1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
//-----------------------------------------------------
// name: "ComplexRes"
// version: "1.0"
// author: "Julian Parker & Till Bovermann"
// license: "GPL2+"
// copyright: "(c) Julian Parker & Till Bovermann 2013"
//-----------------------------------------------------
#include "SC_PlugIn.h"
#define TWOPI 6.283185307179586
#define PI 3.141592653589793
// InterfaceTable contains pointers to functions in the host (server).
static InterfaceTable *ft;
// declare struct to hold unit generator state
struct ComplexRes : public Unit
{
double mFreq;
double mcoeffX;
double mcoeffY;
double mDecay; // Exponential decay time constant in seconds
double mRes; // Filter resonance coefficient (0...1)
double mX; // First state (real part)
double mY; // Second state (imaginary part)
double mNormCoeff; // Normalisation gain
double mAng;
};
// declare unit generator functions
static void ComplexRes_next_ak(ComplexRes *unit, int inNumSamples);
static void ComplexRes_next_aa(ComplexRes *unit, int inNumSamples);
static void ComplexRes_next_kk(ComplexRes *unit, int inNumSamples);
static void ComplexRes_next_ka(ComplexRes *unit, int inNumSamples);
static void ComplexRes_Ctor(ComplexRes* unit);
//////////////////////////////////////////////////////////////////
void ComplexRes_Ctor(ComplexRes* unit)
{
// 1. set the calculation function.
if (INRATE(1) == calc_FullRate) {
// if the frequency argument is audio rate
if (INRATE(2) == calc_FullRate) {
SETCALC(ComplexRes_next_aa);
} else {
SETCALC(ComplexRes_next_ak);
}
} else {
// if the frequency argument is control rate (or a scalar).
if (INRATE(2) == calc_FullRate) {
SETCALC(ComplexRes_next_ka);
} else {
SETCALC(ComplexRes_next_kk);
}
}
// 2. initialize the unit generator state variables.
unit->mDecay = IN0(2);
unit->mRes = exp(-1.0/(unit->mDecay * SAMPLERATE)); // Filter resonance coefficient (0...1)
unit->mX = 0.0; // First state (real part)
unit->mY = 0.0; // Second state (imaginary part)
unit->mFreq = IN0(1);
unit->mNormCoeff = (1.0-unit->mRes*unit->mRes)/unit->mRes;
unit->mcoeffX = unit->mRes * cos(TWOPI * unit->mFreq / SAMPLERATE);
unit->mcoeffY = unit->mRes * sin(TWOPI * unit->mFreq / SAMPLERATE);
// unit->mNormCoeff = uninitializedControl;
// unit->mcoeffX = uninitializedControl;
// unit->mcoeffY = uninitializedControl;
// 3. calculate one sample of output.
ComplexRes_next_kk(unit, 1);
}
//////////////////////////////////////////////////////////////////
// audio rate frequency and audio rate decay
void ComplexRes_next_aa(ComplexRes *unit, int inNumSamples)
{
float *out = OUT(0);
float *in = IN(0);
float *freq = IN(1);
float *decay = IN(2);
double oldX = unit->mX;
double oldY = unit->mY;
double res,ang,coeffX,coeffY,X,Y,normCoeff;
for (int i=0; i < inNumSamples; ++i)
{
res = exp(-1.0/(decay[i]*SAMPLERATE));
normCoeff = (1.0-res*res)/res;
ang = (freq[i]/SAMPLERATE)*TWOPI;
coeffX = res*cos(ang);
coeffY = res*sin(ang);
X = coeffX*oldX - coeffY*oldY + in[i];
Y = coeffY*oldX + coeffX*oldY;
out[i] = Y * normCoeff;
oldX = X;
oldY = Y;
}
// store the states back to the struct
unit->mX = zapgremlins(oldX);
unit->mY = zapgremlins(oldY);
}
//////////////////////////////////////////////////////////////////
// audio rate frequency and control rate decay
void ComplexRes_next_ak(ComplexRes *unit, int inNumSamples)
{
float *out = OUT(0);
float *in = IN(0);
float *freq = IN(1);
float decay = IN0(2);
double oldX = unit->mX;
double oldY = unit->mY;
double res,ang,coeffX,coeffY,X,Y,normCoeff;
// update params
if (decay != unit->mDecay){
res = exp(-1.0/((decay+unit->mDecay)*0.5*SAMPLERATE));
normCoeff = (1.0-res*res)/res;
unit->mDecay = decay;
unit->mRes = exp(-1.0/(decay*SAMPLERATE));
unit->mNormCoeff = normCoeff;
} else {
res = unit->mRes;
normCoeff = unit->mNormCoeff;
};
// render signal
for (int i=0; i < inNumSamples; ++i)
{
ang = (freq[i]/SAMPLERATE)*TWOPI;
coeffX = res*cos(ang);
coeffY = res*sin(ang);
X = coeffX*oldX - coeffY*oldY + in[i];
Y = coeffY*oldX + coeffX*oldY;
out[i] = Y * normCoeff;
oldX = X;
oldY = Y;
}
// store states back to struct
unit->mX = zapgremlins(oldX);
unit->mY = zapgremlins(oldY);
}
//////////////////////////////////////////////////////////////////
// control rate frequency and audio rate decay
void ComplexRes_next_ka(ComplexRes *unit, int inNumSamples)
{
float *out = OUT(0);
float *in = IN(0);
float freq = IN0(1);
float *decay = IN(2);
double oldX = unit->mX;
double oldY = unit->mY;
double res,ang,coeffX,coeffY,X,Y,normCoeff;
// update params
if (freq != unit->mFreq){
ang = (freq+unit->mFreq)*0.5 * TWOPI / SAMPLERATE;
unit->mFreq = freq;
unit->mAng = freq * TWOPI / SAMPLERATE;
} else {
ang = unit->mAng;
};
// render signal
for (int i=0; i < inNumSamples; ++i)
{
res = exp(-1.0/(decay[i]*SAMPLERATE));
normCoeff = (1.0-res*res)/res;
coeffX = res*cos(ang);
coeffY = res*sin(ang);
X = coeffX*oldX - coeffY*oldY + in[i];
Y = coeffY*oldX + coeffX*oldY;
out[i] = Y*normCoeff;
oldX = X;
oldY = Y;
}
// store states back to struct
unit->mX = zapgremlins(oldX);
unit->mY = zapgremlins(oldY);
}
//////////////////////////////////////////////////////////////////
// control rate frequency and control rate decay
void ComplexRes_next_kk(ComplexRes *unit, int inNumSamples)
{
float *out = OUT(0);
float *in = IN(0);
float freq = IN0(1);
float decay = IN0(2);
double oldX = unit->mX;
double oldY = unit->mY;
double res,ang,coeffX,coeffY,X,Y,normCoeff;
// update params
if (decay != unit->mDecay || freq != unit->mFreq){
res = exp(-1.0/((decay+unit->mDecay)*0.5*SAMPLERATE));
normCoeff = (1.0-res*res)/res;
ang = (freq+unit->mFreq)*0.5 * TWOPI / SAMPLERATE;
coeffX = res*cos(ang);
coeffY = res*sin(ang);
unit->mDecay = decay; // If the parameters have changed, store them back in the struct
unit->mRes = exp(-1.0/((decay)*SAMPLERATE));
unit->mFreq = freq;
unit->mAng = freq * TWOPI / SAMPLERATE;
unit->mcoeffX = res*cos(unit->mAng);
unit->mcoeffY = res*sin(unit->mAng);
unit->mNormCoeff = normCoeff;
} else {
res = unit->mRes;
coeffX = unit->mcoeffX;
coeffY = unit->mcoeffY;
normCoeff = unit->mNormCoeff;
ang = unit->mAng;
};
// render signal
for (int i=0; i < inNumSamples; ++i)
{
X = coeffX*oldX - coeffY*oldY + in[i];
Y = coeffY*oldX + coeffX*oldY;
out[i] = Y*normCoeff;
oldX = X;
oldY = Y;
}
// store states back to struct
unit->mX = zapgremlins(oldX);
unit->mY = zapgremlins(oldY);
}
// the entry point is called by host when plug-in is loaded
PluginLoad(ComplexRes)
{
// InterfaceTable *inTable implicitly given as argument to load function
ft = inTable; // store pointer to InterfaceTable
DefineSimpleUnit(ComplexRes);
}
|