File: LPCAnalysis.cpp

package info (click to toggle)
supercollider-sc3-plugins 3.13.0~repack-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 20,104 kB
  • sloc: cpp: 303,352; lisp: 9,589; ansic: 3,547; sh: 96; makefile: 87; haskell: 21
file content (244 lines) | stat: -rw-r--r-- 4,151 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/*
 *  LPCAnalysis.cpp
 *
 *  Created by Nicholas Collins on 10/09/2009.
 *  Copyright 2009 Nicholas M Collins. All rights reserved.
 *
 */


//numerical stability issues; need to use doubles for R in particular to avoid round-off and keep positive definite
//can also test for stability by making sure all E greater than zero




#include "LPCAnalysis.h"

//blocksize MUST be less than or equal to windowsize

void LPCAnalysis::update(float * newinput, float * newsource, float * output, int numSamples, int p) {

	int i;

	int left= windowsize-pos;

	if(numSamples>=left) {

		for (i=0; i<left;++i) {

			input[pos++]= newinput[i];
		}

		//output up to here
		calculateOutput(newsource, output, windowsize-left, left);

		//update
		numpoles=p;
		calculatePoles();

		pos=0;

		int remainder= numSamples-left;

		for (i=0; i<remainder;++i) {

			input[pos++]= newinput[left+i];

		}

		//output too
		calculateOutput(newsource+left, output+left, pos-remainder, remainder);


	} else {

		for (i=0; i<numSamples;++i) {

			input[pos++]= newinput[i];
		}

		//output
		calculateOutput(newsource, output, pos-numSamples, numSamples);


	}

	//return output;
}


void LPCAnalysis::calculateOutput(float * source, float * target, int startpos, int num) {
	int i,j;

	int basepos,posnow;

	for(i=0; i<num; ++i) {

		basepos= startpos+i+windowsize-1; //-1 since coefficients for previous values starts here

		float sum=0.0;

		for(j=0; j<numpoles; ++j) {
			posnow= (basepos-j)%windowsize;

			//where is pos used?
			sum += last[posnow]*coeff[j]; //was coeff i
		}

		sum= G*source[i]-sum; //scale factor G calculated by squaring energy E below

		last[startpos+i]=sum;

		//ZXP(out)=
		target[i]+= sum*windowfunction[startpos+i];

	}

}

//recalculate poles based on recent window of input
void LPCAnalysis::calculatePoles() {

	//can test for convergence by looking for 1-((Ei+1)/Ei)<d

	int i, j;
	LPCfloat sum;

	//safety
	if(numpoles<1) numpoles=1;
	if(numpoles>windowsize) numpoles=windowsize;

	//printf("p? %d",p);

	//calculate new LPC filter coefficients following (Makhoul 1975) autocorrelation, deterministic signal, Durbin iterative matrix solver

	//float R[21];//autocorrelation coeffs;
	//float preva[21];
	//float a[21];
	LPCfloat E, k;

	//faster calculation of autocorrelation possible?

	for(i=0; i<=numpoles; ++i) {
		sum=0.0;

		for (j=0; j<= windowsize-1-i; ++j)
			sum+= input[j]*input[j+i];

		R[i]=sum;
	}

	E= R[0];
	k=0;

	if(E<0.00000000001) {

		//zero power, so zero all coeff
		for (i=0; i<numpoles;++i)
			coeff[i]=0.0;
//
		latesterror= E;
		G=0.0;
		//printf("zero power %f\n", E);
		return;

	};

	//rescaling may help with numerical instability issues?
//	float mult= 1.0/E;
//	for(i=1; i<=numpoles; ++i)
//		R[i]= R[i]*mult;
//
	for(i=0; i<=(numpoles+1); ++i) {
		a[i]=0.0;
		preva[i]=0.0; //CORRECTION preva[j]=0.0;
	}


//	for(i=0; i<numpoles; ++i) {
//		printf("sanity check a %f R %1.15f ",a[i+1], R[i]);
//	}
//	printf("\n");


	LPCfloat prevE= E;

	for(i=1; i<=numpoles; ++i) {

		sum=0.0;

		for(j=1;j<i;++j)
			sum+= a[j]*R[i-j];

		k=(-1.0*(R[i]+sum))/E;

		a[i]=k;

		for(j=1;j<=(i-1);++j)
			a[j]=preva[j]+(k*preva[i-j]);

		for(j=1;j<=i;++j)
			preva[j]=a[j];

		E= (1-k*k)*E;

		//printf("E check %f %d k was %f\n", E,i,k);

		//check for instability; all E must be greater than zero
		if(E<0.00000000001) {

			//zero power, so zero all coeff

			//leave coeff as previous values
			//for (j=0; j<numpoles;++j)
//				coeff[j]=0.0;

			latesterror= E;
			//printf("early return %1.15f %d\n", E,i);
			return;

		};

		if(testdelta) {

			LPCfloat ratio= E/prevE;
			if(ratio>delta) {
				//printf("variable order chose %d\n", i);
				break; //done to error bound
			}
			prevE= E;

		}


	}

	G= sqrt(E);

	latesterror= E;

	//solution is the final set of a
	for(i=0; i<numpoles; ++i) {
		//coeff[numpoles-1-i]=a[i+1];
		coeff[i]=a[i+1];
		//printf("a %f R %f",a[i+1], R[i]);
	}

	//MUST CHECK gain?


	//
//	for(i=0; i<numpoles; ++i) {
//		printf("a %f R %f ",a[i+1], R[i]);
//	}
//
//	printf("\n");
//
//	for(i=0; i<windowsize; ++i) {
//		printf("last %d %f ",i, last[i]);
//	}
//
//	printf("\n");

}