1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
|
"""
==============================
Flare times on a GOES XRS plot
==============================
How to plot flare times as provided by the HEK on a GOES XRS plot.
"""
import matplotlib.pyplot as plt
from sunpy.net import Fido
from sunpy.net import attrs as a
from sunpy.time import parse_time
from sunpy.timeseries import TimeSeries
###############################################################################
# Let's grab GOES XRS data for a particular time of interest and the HEK flare
# data for this time from the NOAA Space Weather Prediction Center (SWPC).
# Here we are searching for data from the GOES-15 satellite and for the 1-min average time-sampled data.
tr = a.Time('2011-06-07 04:00', '2011-06-07 12:00')
results = Fido.search(tr, a.Instrument.xrs & a.goes.SatelliteNumber(15) & a.Resolution("avg1m") | a.hek.FL & (a.hek.FRM.Name == 'SWPC'))
###############################################################################
# Then download the XRS data and load it into a TimeSeries.
files = Fido.fetch(results)
goes = TimeSeries(files)
###############################################################################
# Next let's retrieve `~sunpy.net.hek.HEKTable` from the Fido result
# and then load the first row from HEK results into ``flares_hek``.
hek_results = results['hek']
flares_hek = hek_results[0]
###############################################################################
# Lets plot everything together.
fig, ax = plt.subplots()
goes.plot(axes=ax)
ax.axvline(parse_time(flares_hek['event_peaktime']).datetime)
ax.axvspan(
parse_time(flares_hek['event_starttime']).datetime,
parse_time(flares_hek['event_endtime']).datetime,
alpha=0.2, label=flares_hek['fl_goescls']
)
ax.legend(loc=2)
ax.set_yscale('log')
ax.set_xlim(tr.start.to_datetime(), tr.end.to_datetime())
plt.show()
|