1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
/*
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "SC_PlugIn.h"
#include "Membrane_shape.h"
#include "assert.h"
// twiddle-ables
#define SHAPE_SZ 1 // diameter
//#define FEEDFORWARD
#define SELF_LOOP // for control over tension
#define RIMGUIDES // extra self-loops around edge, which invert signal
#define RIMFILTER
#define AUDIO_INPUT
#define TRIGGER_DURATION 1024 /* number of samples worth of white noise to inject */
// some constants from Brook Eaton's roto-drum
// http://www-ccrma.stanford.edu/~be/drum/drum.htm
#define DELTA 6.0f // distance between junctions
#define GAMMA 8.0f // wave speed
// A unit delay
typedef struct {
float a;
float b;
float c;
int invert; // whether signal should be inverted
} t_delay;
// a scatter junction with up to 6 input and output delays, plus a
// self loop
typedef struct {
int ins, outs;
t_delay *in[6];
t_delay *out[6];
#ifdef SELF_LOOP
t_delay *self_loop;
#endif
} t_junction;
// supercollider stuff starts here...
// InterfaceTable contains pointers to functions in the host (server).
static InterfaceTable *ft;
// declare struct to hold unit generator state
struct Membrane : public Unit
{
float yj; // junction admittence, calculated from tension parameter
#ifndef AUDIO_INPUT
int triggered; // flag
int excite; // number of samples left in a triggered excitation
#endif
t_shape *shape;
t_junction *junctions;
t_delay *delays;
float loss;
int delay_n; // number of delays in mesh including self loops etc
};
// declare unit generator functions
extern "C"
{
void Membrane_next_a(Membrane *unit, int inNumSamples);
void MembraneCircle_Ctor(Membrane* unit);
void MembraneHexagon_Ctor(Membrane* unit);
void Membrane_Dtor(Membrane* unit);
};
////////////////////////////////////////////////////////////////////
// execute one sample cycle over the mesh
float cycle(Membrane *unit, float input, float yj_r) {
t_delay *delays = unit->delays;
t_junction *junctions = unit->junctions;
int i;
int middle = (int) (unit->shape->points_n / 2);
float result;
// update all the junctions and waveguides
for (i = 0; i < unit->shape->points_n; ++i) {
t_junction *junction = &junctions[i];
int j;
float total = 0;
float yc = unit->yj - junction->ins;
for (j = 0; j < junction->ins; ++j) {
total += junction->in[j]->b;
}
#ifdef SELF_LOOP
total = 2.0f * (total + (yc * junction->self_loop->b)) * yj_r;
#else
total *= (2.0f / ((float) junction->ins));
#endif
if (i < middle) {
total += (input / middle);
}
total *= unit->loss;
for (j = 0; j < junction->outs; ++j) {
junction->out[j]->a = total - junction->in[j]->b;
}
#ifdef SELF_LOOP
junction->self_loop->a = total - junction->self_loop->b;
#endif
if (i == 0) {
result = total;
}
}
// circulate the unit delays
for (i = 0; i < unit->delay_n; ++i) {
t_delay *delay = &delays[i];
if (delay->invert) {
#ifdef RIMFILTER
delay->b = ((0.0f - delay->a) + delay->c) * 0.5f;
delay->c = (0.0f - delay->a);
#else
delay->b = 0.f - delay->a;
#endif
}
else {
delay->b = delay->a;
}
}
return(result);
}
////////////////////////////////////////////////////////////////////
void Membrane_init(Membrane* unit, int shape_type)
{
t_shape *shape;
int d = 0;
int i = 0;
int j = 0;
// 1. Set calculation function -- always run at audio rate
SETCALC(Membrane_next_a);
// 2. Initialise state
#ifndef AUDIO_INPUT
unit->triggered = 0;
unit->excite = 0;
#endif
unit->yj = 0;
shape = unit->shape = getShape(shape_type, SHAPE_SZ);
unit->delay_n = (shape->lines_n * 2)
#ifdef RIMGUIDES
+ shape->edge_n
#endif
#ifdef SELF_LOOP
+ shape->points_n
#endif
;
// make all the junctions and delays
unit->delays =
(t_delay *) RTAlloc(unit->mWorld, unit->delay_n * sizeof(t_delay));
memset((void *) unit->delays, 0, unit->delay_n * sizeof(t_delay));
unit->junctions =
(t_junction *) RTAlloc(unit->mWorld,
unit->shape->points_n * sizeof(t_junction)
);
memset((void *) unit->junctions, 0,
unit->shape->points_n * sizeof(t_junction)
);
for (i = 0; i < shape->lines_n; ++i) {
t_line *line = shape->lines[i];
t_junction *from, *to;
t_delay *delay;
from = &unit->junctions[line->a->id];
to = &unit->junctions[line->b->id];
// leftward delay
delay = &unit->delays[d++];
from->out[from->outs++] = delay;
to->in[to->ins++] = delay;
// rightward delay
delay = &unit->delays[d++];
from->in[from->ins++] = delay;
to->out[to->outs++] = delay;
}
for (i = 0; i < shape->points_n; ++i) {
t_point *point = shape->points[i];
t_junction *junction = &unit->junctions[i];
#ifdef SELF_LOOP
t_delay *delay = &unit->delays[d++];
junction->self_loop = delay;
#endif
#ifdef RIMGUIDES
assert((junction->ins < 6) == point->is_edge);
if (point->is_edge) {
t_delay *delay = &unit->delays[d++];
delay->invert = 1;
junction->out[junction->outs++] = delay;
junction->in[junction->ins++] = delay;
}
#endif
}
if(unit->mWorld->mVerbosity > 0){
printf("%d delays initialised.\n", unit->delay_n);
}
// 3. Calculate one sample of output.
// (why do this?)
Membrane_next_a(unit, 1);
}
////////////////////////////////////////////////////////////////////
void Membrane_next_a(Membrane *unit, int inNumSamples) {
// get the pointer to the output buffer
float *out = OUT(0);
int input_n = 0;
// get the control rate input
#ifdef AUDIO_INPUT
float *in = IN(input_n++);
#else
float trigger = IN0(input_n++);
#endif
float tension = IN0(input_n++);
float loss = IN0(input_n++);
if (tension == 0) {
// default tension
tension = 0.0001;
}
unit->yj = 2.f * DELTA * DELTA / (tension * tension * GAMMA * GAMMA);
float yj_r = 1.0f / unit->yj;
if (loss >= 1) {
loss = 0.99999;
}
unit->loss = loss;
#ifndef AUDIO_INPUT
if (trigger >= 0.5 && (! unit->triggered)) {
unit->triggered = 1;
unit->excite = TRIGGER_DURATION;
}
else if (trigger < 0.5 && unit->triggered) {
unit->triggered = 0;
}
#endif
for (int k=0; k < inNumSamples; ++k) {
float input = 0.0;
#ifdef AUDIO_INPUT
input = in[k];
#else
if (unit->excite > 0) {
input = (0.01 - (((float) rand() / RAND_MAX) * 0.02));
unit->excite--;
}
#endif
out[k] = cycle(unit, input, yj_r);
}
}
void MembraneCircle_Ctor(Membrane* unit) {
Membrane_init(unit, 0);
}
void MembraneHexagon_Ctor(Membrane* unit) {
Membrane_init(unit, 1);
}
void Membrane_Dtor(Membrane* unit) {
//free_shape(unit->shape);
RTFree(unit->mWorld, unit->delays);
RTFree(unit->mWorld, unit->junctions);
}
////////////////////////////////////////////////////////////////////
// the load function is called by the host when the plug-in is loaded
PluginLoad(Membrane)
{
ft = inTable;
(*ft->fDefineUnit)("MembraneCircle",
sizeof(Membrane),
(UnitCtorFunc)&MembraneCircle_Ctor,
(UnitDtorFunc)&Membrane_Dtor,
0);
(*ft->fDefineUnit)("MembraneHexagon",
sizeof(Membrane),
(UnitCtorFunc)&MembraneHexagon_Ctor,
(UnitDtorFunc)&Membrane_Dtor,
0);
}
////////////////////////////////////////////////////////////////////
|