1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
.. _sunpy-tutorial-acquiring-data-hek:
**********************************************
Searching the Heliophysics Event Knowledgebase
**********************************************
The Heliophysics Event Knowledgebase (HEK) is a repository of feature and event information about the Sun.
Entries are generated both by automated algorithms and human observers.
sunpy accesses this information through the `~sunpy.net.hek` module, which was developed through support from the European Space Agency Summer of Code in Space (ESA-SOCIS) 2011.
A simple query
**************
To search the HEK, you need a start time, an end time, and an event type.
Times are specified as strings or Python datetime objects.
Event types are specified as upper case, two letter strings, and are identical to the two letter abbreviations found at the HEK website, http://www.lmsal.com/hek/VOEvent_Spec.html.
.. code-block:: python
>>> from sunpy.net import attrs as a
>>> from sunpy.net import Fido
>>> tstart = '2011/08/09 07:23:56'
>>> tend = '2011/08/09 12:40:29'
>>> event_type = 'FL'
>>> result = Fido.search(a.Time(tstart,tend), a.hek.EventType(event_type)) # doctest: +REMOTE_DATA
``tstart`` and ``tend`` defines the start and end times of the query, and ``event_type`` specifies the event type which in this example we are searching for flares defined as ``FL``.
``Fido.search`` goes out to the web, contacts the HEK, and queries it for the information you have requested.
Event data for ALL flares available in the HEK within the time range 2011/08/09 07:23:56 UT - 2011/08/09 12:40:20 UT will be returned, regardless of which feature recognition method used to detect the flare.
Let's break down the arguments of ``Fido.search``.
The first argument:
.. code-block:: python
>>> a.Time(tstart,tend) # doctest: +SKIP
sets the start and end times for the query.
The second argument:
.. code-block:: python
>>> a.hek.EventType(event_type) # doctest: +SKIP
sets the type of event to look for.
Since we have defined ``event_type = 'FL'``, this sets the query to look for flares.
We could have also set the flare event type using the syntax:
.. code-block:: python
>>> a.hek.FL # doctest: +SKIP
There is more information on the attributes below.
The result
**********
So, how many flare detections did the query turn up?
The result object returned by ``Fido.search`` is a `~.UnifiedResponse` object which contains all the results from any clients used in the search.
The first thing we need to do is access the results from the HEK client, the only ones for the query we gave:
.. code-block:: python
>>> len(result["hek"]) # doctest: +REMOTE_DATA
19
This object is an `astropy.table.Table` object with the columns which correspond to the parameters listed at http://www.lmsal.com/hek/VOEvent_Spec.html.
You can inspect all results very simply:
.. code-block:: python
>>> result['hek'] # doctest: +SKIP
Remember, the HEK query we made returns all the flares in the time-range stored in the HEK, regardless of the feature recognition method.
The HEK parameter which stores the the feature recognition method is called "frm_name".
We can select just this column:
.. code-block:: python
>>> result["hek"]["frm_name"] # doctest: +REMOTE_DATA
<MaskedColumn name='frm_name' dtype='str32' length=19>
asainz
asainz
asainz
asainz
asainz
asainz
asainz
SSW Latest Events
SWPC
Flare Detective - Trigger Module
Flare Detective - Trigger Module
SWPC
SSW Latest Events
Flare Detective - Trigger Module
Flare Detective - Trigger Module
Flare Detective - Trigger Module
Flare Detective - Trigger Module
Flare Detective - Trigger Module
Flare Detective - Trigger Module
It is likely each flare on the Sun was actually detected multiple times by many different methods.
More complex queries
********************
There are two key features you need to know in order to make more complex queries.
Firstly, the attribute module - ``attrs.hek`` - describes all the parameters stored by the HEK as listed in http://www.lmsal.com/hek/VOEvent_Spec.html, and the HEK client makes these parameters searchable.
To explain this, let's have a closer look at ``attrs.hek``.
By using the help command; scroll down to section DATA you will see:
.. code-block:: python
>>> help(a.hek) # doctest:+REMOTE_DATA
Help on module sunpy.net.hek.attrs in sunpy.net.hek:
<BLANKLINE>
NAME
sunpy.net.hek.attrs
<BLANKLINE>
DESCRIPTION
Attributes that can be used to construct HEK queries. They are different to
the VSO ones in that a lot of them are wrappers that conveniently expose
the comparisons by overloading Python operators. So, e.g., you are able
to say AR & AR.NumSpots < 5 to find all active regions with less than 5 spots.
As with the VSO query, you can use the fundamental logic operators AND and OR
to construct queries of almost arbitrary complexity. Note that complex queries
result in multiple requests to the server which might make them less efficient.
<BLANKLINE>
CLASSES
...
You'll see that one of the attributes is a flare object:
.. code-block:: python
FL = <sunpy.net.hek.attrs.FL object>
We can replace ``a.hek.EventType('FL')`` with ``a.hek.FL`` - they do the same thing, setting the query to look for flare events.
Both methods of setting the event type are provided as a convenience
Let's look further at the FRM attribute:
.. code-block:: python
>>> help(a.hek.FRM) # doctest:+REMOTE_DATA
Help on FRM in module sunpy.net.hek.attrs object:
<BLANKLINE>
class FRM(builtins.object)
| Data descriptors defined here:
...
| ----------------------------------------------------------------------
| Data and other attributes defined here:
|
| Contact = <sunpy.net.hek.attrs._StringParamAttrWrapper object>
|
| HumanFlag = <sunpy.net.hek.attrs._StringParamAttrWrapper object>
|
| Identifier = <sunpy.net.hek.attrs._StringParamAttrWrapper object>
|
| Institute = <sunpy.net.hek.attrs._StringParamAttrWrapper object>
|
| Name = <sunpy.net.hek.attrs._StringParamAttrWrapper object>
|
| ParamSet = <sunpy.net.hek.attrs._StringParamAttrWrapper object>
|
| SpecificID = <sunpy.net.hek.attrs._StringParamAttrWrapper object>
|
| URL = <sunpy.net.hek.attrs._StringParamAttrWrapper object>
|
| VersionNumber = <sunpy.net.hek.attrs._StringParamAttrWrapper object>
<BLANKLINE>
Let's say I am only interested in those flares identified by the SSW Latest Events tool.
One can retrieve those entries only from the HEK with the following command:
.. code-block:: python
>>> result = Fido.search(a.Time(tstart,tend), a.hek.EventType(event_type), a.hek.FRM.Name == 'SSW Latest Events') # doctest: +REMOTE_DATA
>>> len(result[0]) # doctest: +REMOTE_DATA
2
We can also retrieve all the entries in the time range which were not made by SSW Latest Events with the following command:
.. code-block:: python
>>> result = Fido.search(a.Time(tstart,tend), a.hek.EventType(event_type), a.hek.FRM.Name != 'SSW Latest Events') # doctest: +REMOTE_DATA
>>> len(result[0]) # doctest: +REMOTE_DATA
19
We are using Python's comparison operators to filter the returns from Fido.
Other comparisons are possible.
For example, let's say I want all the flares that have a peak flux of over 4000.0:
.. code-block:: python
>>> result = Fido.search(a.Time(tstart,tend), a.hek.EventType(event_type), a.hek.FL.PeakFlux > 4000.0) # doctest: +REMOTE_DATA
>>> len(result[0]) # doctest: +REMOTE_DATA
1
Multiple comparisons can be included.
For example, let's say I want all the flares with a peak flux above 1000 AND west of 800 arcseconds from disk center of the Sun:
.. code-block:: python
>>> result = Fido.search(a.Time(tstart,tend), a.hek.EventType(event_type), a.hek.Event.Coord1 > 800, a.hek.FL.PeakFlux > 1000) # doctest: +REMOTE_DATA
>>> len(result[0]) # doctest: +REMOTE_DATA
7
Multiple comparison operators can be used to filter the results back from the HEK.
The second important feature is that the comparisons we've made above can be combined using Python's logical operators.
This makes complex queries easy to create.
However, some caution is advisable.
Let's say we want all the flares west of 50 arcseconds OR have a peak flux over 1000:
.. code-block:: python
>>> result = Fido.search(a.Time(tstart,tend), a.hek.EventType(event_type), (a.hek.Event.Coord1 > 50) or (a.hek.FL.PeakFlux > 1000)) # doctest: +REMOTE_DATA
and as a check:
.. code-block:: python
>>> result["hek"]["fl_peakflux"] # doctest: +REMOTE_DATA
<MaskedQuantity [ ———, ———, ———, ———, ———,
———, ———, 2326.86 , 1698.83 , ———,
———, 2360.49 , 3242.64 , 1375.93 , 6275.98 ,
923.984, 1019.83 ] DN / (pix s)>
>>> result["hek"]["event_coord"] # doctest: +REMOTE_DATA
<QueryResponseColumn name='event_coord' dtype='object' length=17>
<SkyCoord (Helioprojective: obstime=2011-08-08T01:30:04.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-08T01:30:04.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.23019163, 1.01409307)>): (Tx, Ty) in arcsec\n (51., 151.)>
<SkyCoord (Helioprojective: obstime=2011-08-08T01:30:04.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-08T01:30:04.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.23019163, 1.01409307)>): (Tx, Ty) in arcsec\n (51., 151.)>
<SkyCoord (Helioprojective: obstime=2011-08-08T01:30:04.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-08T01:30:04.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.23019163, 1.01409307)>): (Tx, Ty) in arcsec\n (51., 151.)>
<SkyCoord (Helioprojective: obstime=2011-08-09T02:30:04.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T02:30:04.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.29395015, 1.01392568)>): (Tx, Ty) in arcsec\n (924., 217.)>
<SkyCoord (Helioprojective: obstime=2011-08-09T02:30:04.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T02:30:04.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.29395015, 1.01392568)>): (Tx, Ty) in arcsec\n (924., 217.)>
<SkyCoord (Helioprojective: obstime=2011-08-09T02:30:04.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T02:30:04.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.29395015, 1.01392568)>): (Tx, Ty) in arcsec\n (924., 217.)>
<SkyCoord (HeliographicStonyhurst: obstime=2011-08-09T07:19:00.000, rsun=695700.0 km): (lon, lat) in deg\n (69., 15.)>
<SkyCoord (Helioprojective: obstime=2011-08-09T07:22:38.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T07:22:38.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.30616553, 1.01389261)>): (Tx, Ty) in arcsec\n (883.2, 268.8)>
<SkyCoord (Helioprojective: obstime=2011-08-09T07:22:44.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T07:22:44.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.30616969, 1.0138926)>): (Tx, Ty) in arcsec\n (883.2, 268.8)>
<SkyCoord (HeliographicStonyhurst: obstime=2011-08-09T07:48:00.000, rsun=695700.0 km): (lon, lat) in deg\n (69., 17.)>
<SkyCoord (HeliographicStonyhurst: obstime=2011-08-09T07:48:00.000, rsun=695700.0 km): (lon, lat) in deg\n (69., 14.)>
<SkyCoord (Helioprojective: obstime=2011-08-09T07:55:59.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T07:55:59.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.30755339, 1.01388884)>): (Tx, Ty) in arcsec\n (883.2, 268.8)>
<SkyCoord (Helioprojective: obstime=2011-08-09T07:59:49.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T07:59:49.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.30771285, 1.0138884)>): (Tx, Ty) in arcsec\n (883.2, 192.)>
<SkyCoord (Helioprojective: obstime=2011-08-09T08:00:03.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T08:00:03.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.30772256, 1.01388838)>): (Tx, Ty) in arcsec\n (883.2, 268.8)>
<SkyCoord (Helioprojective: obstime=2011-08-09T08:00:20.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T08:00:20.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.30773434, 1.01388834)>): (Tx, Ty) in arcsec\n (883.2, 268.8)>
<SkyCoord (Helioprojective: obstime=2011-08-09T08:00:53.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T08:00:53.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.30775722, 1.01388828)>): (Tx, Ty) in arcsec\n (883.2, 268.8)>
<SkyCoord (Helioprojective: obstime=2011-08-09T08:01:21.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T08:01:21.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.30777663, 1.01388823)>): (Tx, Ty) in arcsec\n (883.2, 192.)>
Note that some of the fluxes are returned as "None".
This is because some feature recognition methods for flares do not report the peak flux.
However, because the location of "event_coord1" is greater than 50, the entry from the HEK for that flare detection is returned.
Let's say we want all the flares west of 50 arcseconds AND have a peak flux over 1000:
.. code-block:: python
>>> result = Fido.search(a.Time(tstart,tend), a.hek.EventType(event_type), (a.hek.Event.Coord1 > 50) and (a.hek.FL.PeakFlux > 1000)) # doctest: +REMOTE_DATA
>>> result["hek"]["fl_peakflux"] # doctest: +REMOTE_DATA
<MaskedQuantity [2326.86, 1698.83, 2360.49, 3242.64, 1375.93, 6275.98,
1019.83] DN / (pix s)>
>>> result["hek"]["event_coord"] # doctest: +REMOTE_DATA
<QueryResponseColumn name='event_coord' dtype='object' length=7>
<SkyCoord (Helioprojective: obstime=2011-08-09T07:22:38.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T07:22:38.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.30616553, 1.01389261)>): (Tx, Ty) in arcsec\n (883.2, 268.8)>
<SkyCoord (Helioprojective: obstime=2011-08-09T07:22:44.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T07:22:44.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.30616969, 1.0138926)>): (Tx, Ty) in arcsec\n (883.2, 268.8)>
<SkyCoord (Helioprojective: obstime=2011-08-09T07:55:59.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T07:55:59.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.30755339, 1.01388884)>): (Tx, Ty) in arcsec\n (883.2, 268.8)>
<SkyCoord (Helioprojective: obstime=2011-08-09T07:59:49.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T07:59:49.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.30771285, 1.0138884)>): (Tx, Ty) in arcsec\n (883.2, 192.)>
<SkyCoord (Helioprojective: obstime=2011-08-09T08:00:03.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T08:00:03.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.30772256, 1.01388838)>): (Tx, Ty) in arcsec\n (883.2, 268.8)>
<SkyCoord (Helioprojective: obstime=2011-08-09T08:00:20.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T08:00:20.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.30773434, 1.01388834)>): (Tx, Ty) in arcsec\n (883.2, 268.8)>
<SkyCoord (Helioprojective: obstime=2011-08-09T08:01:21.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2011-08-09T08:01:21.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)\n (0., 6.30777663, 1.01388823)>): (Tx, Ty) in arcsec\n (883.2, 192.)>
In this case none of the peak fluxes are returned with the value `None`.
Since we are using an ``and`` logical operator we need a result from the ``(a.hek.FL.PeakFlux > 1000)`` filter.
Flares that have `None` for a peak flux cannot provide this, and so are excluded.
The `None` type in this context effectively means "Don't know"; in such cases the client returns only those results from the HEK that definitely satisfy the criteria passed to it.
Getting data for your event
***************************
The `sunpy.net.hek2vso` module allows you to take an HEK event and acquire VSO records specific to that event.
.. code-block:: python
>>> from sunpy.net import hek2vso
>>> h2v = hek2vso.H2VClient() # doctest: +REMOTE_DATA
There are several ways to use this capability.
For example, you can pass in a list of HEK results and get out the corresponding VSO records.
Here are the VSO records returned via the tenth result from the HEK query in Section 2 above:
.. code-block:: python
>>> result = Fido.search(a.Time(tstart,tend), a.hek.EventType(event_type)) # doctest: +REMOTE_DATA
>>> vso_records = h2v.translate_and_query(result[0][10]) # doctest: +REMOTE_DATA
>>> len(vso_records[0]) # doctest: +REMOTE_DATA
31
``result[0][10]`` is the HEK entry generated by the "Flare Detective" automated flare detection algorithm running on the AIA 193 angstrom waveband.
The VSO records are for full disk AIA 193 angstrom images between the start and end times of this event.
The `~sunpy.net.hek2vso.H2VClient.translate_and_query` function uses exactly that information supplied by the HEK in order to find the relevant data for that event.
Note that the VSO does not generate records for all solar data, so it is possible that an HEK entry corresponds to data that is not accessible via the VSO.
You can also go one step further back, passing in a list of HEK attribute objects to define your search, the results of which are then used to generate their corresponding VSO records:
.. code-block:: python
>>> vso_query = h2v.full_query((a.Time('2011/08/09 07:00:00', '2011/08/09 07:15:00'), a.hek.EventType('FL'))) # doctest: +REMOTE_DATA
The full capabilities of the HEK query module can be used in this function (see above).
Finally, for greater flexibility, it is possible to pass in a list of HEK results and create the corresponding VSO query attributes.
.. code-block:: python
>>> vso_query = hek2vso.translate_results_to_query(result[0][10]) # doctest: +REMOTE_DATA
>>> vso_query[0] # doctest: +REMOTE_DATA
[<sunpy.net.attrs.Time(2011-08-09 07:22:44.000, 2011-08-09 07:28:56.000)>, <sunpy.net.attrs.Source(SDO: The Solar Dynamics Observatory.) object at ...>, <sunpy.net.attrs.Instrument(AIA: Data from the Atmospheric Imaging Assembly instrument.) object at
...>, <sunpy.net.attrs.Wavelength(193.0, 193.0, 'Angstrom')>]
This function allows users finer-grained control of VSO queries generated from HEK results.
|