1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
/*
* LPCAnalysis.cpp
*
* Created by Nicholas Collins on 10/09/2009.
* Copyright 2009 Nicholas M Collins. All rights reserved.
*
*/
//numerical stability issues; need to use doubles for R in particular to avoid round-off and keep positive definite
//can also test for stability by making sure all E greater than zero
#include "LPCAnalysis.h"
//blocksize MUST be less than or equal to windowsize
void LPCAnalysis::update(float * newinput, float * newsource, float * output, int numSamples, int p) {
int i;
int left= windowsize-pos;
if(numSamples>=left) {
for (i=0; i<left;++i) {
input[pos++]= newinput[i];
}
//output up to here
calculateOutput(newsource, output, windowsize-left, left);
//update
numpoles=p;
calculatePoles();
pos=0;
int remainder= numSamples-left;
for (i=0; i<remainder;++i) {
input[pos++]= newinput[left+i];
}
//output too
calculateOutput(newsource+left, output+left, pos-remainder, remainder);
} else {
for (i=0; i<numSamples;++i) {
input[pos++]= newinput[i];
}
//output
calculateOutput(newsource, output, pos-numSamples, numSamples);
}
//return output;
}
void LPCAnalysis::calculateOutput(float * source, float * target, int startpos, int num) {
int i,j;
int basepos,posnow;
for(i=0; i<num; ++i) {
basepos= startpos+i+windowsize-1; //-1 since coefficients for previous values starts here
float sum=0.0;
for(j=0; j<numpoles; ++j) {
posnow= (basepos-j)%windowsize;
//where is pos used?
sum += last[posnow]*coeff[j]; //was coeff i
}
sum= G*source[i]-sum; //scale factor G calculated by squaring energy E below
last[startpos+i]=sum;
//ZXP(out)=
target[i]+= sum*windowfunction[startpos+i];
}
}
//recalculate poles based on recent window of input
void LPCAnalysis::calculatePoles() {
//can test for convergence by looking for 1-((Ei+1)/Ei)<d
int i, j;
LPCfloat sum;
//safety
if(numpoles<1) numpoles=1;
if(numpoles>windowsize) numpoles=windowsize;
//printf("p? %d",p);
//calculate new LPC filter coefficients following (Makhoul 1975) autocorrelation, deterministic signal, Durbin iterative matrix solver
//float R[21];//autocorrelation coeffs;
//float preva[21];
//float a[21];
LPCfloat E, k;
//faster calculation of autocorrelation possible?
for(i=0; i<=numpoles; ++i) {
sum=0.0;
for (j=0; j<= windowsize-1-i; ++j)
sum+= input[j]*input[j+i];
R[i]=sum;
}
E= R[0];
k=0;
if(E<0.00000000001) {
//zero power, so zero all coeff
for (i=0; i<numpoles;++i)
coeff[i]=0.0;
//
latesterror= E;
G=0.0;
//printf("zero power %f\n", E);
return;
};
//rescaling may help with numerical instability issues?
// float mult= 1.0/E;
// for(i=1; i<=numpoles; ++i)
// R[i]= R[i]*mult;
//
for(i=0; i<=(numpoles+1); ++i) {
a[i]=0.0;
preva[i]=0.0; //CORRECTION preva[j]=0.0;
}
// for(i=0; i<numpoles; ++i) {
// printf("sanity check a %f R %1.15f ",a[i+1], R[i]);
// }
// printf("\n");
LPCfloat prevE= E;
for(i=1; i<=numpoles; ++i) {
sum=0.0;
for(j=1;j<i;++j)
sum+= a[j]*R[i-j];
k=(-1.0*(R[i]+sum))/E;
a[i]=k;
for(j=1;j<=(i-1);++j)
a[j]=preva[j]+(k*preva[i-j]);
for(j=1;j<=i;++j)
preva[j]=a[j];
E= (1-k*k)*E;
//printf("E check %f %d k was %f\n", E,i,k);
//check for instability; all E must be greater than zero
if(E<0.00000000001) {
//zero power, so zero all coeff
//leave coeff as previous values
//for (j=0; j<numpoles;++j)
// coeff[j]=0.0;
latesterror= E;
//printf("early return %1.15f %d\n", E,i);
return;
};
if(testdelta) {
LPCfloat ratio= E/prevE;
if(ratio>delta) {
//printf("variable order chose %d\n", i);
break; //done to error bound
}
prevE= E;
}
}
G= sqrt(E);
latesterror= E;
//solution is the final set of a
for(i=0; i<numpoles; ++i) {
//coeff[numpoles-1-i]=a[i+1];
coeff[i]=a[i+1];
//printf("a %f R %f",a[i+1], R[i]);
}
//MUST CHECK gain?
//
// for(i=0; i<numpoles; ++i) {
// printf("a %f R %f ",a[i+1], R[i]);
// }
//
// printf("\n");
//
// for(i=0; i<windowsize; ++i) {
// printf("last %d %f ",i, last[i]);
// }
//
// printf("\n");
}
|