1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
import os
import logging
import datetime
from pathlib import Path
from collections import OrderedDict
import numpy as np
import pytest
from pandas import DataFrame
import astropy.units as u
from astropy.io import fits
from astropy.table import Table
from astropy.time import TimeDelta
import sunpy.io
import sunpy.net.attrs as a
import sunpy.timeseries
from sunpy.data.test import get_test_data_filenames, get_test_filepath, rootdir
from sunpy.net import Fido
from sunpy.time import parse_time
from sunpy.util import SunpyUserWarning
from sunpy.util.datatype_factory_base import NoMatchError
from sunpy.util.metadata import MetaDict
eve_filepath = get_test_filepath('EVE_L0CS_DIODES_1m_truncated.txt')
eve_many_filepath = [f for f in get_test_data_filenames()
if f.parents[0].relative_to(f.parents[1]).name == 'eve']
goes_filepath = get_test_filepath('go1520110607.fits')
psp_filepath = get_test_filepath('psp_fld_l2_mag_rtn_1min_20200104_v02.cdf')
swa_filepath = get_test_filepath('solo_L1_swa-pas-mom_20200706_V01.cdf')
fermi_gbm_filepath = get_test_filepath('gbm.fits')
hsi_filepath = get_test_filepath('hsi_image_20101016_191218.fits')
@pytest.mark.filterwarnings('ignore:Unknown units')
def test_factory_concatenate_same_source():
# Test making a TimeSeries that is the concatenation of multiple files
ts_from_list = sunpy.timeseries.TimeSeries(eve_many_filepath, source='EVE', concatenate=True)
assert isinstance(ts_from_list, sunpy.timeseries.sources.eve.EVESpWxTimeSeries)
ts_from_folder = sunpy.timeseries.TimeSeries(
eve_many_filepath[0].parent, source='EVE', concatenate=True)
assert isinstance(ts_from_folder, sunpy.timeseries.sources.eve.EVESpWxTimeSeries)
# text the two methods get identical dataframes
assert ts_from_list == ts_from_folder
# test the frames have correct headings/keys (correct concatenation axis)
ts_from_list.columns == sunpy.timeseries.TimeSeries(
eve_many_filepath[0], source='EVE', concatenate=True).columns
@pytest.mark.filterwarnings('ignore:Unknown units')
def test_factory_concatenate_different_source():
# Test making a TimeSeries that is the concatenation of multiple files
ts_from_list = sunpy.timeseries.TimeSeries(eve_many_filepath, source='EVE', concatenate=True)
assert isinstance(ts_from_list, sunpy.timeseries.sources.eve.EVESpWxTimeSeries)
ts_from_folder = sunpy.timeseries.TimeSeries(
eve_many_filepath[0].parent, source='EVE', concatenate=True)
assert isinstance(ts_from_folder, sunpy.timeseries.sources.eve.EVESpWxTimeSeries)
# text the two methods get identical dataframes
assert ts_from_list == ts_from_folder
# test the frames have correct headings/keys (correct concatenation axis)
ts_from_list.columns == sunpy.timeseries.TimeSeries(
eve_many_filepath[0], source='EVE', concatenate=True).columns
@pytest.mark.filterwarnings('ignore:Unknown units')
def test_factory_generate_list_of_ts():
# Test making a list TimeSeries from multiple files
ts_list = sunpy.timeseries.TimeSeries(eve_many_filepath, source='EVE')
assert isinstance(ts_list, list)
for ts in ts_list:
assert isinstance(ts, sunpy.timeseries.sources.eve.EVESpWxTimeSeries)
@pytest.mark.filterwarnings('ignore:Unknown units')
def test_factory_generate_from_glob():
# Test making a TimeSeries from a glob
ts_from_glob = sunpy.timeseries.TimeSeries(os.path.join(
rootdir, "eve", "*"), source='EVE', concatenate=True)
assert isinstance(ts_from_glob, sunpy.timeseries.sources.eve.EVESpWxTimeSeries)
@pytest.mark.filterwarnings('ignore:Unknown units')
def test_factory_generate_from_pathlib():
# Test making a TimeSeries from a : pathlib.PosixPath
ts_from_pathlib = sunpy.timeseries.TimeSeries(Path(fermi_gbm_filepath),
source="GBMSummary")
assert isinstance(ts_from_pathlib, sunpy.timeseries.sources.fermi_gbm.GBMSummaryTimeSeries)
@pytest.mark.remote_data
def test_from_url():
# This is the same PSP file we have in our test data, but accessed from a URL
url = ('https://spdf.gsfc.nasa.gov/pub/data/psp/fields/l2/mag_rtn_1min/2020/'
'psp_fld_l2_mag_rtn_1min_20200104_v02.cdf')
ts = sunpy.timeseries.TimeSeries(url)
assert isinstance(ts[0], sunpy.timeseries.GenericTimeSeries)
assert isinstance(ts[1], sunpy.timeseries.GenericTimeSeries)
@pytest.mark.remote_data
def test_from_uri():
# Test read on PSP file saved on public sumpy s3 repository.
uri = ('s3://data.sunpy.org/sunpy/v1/psp_fld_l2_mag_rtn_1min_20200104_v02.cdf')
ts = sunpy.timeseries.TimeSeries(uri, fsspec_kwargs={'anon':True})
assert isinstance(ts[0], sunpy.timeseries.GenericTimeSeries)
assert isinstance(ts[1], sunpy.timeseries.GenericTimeSeries)
@pytest.mark.skip(reason="cdflib is not available")
def test_read_cdf():
ts_psp = sunpy.timeseries.TimeSeries(psp_filepath)
assert len(ts_psp) == 2
ts = ts_psp[0]
assert ts.columns == ['psp_fld_l2_mag_RTN_1min_0',
'psp_fld_l2_mag_RTN_1min_1',
'psp_fld_l2_mag_RTN_1min_2']
assert ts.quantity('psp_fld_l2_mag_RTN_1min_0').unit == u.nT
assert len(ts.quantity('psp_fld_l2_mag_RTN_1min_0')) == 118
ts = ts_psp[1]
assert ts.columns == ['psp_fld_l2_quality_flags']
assert ts.quantity('psp_fld_l2_quality_flags').unit == u.dimensionless_unscaled
assert len(ts.quantity('psp_fld_l2_quality_flags')) == 1440
@pytest.mark.remote_data
@pytest.mark.skip(reason="cdflib is not available")
def test_read_cdf_empty_variable():
# This tests that:
# - A CDF file with an empty column can be read
# - Unknown unit handling works as expected
result = sunpy.net.Fido.search(a.Time('2020-01-01', '2020-01-02'),
a.cdaweb.Dataset('AC_H6_SWI'))
filename = Fido.fetch(result[0, 0])
# Temporarily reset sunpy.io._cdf registry of known unit conversions
import sunpy.io._cdf as sunpy_cdf
known_units = sunpy_cdf._known_units
sunpy_cdf._known_units = {}
with pytest.warns(SunpyUserWarning, match='Assigning dimensionless units'):
ts = sunpy.timeseries.TimeSeries(filename)
assert ts.quantity('nH').unit == u.dimensionless_unscaled
# Put back known unit registry, and check that units are recognised
sunpy_cdf._known_units = known_units
ts = sunpy.timeseries.TimeSeries(filename)
assert ts.quantity('nH').unit == u.cm**-3
# Reset again to check that registering units via. astropy works too
sunpy_cdf._known_units = {}
u.add_enabled_units([u.def_unit('#/cm^3', represents=u.cm**-3)])
ts = sunpy.timeseries.TimeSeries(filename)
assert ts.quantity('nH').unit == u.cm**-3
sunpy_cdf._known_units = known_units
@pytest.mark.skip(reason="cdflib is not available")
def test_read_empty_cdf(caplog):
with caplog.at_level(logging.DEBUG, logger='sunpy'):
ts_empty = sunpy.timeseries.TimeSeries(swa_filepath)
assert ts_empty == []
assert "No data found in file" in caplog.text
assert "solo_L1_swa-pas-mom_20200706_V01.cdf" in caplog.text
def test_meta_from_fits_header():
# Generate the data and the corresponding dates
base = parse_time(datetime.datetime.today())
times = base - TimeDelta(np.arange(24*60)*u.minute)
intensity = np.sin(np.arange(0, 12 * np.pi, ((12 * np.pi) / (24*60))))
units = {'intensity': u.W/u.m**2}
data = DataFrame(intensity, index=times, columns=['intensity'])
# Use a FITS file HDU using sunpy.io
hdulist = sunpy.io._file_tools.read_file(goes_filepath)
meta = hdulist[0].header
meta_md = MetaDict(OrderedDict(meta))
ts_hdu_meta = sunpy.timeseries.TimeSeries(data, meta, units)
ts_md_meta = sunpy.timeseries.TimeSeries(data, meta_md, units)
assert ts_hdu_meta == ts_md_meta
# Use a FITS file HDU using astropy.io
hdulist = fits.open(goes_filepath)
meta = hdulist[0].header
hdulist.close()
meta_md = MetaDict(sunpy.io._header.FileHeader(meta))
ts_hdu_meta = sunpy.timeseries.TimeSeries(data, meta, units)
ts_md_meta = sunpy.timeseries.TimeSeries(data, meta_md, units)
assert ts_hdu_meta == ts_md_meta
def test_generic_construction_basic():
# Generate the data and the corresponding dates
base = parse_time(datetime.datetime.today())
times = base - TimeDelta(np.arange(24 * 60)*u.minute)
intensity = np.sin(np.arange(0, 12 * np.pi, ((12 * np.pi) / (24*60))))
# Create the data DataFrame, header MetaDict and units OrderedDict
data = DataFrame(intensity, index=times, columns=['intensity'])
units = OrderedDict([('intensity', u.W/u.m**2)])
meta = MetaDict({'key': 'value'})
# Create normal TS from dataframe and check
ts_generic = sunpy.timeseries.TimeSeries(data, meta, units)
assert isinstance(ts_generic, sunpy.timeseries.timeseriesbase.GenericTimeSeries)
assert ts_generic.columns == ['intensity']
assert ts_generic.units == units
assert ts_generic.meta.metadata[0][2] == meta
# Create TS using a tuple of values
ts_tuple = sunpy.timeseries.TimeSeries(((data, meta, units),))
assert isinstance(ts_tuple, sunpy.timeseries.timeseriesbase.GenericTimeSeries)
assert ts_generic == ts_tuple
def test_generic_construction_basic_omitted_details():
# Generate the data and the corresponding dates
base = parse_time(datetime.datetime.today())
times = base - TimeDelta(np.arange(24 * 60)*u.minute)
intensity = np.sin(np.arange(0, 12 * np.pi, ((12 * np.pi) / (24*60))))
# Create the data DataFrame, header MetaDict and units OrderedDict
data = DataFrame(intensity, index=times, columns=['intensity'])
units = OrderedDict([('intensity', u.W/u.m**2)])
meta = MetaDict({'key': 'value'})
# Create TS omitting units input arguments
with pytest.warns(SunpyUserWarning, match='Unknown units for intensity'):
ts_1 = sunpy.timeseries.TimeSeries(data, meta)
assert isinstance(ts_1, sunpy.timeseries.timeseriesbase.GenericTimeSeries)
assert ts_1.columns == ['intensity']
assert ts_1.units == OrderedDict([('intensity', u.dimensionless_unscaled)])
assert ts_1.meta.metadata[0][2] == meta
ts_2 = sunpy.timeseries.TimeSeries(data, units)
assert isinstance(ts_2, sunpy.timeseries.timeseriesbase.GenericTimeSeries)
assert ts_2.columns == ['intensity']
assert ts_2.units == units
assert ts_2.meta.metadata[0][2] == MetaDict()
def test_generic_construction_basic_different_meta_types():
# Generate the data and the corresponding dates
base = parse_time(datetime.datetime.today())
times = base - TimeDelta(np.arange(24 * 60)*u.minute)
intensity = np.sin(np.arange(0, 12 * np.pi, ((12 * np.pi) / (24*60))))
tr = sunpy.time.TimeRange(times[0], times[-1])
# Create the data DataFrame, header MetaDict and units OrderedDict
data = DataFrame(intensity, index=times, columns=['intensity'])
units = OrderedDict([('intensity', u.W/u.m**2)])
meta_md = MetaDict({'key': 'value'})
meta_di = {'key': 'value'}
meta_od = OrderedDict({'key': 'value'})
meta_obj = sunpy.timeseries.TimeSeriesMetaData(timerange=tr, colnames=['GOES'],
meta=MetaDict({'key': 'value'}))
# Create TS using different dictionary meta types
ts_md = sunpy.timeseries.TimeSeries(data, meta_md, units)
ts_di = sunpy.timeseries.TimeSeries(data, meta_di, units)
ts_od = sunpy.timeseries.TimeSeries(data, meta_od, units)
ts_obj = sunpy.timeseries.TimeSeries(data, meta_obj, units)
assert ts_md == ts_di == ts_od == ts_obj
assert ts_md.meta.metadata[0][2] == ts_di.meta.metadata[0][2] == ts_od.meta.metadata[0][2] == ts_obj.meta.metadata[0][2]
def test_generic_construction_ts_list():
# Generate the data and the corresponding dates
base = parse_time(datetime.datetime.today())
times = base - TimeDelta(np.arange(24 * 60)*u.minute)
intensity1 = np.sin(np.arange(0, 12 * np.pi, ((12 * np.pi) / (24*60))))
intensity2 = np.sin(np.arange(0, 12 * np.pi, ((12 * np.pi) / (24*60))))
# Create the data DataFrame, header MetaDict and units OrderedDict
data = DataFrame(intensity1, index=times, columns=['intensity'])
data2 = DataFrame(intensity2, index=times, columns=['intensity2'])
units = OrderedDict([('intensity', u.W/u.m**2)])
units2 = OrderedDict([('intensity2', u.W/u.m**2)])
meta = MetaDict({'key': 'value'})
meta2 = MetaDict({'key2': 'value2'})
# Create TS individually
ts_1 = sunpy.timeseries.TimeSeries(data, meta, units)
ts_2 = sunpy.timeseries.TimeSeries(data2, meta2, units2)
# Create TS list using
ts_list = sunpy.timeseries.TimeSeries(data, meta, units, data2, meta2, units2)
assert isinstance(ts_list, list)
assert len(ts_list) == 2
assert ts_list[0] == ts_1
assert ts_list[1] == ts_2
# Create TS using a tuple
ts_list2 = sunpy.timeseries.TimeSeries(((data, meta, units), (data2, meta2, units2)))
assert ts_list == ts_list2
def test_generic_construction_concatenation():
# Generate the data and the corresponding dates
base = parse_time(datetime.datetime.today())
times = base - TimeDelta(np.arange(24 * 60)*u.minute)
intensity1 = np.sin(np.arange(0, 12 * np.pi, ((12 * np.pi) / (24*60))))
intensity2 = np.sin(np.arange(0, 12 * np.pi, ((12 * np.pi) / (24*60))))
# Create the data DataFrame, header MetaDict and units OrderedDict
data = DataFrame(intensity1, index=times, columns=['intensity'])
data2 = DataFrame(intensity2, index=times, columns=['intensity2'])
units = OrderedDict([('intensity', u.W/u.m**2)])
units2 = OrderedDict([('intensity2', u.W/u.m**2)])
meta = MetaDict({'key': 'value'})
meta2 = MetaDict({'key2': 'value2'})
# Create TS individually
ts_1 = sunpy.timeseries.TimeSeries(data, meta, units)
ts_2 = sunpy.timeseries.TimeSeries(data2, meta2, units2)
ts_concat_1 = ts_1.concatenate(ts_2)
# Concatenate during construction
ts_concat_2 = sunpy.timeseries.TimeSeries(
data, meta, units, data2, meta2, units2, concatenate=True)
assert isinstance(ts_concat_2, sunpy.timeseries.timeseriesbase.GenericTimeSeries)
# Create TS using a tuple
ts_concat_3 = sunpy.timeseries.TimeSeries(
((data, meta, units), (data2, meta2, units2)), concatenate=True)
assert isinstance(ts_concat_3, sunpy.timeseries.timeseriesbase.GenericTimeSeries)
assert ts_concat_1 == ts_concat_2 == ts_concat_3
def test_table_to_ts():
# Generate the data and the corresponding dates
base = parse_time(datetime.datetime.today())
times = base - TimeDelta(np.arange(24 * 60)*u.minute)
intensity = u.Quantity(
np.sin(np.arange(0, 12 * np.pi, ((12 * np.pi) / (24*60)))), u.W/u.m**2)
# Create the units and meta objects
units = OrderedDict([('intensity', u.W/u.m**2)])
meta = MetaDict({'key': 'value'})
tbl_meta = MetaDict({'t_key': 't_value'})
# Create a suitable mixin qtable
table = Table([times, intensity], names=['time', 'intensity'], meta=tbl_meta)
table.add_index('time')
# Create TS from table and check
ts_table = sunpy.timeseries.TimeSeries(table, meta, units)
assert isinstance(ts_table, sunpy.timeseries.timeseriesbase.GenericTimeSeries)
ts_table2 = sunpy.timeseries.TimeSeries(table, units, meta)
assert (ts_table2 == ts_table)
# Create TS using a tuple of values
ts_table3 = sunpy.timeseries.TimeSeries((table, meta, units))
assert isinstance(ts_table3, sunpy.timeseries.timeseriesbase.GenericTimeSeries)
# ToDo: Try an incompatible table
dual_index_table = Table([times, intensity], names=['time', 'intensity'], meta=tbl_meta)
dual_index_table.add_index(('time', 'intensity'))
with pytest.raises(ValueError, match="Invalid input Table, TimeSeries doesn't support conversion of tables with more then one index column."):
sunpy.timeseries.TimeSeries((dual_index_table, meta, units))
def test_passed_ts():
# Test an EVE TimeSeries
with pytest.warns(SunpyUserWarning, match='Unknown units'):
ts_eve = sunpy.timeseries.TimeSeries(eve_filepath, source='EVE')
ts_from_ts_1 = sunpy.timeseries.TimeSeries(ts_eve, source='EVE')
ts_from_ts_2 = sunpy.timeseries.TimeSeries(ts_eve)
assert ts_eve == ts_from_ts_1 == ts_from_ts_2
def test_invalid_manual_data():
meta = MetaDict({'key': 'value'})
data = []
with pytest.raises(NoMatchError, match="One of the files failed to validate with"):
sunpy.timeseries.TimeSeries(data, meta)
@pytest.mark.filterwarnings('ignore:"silence_errors" was deprecated in version 5')
def test_invalid_filepath():
invalid_filepath = os.path.join(rootdir, 'invalid_filepath_here')
with pytest.raises(ValueError, match='Did not find any files'):
sunpy.timeseries.TimeSeries(invalid_filepath)
# Now with silence_errors kwarg set
with pytest.raises(ValueError, match='Did not find any files'):
sunpy.timeseries.TimeSeries(invalid_filepath, silence_errors=True)
# Now with allow_errors kwarg set
with pytest.raises(ValueError, match='Did not find any files'):
sunpy.timeseries.TimeSeries(invalid_filepath, allow_errors=True)
@pytest.mark.filterwarnings('ignore:"silence_errors" was deprecated in version 5')
def test_invalid_file():
invalid_filepath = os.path.join(rootdir, 'annotation_ppt.db')
with pytest.raises(NoMatchError):
sunpy.timeseries.TimeSeries(invalid_filepath)
# Now with silence_errors kwarg set
with pytest.warns(SunpyUserWarning, match="One of the files failed to validate with: Could not find any timeseries sources to parse"):
ts = sunpy.timeseries.TimeSeries(invalid_filepath, silence_errors=True)
assert ts == []
# Now with allow_errors kwarg set
with pytest.warns(SunpyUserWarning, match="One of the files failed to validate with: Could not find any timeseries sources to parse"):
ts = sunpy.timeseries.TimeSeries(invalid_filepath, allow_errors=True)
assert ts == []
def test_validate_units():
valid_units = OrderedDict(
[('Watt Per Meter Squared', u.Unit("W / m2")), ('Meter Cubed', u.Unit("m3"))])
assert sunpy.timeseries.TimeSeries._is_units(valid_units)
# Test for not having only units for values
invalid_units_1 = OrderedDict(
[('Watt Per Meter Squared', 'string'), ('Meter Cubed', u.Unit("m3"))])
assert not sunpy.timeseries.TimeSeries._is_units(invalid_units_1)
# Test for being a MetaDict object
invalid_units_2 = MetaDict(OrderedDict(
[('Watt Per Meter Squared', u.Unit("W / m2")), ('Meter Cubed', u.Unit("m3"))]))
assert not sunpy.timeseries.TimeSeries._is_units(invalid_units_2)
def test_validate_meta_basic():
valid_meta_1 = MetaDict({'key': 'value'})
assert sunpy.timeseries.TimeSeries._is_metadata(valid_meta_1)
valid_meta_2 = OrderedDict({'key': 'value'})
assert sunpy.timeseries.TimeSeries._is_metadata(valid_meta_2)
time_range = sunpy.time.TimeRange('2020-01-01 12:00', '2020-01-02 12:00')
valid_meta_3 = sunpy.timeseries.TimeSeriesMetaData(time_range)
assert sunpy.timeseries.TimeSeries._is_metadata(valid_meta_3)
invalid_meta = []
assert not sunpy.timeseries.TimeSeries._is_metadata(invalid_meta)
def test_validate_meta_astropy_header():
# Manually open a goes file for the sunpy.io._header.FileHeader test
hdus = sunpy.io._file_tools.read_file(goes_filepath)
header = hdus[0].header
assert sunpy.timeseries.TimeSeries._is_metadata(header)
# Manually open a goes file for the astropy.io.fits.header.Header test
hdulist = fits.open(goes_filepath)
header = hdulist[0].header
hdulist.close()
assert sunpy.timeseries.TimeSeries._is_metadata(header)
def test_get_matching_widget():
with pytest.raises(NoMatchError, match="failed to validate"):
sunpy.timeseries.TimeSeries(hsi_filepath)
|