map.coordinate_frame,
sunpy.coordinates.HeliographicCarrington)
def test_hg_pix_to_data(heliographic_test_map):
out = heliographic_test_map.pixel_to_world(180 * u.pix, 90 * u.pix)
assert isinstance(out, SkyCoord)
assert isinstance(out.frame, sunpy.coordinates.HeliographicCarrington)
assert_quantity_allclose(out.lon, 0 * u.deg)
assert_quantity_allclose(out.lat, 0 * u.deg)
def test_hg_data_to_pix(heliographic_test_map):
out = heliographic_test_map.world_to_pixel(
SkyCoord(
0 * u.deg, 0 * u.deg, frame=heliographic_test_map.coordinate_frame))
assert_quantity_allclose(out[0], 180 * u.pix)
assert_quantity_allclose(out[1], 90 * u.pix)
@pytest.mark.skipif(pytest.__version__ < "8.0.0", reason="pytest >= 8.0.0 raises two warnings for this test")
def test_more_than_two_dimensions():
"""
Checks to see if an appropriate error is raised when a FITS with more than two dimensions is
loaded. We need to load a >2-dim dataset with a TELESCOP header
"""
# Data crudely represents 4 stokes, 4 wavelengths with Y,X of 3 and 5.
bad_data = np.random.rand(4, 4, 3, 5)
hdr = fits.Header()
hdr['TELESCOP'] = 'XXX'
hdr['cunit1'] = 'arcsec'
hdr['cunit2'] = 'arcsec'
with pytest.warns(SunpyMetadataWarning, match='Missing CTYPE'):
with pytest.warns(SunpyUserWarning, match='This file contains more than 2 dimensions.'):
bad_map = sunpy.map.Map(bad_data, hdr)
# Test fails if map.ndim > 2 and if the dimensions of the array are wrong.
assert bad_map.ndim == 2
assert_quantity_allclose(bad_map.dimensions, (5, 3) * u.pix)
def test_missing_metadata_warnings():
# Checks that warnings for missing metadata are only raised once
header = {
'cunit1': 'arcsec',
'cunit2': 'arcsec',
'ctype1': 'HPLN-TAN',
'ctype2': 'HPLT-TAN',
}
with pytest.warns(Warning) as record: # NOQA: PT030,PT031
array_map = sunpy.map.Map(np.random.rand(20, 15), header)
array_map.peek()
# There should be 2 warnings for missing metadata (obstime and observer location)
assert len([w for w in record if w.category in (SunpyMetadataWarning, SunpyUserWarning)]) == 2
def test_fits_header(aia171_test_map):
assert isinstance(aia171_test_map.fits_header, fits.Header)
def test_bad_coordframe_repr(generic_map):
generic_map.meta['CTYPE1'] = "STUART1"
generic_map.meta['CTYPE2'] = "STUART2"
with pytest.warns(UserWarning,
match="Could not determine coordinate frame from map metadata"):
assert 'Unknown' in generic_map.__repr__()
def test_non_str_key():
header = {'cunit1': 'arcsec',
'cunit2': 'arcsec',
None: None, # Cannot parse this into WCS
}
with pytest.raises(ValueError, match='All MetaDict keys must be strings'):
sunpy.map.GenericMap(np.zeros((10, 10)), header)
def test_updating_of_naxisi_on_rotate(aia171_test_map):
aia171_test_map_rotated = aia171_test_map.rotate(45 * u.deg, missing=0)
assert aia171_test_map.data.shape == (128, 128)
assert aia171_test_map_rotated.meta['NAXIS1'] == 182
assert aia171_test_map_rotated.meta['NAXIS2'] == 182
def test_wcs_isot(aia171_test_map):
# Check that a Map WCS returns the time as isot format
assert aia171_test_map.wcs.to_header()['DATE-OBS'] == '2011-02-15T00:00:00.340'
def test_repr_html(aia171_test_map):
html_string = aia171_test_map._repr_html_()
assert isinstance(html_string, str)
# Add a NaN value and check
aia171_test_map.data[0, 0] = np.nan
html_string = aia171_test_map._repr_html_()
assert "Bad pixels are shown in red: 1 NaN" in html_string
# Add a infinite value and check
aia171_test_map.data[0, 0] = np.inf
html_string = aia171_test_map._repr_html_()
assert "Bad pixels are shown in red: 1 infinite" in html_string
def test_quicklook(mocker, aia171_test_map):
mockwbopen = mocker.patch('webbrowser.open_new_tab')
aia171_test_map.quicklook()
# Check that the mock web browser was opened with a file URL
mockwbopen.assert_called_once()
file_url = mockwbopen.call_args[0][0]
assert file_url.startswith('file://')
# Open the file specified in the URL and confirm that it contains the HTML
with open(file_url[7:]) as f:
html_string = f.read()
assert aia171_test_map._repr_html_() in html_string
@pytest.fixture
def generic_map2(generic_map):
generic_map.meta["CTYPE1"] = "HPLN-TAN"
generic_map.meta["CTYPE2"] = "HPLT-TAN"
return generic_map
@pytest.fixture
def coords(generic_map2):
bl_coord = SkyCoord(20, -10, unit=u.arcsec,
frame=generic_map2.coordinate_frame)
tr_coord = SkyCoord(0, 10, unit=u.arcsec,
frame=generic_map2.coordinate_frame)
bl_tr_coord = SkyCoord([20, 0], [-10, 10], unit=u.arcsec,
frame=generic_map2.coordinate_frame)
return bl_coord, tr_coord, bl_tr_coord
bl_pix = [3, 2] * u.pix
tr_pix = [5, 4] * u.pix
width_pix = 2 * u.pix
height_pix = 2 * u.pix
width_deg = 20 * u.arcsec
height_deg = 20 * u.arcsec
def test_submap_kwarg_only_input_errors(generic_map2, coords):
"""
This test replaces the one above when the deprecation period is over.
"""
bl_coord, tr_coord, bl_tr_coord = coords
inputs = (
((bl_coord, tr_coord), {}),
((bl_pix, tr_pix), {}),
((bl_coord, width_deg, height_deg), {}),
((bl_pix, width_pix, height_pix), {}),
((bl_coord, width_deg), {'height_deg': height_deg}),
((bl_pix, width_pix), {'height_pix': height_pix}),
)
for args, kwargs in inputs:
with pytest.raises(TypeError, match="too many positional arguments"):
generic_map2.submap(*args, **kwargs)
def test_submap_inputs(generic_map2, coords):
bl_coord, tr_coord, bl_tr_coord = coords
inputs = (
((bl_coord,), dict(top_right=tr_coord)),
((bl_coord,), dict(width=width_deg, height=height_deg)),
((bl_tr_coord,), {}),
((bl_pix,), dict(top_right=tr_pix)),
((bl_pix,), dict(width=width_pix, height=height_pix)),
((bl_tr_coord.frame,), {}),
)
for args, kwargs in inputs:
smap = generic_map2.submap(*args, **kwargs)
assert u.allclose(smap.dimensions, (3, 3) * u.pix)
def test_contour_deprecation_warning(simple_map):
with pytest.warns(SunpyDeprecationWarning, match="The contour function is deprecated and may be removed in a future version.\\s+Use sunpy.map.GenericMap.find_contours instead."):
simple_map.contour(1.5)
def test_find_contours_contourpy(simple_map):
data = np.ones(simple_map.data.shape)
data[4, 4] = 2
simple_map = sunpy.map.Map(data, simple_map.meta)
# 4 is the central pixel of the map, so contour half way between 1 and 2
contours = simple_map.find_contours(1.5, method='contourpy')
assert len(contours) == 1
contour = contours[0]
assert contour.observer.lat == simple_map.observer_coordinate.frame.lat
assert contour.observer.lon == simple_map.observer_coordinate.frame.lon
assert contour.obstime == simple_map.date
assert u.allclose(contour.Tx, [-1, 0, 1, 0, -1] * u.arcsec, atol=1e-10 * u.arcsec)
assert u.allclose(contour.Ty, [ 0, -0.5, 0, 0.5, 0] * u.arcsec, atol=1e-10 * u.arcsec)
with pytest.raises(ValueError, match='level must be a single scalar value'):
simple_map.find_contours([1.5, 2.5])
def test_find_contours_skimage(simple_map):
data = np.ones(simple_map.data.shape)
data[4, 4] = 2
simple_map = sunpy.map.Map(data, simple_map.meta)
# 4 is the central pixel of the map, so contour half way between 1 and 2
contours = simple_map.find_contours(1.5, method='skimage')
assert len(contours) == 1
contour = contours[0]
assert contour.observer.lat == simple_map.observer_coordinate.frame.lat
assert contour.observer.lon == simple_map.observer_coordinate.frame.lon
assert contour.obstime == simple_map.date
assert u.allclose(contour.Tx, [0, -1, 0, 1, 0] * u.arcsec, atol=1e-10 * u.arcsec)
assert u.allclose(contour.Ty, [0.5, 0, -0.5, 0, 0.5] * u.arcsec, atol=1e-10 * u.arcsec)
with pytest.raises(ValueError, match='level must be a single scalar value'):
simple_map.find_contours([1.5, 2.5])
def test_find_contours_invalid_library(simple_map):
with pytest.raises(ValueError, match="Unknown method 'invalid_method'. Use 'contourpy' or 'skimage'."):
simple_map.find_contours(1.5, method='invalid_method')
def test_find_contours_units(simple_map):
# Check that contouring with units works as intended
simple_map.meta['bunit'] = 'm'
# Same units
contours = simple_map.find_contours(1.5 * u.m)
assert len(contours) == 1
# Different units, but convertible
contours_cm = simple_map.find_contours(150 * u.cm)
for c1, c2 in zip(contours, contours_cm):
assert np.all(c1 == c2)
# Percentage
contours_percent = simple_map.find_contours(50 * u.percent)
high = np.max(simple_map.data)
low = np.min(simple_map.data)
middle = high - (high - low) / 2
contours_ref = simple_map.find_contours(middle * simple_map.unit)
for c1, c2 in zip(contours_percent, contours_ref):
assert np.all(c1 == c2)
def test_find_contours_inputs(simple_map):
with pytest.raises(ValueError, match='Contour levels must be increasing'):
simple_map.draw_contours([10, -10] * u.dimensionless_unscaled)
with pytest.raises(ValueError, match=re.escape('The provided level (1000.0) is not smaller than the maximum data value (80)')):
simple_map.draw_contours(1000 * u.dimensionless_unscaled, fill=True)
simple_map.meta['bunit'] = 'm'
with pytest.raises(TypeError, match='The levels argument has no unit attribute'):
simple_map.draw_contours(1.5)
with pytest.raises(TypeError, match='The levels argument has no unit attribute'):
simple_map.find_contours(1.5)
with pytest.raises(u.UnitsError, match=re.escape("'s' (time) and 'm' (length) are not convertible")):
simple_map.draw_contours(1.5 * u.s)
with pytest.raises(u.UnitsError, match=re.escape("'s' (time) and 'm' (length) are not convertible")):
simple_map.find_contours(1.5 * u.s)
# With no units, check that dimensionless works
simple_map.meta.pop('bunit')
simple_map.draw_contours(1.5 * u.dimensionless_unscaled)
simple_map.find_contours(1.5 * u.dimensionless_unscaled)
with pytest.raises(u.UnitsError, match='This map has no unit'):
simple_map.draw_contours(1.5 * u.m)
with pytest.raises(u.UnitsError, match='This map has no unit'):
simple_map.find_contours(1.5 * u.m)
def test_print_map(generic_map):
out_repr = generic_map.__repr__()
assert isinstance(out_repr, str)
assert object.__repr__(generic_map) in out_repr
out_str = generic_map.__str__()
assert isinstance(out_str, str)
assert out_str in out_repr
def test_parse_submap_quantity_inputs(aia171_test_map):
bottom_left = (0, 0)*u.arcsec
top_right = (200, 200)*u.arcsec
width = 200*u.arcsec
height = 300*u.arcsec
with pytest.raises(ValueError, match=re.escape("Either top_right alone or both width and height "
"must be specified when bottom_left is a Quantity")):
aia171_test_map.submap(bottom_left=bottom_left[0],
top_right=None, width=None, height=None)
with pytest.raises(ValueError, match=re.escape("bottom_left must have shape (2, ) "
"when specified as a Quantity")):
aia171_test_map.submap(bottom_left=bottom_left[0],
top_right=top_right, width=None, height=None)
with pytest.raises(ValueError, match=re.escape("top_right must have shape (2, ) when specified as "
"a Quantity")):
aia171_test_map.submap(bottom_left=bottom_left,
top_right=top_right[0], width=None, height=None)
with pytest.raises(TypeError, match=re.escape("When bottom_left is a Quantity, top_right "
"must be a Quantity in units of pixels.")):
aia171_test_map.submap(bottom_left=bottom_left,
top_right=top_right, width=None, height=None)
with pytest.raises(TypeError, match=re.escape("When bottom_left is a Quantity, width and height "
"must be a Quantity in units of pixels.")):
aia171_test_map.submap(bottom_left=bottom_left,
top_right=None, width=width, height=height)
def test_wavelength_properties(simple_map):
simple_map.meta.pop('waveunit', None)
simple_map.meta['wavelnth'] = 1
assert simple_map.measurement == 1 * u.one
assert simple_map.wavelength == 1 * u.one
simple_map.meta['waveunit'] = ''
assert simple_map.measurement == 1 * u.one
assert simple_map.wavelength == 1 * u.one
simple_map.meta['waveunit'] = 'm'
assert simple_map.measurement == 1 * u.m
assert simple_map.wavelength == 1 * u.m
def test_meta_modifications(aia171_test_map):
aiamap = aia171_test_map
old_cdelt1 = aiamap.meta['cdelt1']
aiamap.meta['cdelt1'] = 20
assert aiamap.meta.original_meta != aiamap.meta
assert aiamap.meta.added_items == {}
assert aiamap.meta.removed_items == {}
assert aiamap.meta.modified_items == {'cdelt1': ModifiedItem(old_cdelt1, 20)}
# Check that rotate doesn't modify the original metadata
aiamap_rot = aiamap.rotate(30 * u.deg)
assert aiamap_rot.meta.original_meta == aiamap.meta.original_meta
assert set(aiamap_rot.meta.added_items.keys()) == set(['pc1_1', 'pc1_2', 'pc2_1', 'pc2_2'])
assert set(aiamap_rot.meta.removed_items.keys()) == set(['crota2'])
assert set(aiamap_rot.meta.modified_items) == set(['cdelt1', 'crpix1', 'crpix2', 'crval1', 'naxis1', 'naxis2'])
def test_no_wcs_observer_info(heliographic_test_map):
# Check that HeliographicCarrington WCS has observer info set
assert isinstance(heliographic_test_map.coordinate_frame, HeliographicCarrington)
wcs_aux = heliographic_test_map.wcs.wcs.aux
assert wcs_aux.hgln_obs is not None
assert wcs_aux.hglt_obs is not None
assert wcs_aux.dsun_obs is not None
# Remove observer information, and change coordinate system to HeliographicStonyhurst
heliographic_test_map.meta.pop('HGLN_OBS')
heliographic_test_map.meta.pop('HGLT_OBS')
heliographic_test_map.meta.pop('DSUN_OBS')
heliographic_test_map.meta['CTYPE1'] = 'HGLN-CAR'
heliographic_test_map.meta['CTYPE2'] = 'HGLT-CAR'
assert isinstance(heliographic_test_map.coordinate_frame, HeliographicStonyhurst)
# Check that GenericMap.wcs doesn't set an observer
wcs_aux = heliographic_test_map.wcs.wcs.aux
assert wcs_aux.hgln_obs is None
assert wcs_aux.hglt_obs is None
assert wcs_aux.dsun_obs is None
def test_rsun_meters_no_warning_for_hgs(heliographic_test_map):
# Make sure that Stonyhurst heliographic maps do not emit a warning about assuming an
# Earth-based observer when returning the physical radius of the Sun, because such an
# assumption is not necessary
# Convert the heliographic test map to Stonyhurst heliographic coordinates
heliographic_test_map.meta.pop('HGLN_OBS')
heliographic_test_map.meta.pop('HGLT_OBS')
heliographic_test_map.meta.pop('DSUN_OBS')
heliographic_test_map.meta['CTYPE1'] = 'HGLN-CAR'
heliographic_test_map.meta['CTYPE2'] = 'HGLT-CAR'
# Add a custom physical radius for the Sun
heliographic_test_map.meta['rsun_ref'] = 1.1 * sunpy.sun.constants.radius.to_value(u.m)
assert_quantity_allclose(heliographic_test_map.rsun_meters,
heliographic_test_map.meta['rsun_ref'] << u.m)
@figure_test
def test_rotation_rect_pixelated_data(aia171_test_map):
aia_map = sunpy.map.Map(aia171_test_map)
rect_map = aia_map.superpixel([2, 1] * u.pix, func=np.mean)
rect_rot_map = rect_map.rotate(30 * u.deg)
rect_rot_map.peek()
@pytest.mark.remote_data
@figure_test
def test_draw_contours_with_transform(sample_171, sample_hmi):
aia_map = sunpy.map.Map(sample_171)
hmi_map = sunpy.map.Map(sample_hmi)
fig = plt.figure(figsize=(16, 4))
# Panel 1: Implicit transform
ax1 = fig.add_subplot(1, 3, 1, projection=aia_map)
aia_map.plot(axes=ax1, clip_interval=(1, 99.99)*u.percent)
hmi_map.draw_contours([-10, 10]*u.percent)
ax1.set_title('Default, correct behavior')
# Panel 2: Explicit transform
ax2 = fig.add_subplot(1, 3, 2, projection=aia_map)
aia_map.plot(axes=ax2, clip_interval=(1, 99.99)*u.percent)
hmi_map.draw_contours([-10, 10]*u.percent, transform=ax2.get_transform(hmi_map.wcs))
ax2.set_title('Explicitly specifying the correct transform')
# Panel 3: Explicit transform with wacky rotation
ax3 = fig.add_subplot(1, 3, 3, projection=aia_map)
rotate_transform = Affine2D().rotate_deg_around(512, 512, 90)
composite_transform = rotate_transform + ax3.get_transform(hmi_map.wcs)
aia_map.plot(axes=ax3, clip_interval=(1, 99.99)*u.percent)
hmi_map.draw_contours([-10, 10]*u.percent, transform=composite_transform)
ax3.set_title('Contours rotated by 90 deg CCW')
return fig
def test_plot_composite_map_updated_args(simple_map):
simple_map.plot_settings['cmap'] = 'viridis'
simple_map.plot_settings['norm'] = 'linear'
simple_map.plot_settings['origin'] = 'upper'
simple_map.plot_settings['alpha'] = 0.7
simple_map.plot_settings['zorder'] = 8
contour_args = {'norm': 'log',
'cmap':'plasma'}
updated_args = simple_map._update_contour_args(contour_args)
# Since 'norm' and 'cmap' are explicitly provided in contour_args of draw_contours,
# their contour_args values will be used instead of plot_settings value
assert updated_args == {
'alpha': 0.7,
'cmap': 'plasma',
'norm': 'log',
'origin': 'upper',
'zorder': 8
}
@figure_test
def test_draw_simple_map(simple_map):
fig = plt.figure(figsize=(6, 6))
ax = fig.add_subplot(1, 1, 1, projection=simple_map)
simple_map.plot(axes=ax)
return fig
@figure_test
def test_draw_carrington_map(carrington_map):
fig = plt.figure(figsize=(6, 6))
ax = fig.add_subplot(1, 1, 1, projection=carrington_map)
carrington_map.plot(axes=ax)
return fig
@pytest.mark.skipif(opencv is None, reason="The opencv-python package is unavailable")
@pytest.mark.parametrize('method', _rotation_registry.keys())
@figure_test
def test_derotating_nonpurerotation_pcij(aia171_test_map, method):
# The following map has a a PCij matrix that is not a pure rotation
weird_map = aia171_test_map.rotate(30*u.deg).superpixel([2, 1]*u.pix)
# De-rotating the map by its PCij matrix should result in a normal-looking map
derotated_map = weird_map.rotate(method=method)
fig = Figure(figsize=(8, 4))
ax1 = fig.add_subplot(121, projection=weird_map)
weird_map.plot(axes=ax1, title='Map with a non-pure-rotation PCij matrix')
ax2 = fig.add_subplot(122, projection=derotated_map)
derotated_map.plot(axes=ax2, title=f'De-rotated map via {method}')
ax2.set_aspect(derotated_map.scale[1] / derotated_map.scale[0])
return fig
# This function is used in the arithmetic tests below
def check_arithmetic_value_and_units(map_new, data_expected):
assert u.allclose(map_new.quantity, data_expected)
assert map_new.unit.is_equivalent(data_expected.unit)
@pytest.mark.parametrize('value', [
10 * u.DN,
u.Quantity([10], u.DN),
u.Quantity(np.random.rand(128), u.DN),
u.Quantity(np.random.rand(128, 128), u.DN),
])
def test_map_arithmetic_addition_subtraction(aia171_test_map, value):
new_map = aia171_test_map + value
check_arithmetic_value_and_units(new_map, aia171_test_map.quantity + value)
new_map = value + aia171_test_map
check_arithmetic_value_and_units(new_map, value + aia171_test_map.quantity)
new_map = aia171_test_map - value
check_arithmetic_value_and_units(new_map, aia171_test_map.quantity - value)
new_map = value - aia171_test_map
check_arithmetic_value_and_units(new_map, value - aia171_test_map.quantity)
@pytest.mark.parametrize('value', [
10 * u.s,
u.Quantity([10], u.s),
u.Quantity(np.random.rand(128), u.s),
u.Quantity(np.random.rand(128, 128), u.s),
10.0,
np.random.rand(128),
np.random.rand(128, 128),
])
def test_map_arithmetic_multiplication_division(aia171_test_map, value):
new_map = aia171_test_map * value
check_arithmetic_value_and_units(new_map, aia171_test_map.quantity * value)
new_map = value * aia171_test_map
check_arithmetic_value_and_units(new_map, value * aia171_test_map.quantity)
new_map = aia171_test_map / value
check_arithmetic_value_and_units(new_map, aia171_test_map.quantity / value)
new_map = value / aia171_test_map
check_arithmetic_value_and_units(new_map, value / aia171_test_map.quantity)
def test_map_arithmetic_pow(aia171_test_map):
new_map = aia171_test_map ** 2
check_arithmetic_value_and_units(new_map, aia171_test_map.quantity ** 2)
def test_map_arithmetic_neg(aia171_test_map):
new_map = -aia171_test_map
check_arithmetic_value_and_units(new_map, -aia171_test_map.quantity)
@pytest.mark.parametrize("value", ['map', 'foobar', None, ['foo', 'bar']])
def test_map_arithmetic_operations_raise_exceptions(aia171_test_map, value):
value = aia171_test_map if value == 'map' else value
with pytest.raises(TypeError):
_ = aia171_test_map + value
with pytest.raises(TypeError):
_ = aia171_test_map * value
with pytest.raises(TypeError):
_ = value / aia171_test_map
@pytest.mark.parametrize(('units_string','expected_unit'),[
('Gauss', u.G),
('G', u.G),
('DN', u.DN),
('DN/s', u.DN/u.s),
('DN/pix', u.DN/u.pixel),
('DN / pix', u.DN/u.pixel),
('DN sr / s', u.DN*u.sr/u.s),
('DN/(pix s)', u.DN/u.pixel/u.s),
('counts / pixel', u.ct/u.pix),
])
def test_parse_fits_units(units_string, expected_unit):
out_unit = GenericMap._parse_fits_unit(units_string)
assert out_unit == expected_unit
@pytest.mark.parametrize('units_string', ['DN / electron', 'electron', 'Mx'])
def test_parse_nonfits_units(units_string):
with pytest.warns(SunpyMetadataWarning, match='Could not parse unit string'):
assert GenericMap._parse_fits_unit(units_string) is None
def test_only_cd():
data = np.ones([6, 6], dtype=np.float64)
header = {
'CRVAL1': 0,
'CRVAL2': 0,
'CRPIX1': 5,
'CRPIX2': 5,
'CD1_1': 3,
'CD1_2': -4,
'CD2_1': 5,
'CD2_2': 12,
'NAXIS1': 6,
'NAXIS2': 6,
'CUNIT1': 'arcsec',
'CUNIT2': 'arcsec',
'CTYPE1': 'HPLN-TAN',
'CTYPE2': 'HPLT-TAN',
}
cd_map = sunpy.map.Map((data, header))
np.testing.assert_allclose(u.Quantity(cd_map.scale).value, np.array([5, 13]))
np.testing.assert_allclose(cd_map.rotation_matrix, np.array([[3/5, -4/5], [5/13, 12/13]]))
def test_submap_nan_error(aia171_test_map):
# See https://github.com/sunpy/sunpy/pull/7543#issuecomment-2167019208 for more context
coord_native = SkyCoord(0*u.arcsec, 0*u.arcsec, frame=aia171_test_map.coordinate_frame)
aia171_test_map.submap(coord_native, width=1000*u.arcsec, height=1000*u.arcsec)
coord_other = SkyCoord(0*u.arcsec, 0*u.arcsec, frame='helioprojective', observer='earth', obstime=aia171_test_map.date)
with pytest.raises(ValueError, match="The provided input coordinates to"):
aia171_test_map.submap(coord_other, width=1000*u.arcsec, height=1000*u.arcsec)
|