File: map_data_histogram.py

package info (click to toggle)
sunpy 7.0.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,592 kB
  • sloc: python: 41,765; ansic: 1,710; makefile: 39
file content (67 lines) | stat: -rw-r--r-- 2,648 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
"""
=====================
Histograming map data
=====================

How to inspect the histogram of the data of a map.
"""
# sphinx_gallery_thumbnail_number = 2

import matplotlib.pyplot as plt
import numpy as np

import astropy.units as u
from astropy.coordinates import SkyCoord

import sunpy.map
from sunpy.data.sample import AIA_171_IMAGE

###############################################################################
# We start with the sample data and create a cutout.

aia = sunpy.map.Map(AIA_171_IMAGE)
bottom_left = SkyCoord(-300 * u.arcsec, 0 * u.arcsec, frame=aia.coordinate_frame)
top_right = SkyCoord(100 * u.arcsec, 400 * u.arcsec, frame=aia.coordinate_frame)
aia_smap = aia.submap(bottom_left, top_right=top_right)
aia_smap.plot()

###############################################################################
# The image of a `~sunpy.map.GenericMap` is always available in the data attribute.
# Map also provides shortcuts to the image minimum and maximum values.
# Let's create a histogram of the data in this submap.

num_bins = 50
bins = np.linspace(aia_smap.min(), aia_smap.max(), num_bins)
hist, bin_edges = np.histogram(aia_smap.data, bins=bins)

###############################################################################
# Let's plot the histogram as well as some standard values such as mean
# upper, and lower value and the one-sigma range.

fig, ax = plt.subplots()
# Note that we have to use ``.ravel()`` here to avoid matplotlib interpreting each
# row in the array as a different dataset to histogram.
ax.hist(aia_smap.data.ravel(), bins=bins, label='Histogram', histtype='step')
ax.set_xlabel('Intensity')
ax.axvline(aia_smap.min(), label=f'Data min={aia_smap.min():.2f}', color='black')
ax.axvline(aia_smap.max(), label=f'Data max={aia_smap.max():.2f}', color='black')
ax.axvline(aia_smap.data.mean(),
           label=f'mean={aia_smap.data.mean():.2f}', color='green')
one_sigma = np.array([aia_smap.data.mean() - aia_smap.data.std(),
                      aia_smap.data.mean() + aia_smap.data.std()])
ax.axvspan(one_sigma[0], one_sigma[1], alpha=0.3, color='green',
           label=f'mean +/- std = [{one_sigma[0]:.2f}, {one_sigma[1]:.2f}]')
ax.axvline(one_sigma[0], color='green')
ax.axvline(one_sigma[1], color='red')
ax.set_yscale('log')
ax.legend(loc=9)

###############################################################################
# Finally let's overplot the one-sigma contours.

fig = plt.figure()
ax = fig.add_subplot(projection=aia_smap)
aia_smap.plot(axes=ax)
levels = one_sigma / aia_smap.max() * u.percent * 100
aia_smap.draw_contours(axes=ax, levels=levels, colors=['blue'])
plt.show()