File: TPV.cpp

package info (click to toggle)
supercollider-sc3-plugins 3.13.0~repack-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 20,104 kB
  • sloc: cpp: 303,352; lisp: 9,589; ansic: 3,547; sh: 96; makefile: 87; haskell: 21
file content (801 lines) | stat: -rw-r--r-- 23,442 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
/*
	SuperCollider real time audio synthesis system
 Copyright (c) 2002 James McCartney. All rights reserved.
	http://www.audiosynth.com

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301  USA
 */

//Tracking Phase Vocoder following McAualay and Quatieri model from IEEE Trans acoustics, speech and signal processing vol assp-34(4) aug 1986

//for spectral interpolation would like zero padding!

//big efficiency loss because of ifs for rounding in next function; just add very large multiple of g_costableTPV to guarantee positive?

//potential problems= be more careful with difference of S and T, may need an overlap add structure

//WORKS!
//theta1 goes really negative, for faster frequencies; can take mod 2pi?
//needs tidying up, but basically sound; make more efficient in rendering loop?

//debugging UGens:
//http://lists.create.ucsb.edu/pipermail/sc-dev/2003-October/005103.html

//synthesis seems to be the most expensive part
//Hanning window ten times better



//InterfaceTable *ft;

//const int g_maxpeaks = 80;
#include "NCAnalysis.h"
#include <stdio.h>


//cubic interpolation of phase parameters for formula (37) where t is from 0 to 1 as interpolation parameter
struct PartialTrack {
	float theta1, omega1, theta2, omega2, alpha, beta; //cubic interpolation of phase
	float amp1, amp2; //linear interpolation of amplitude
};


//freq in this case is omega, angular frequency in radians per sample = 2*PI*f/SR
struct TPVPeak {
	float mag, freq, phase;  //improve frequency estimate by interpolation over amplitude of nearby points, or by time-frequency reassignment
};

//peak must satisfy amp(f-1)<amp(f)>amp(f+1), then cubic interpolation over local points (see wavetable interpolation code for processing)

struct TPV : Unit {

	//final list of peaks is size at most numpeaks(n) + numpeaks(n+1). reasonably around max of the two.
	//as long as have birth and death resolved for each peak in the two lists, can synthesise up to curent frame. So output latency is one FFT frame

	int m_sr;
	int m_blocksize;
	int m_windowsize;
	int m_hopsize;
	int m_nover2;

	int m_maxpeaks; //80?
	//int m_maxlistsize; //double m_maxpeaks

	//or for each partial to be rendered persistent data for rendering need phasek, angfreqk (omegak), alphak, betak as per (37)
	PartialTrack * m_tracks; //space for double maxpeaks if all birth and die at once!
	int m_numtracks;

	//use buffer swapping of pointer as needed
	TPVPeak * m_prevpeaks;
	TPVPeak * m_newpeaks;
	int m_numprevpeaks;
	int m_numnewpeaks;

	//keep track of how many samples resynthesised in current run
	int m_resynthesisposition;
	//all precalculated to save cycles in main rendering loop
	float * tcache, *t2cache, *t3cache, *tpropcache;

};



extern "C"
{
	//required interface functions
	void TPV_next(TPV *unit, int wrongNumSamples);
	void TPV_Ctor(TPV *unit);
	void TPV_Dtor(TPV *unit);
}


const int g_costableTPVsize=1024;
float g_costableTPV[g_costableTPVsize+1]; //extra value for wraparound linear interpolation calculations


//void calculatefeatures(TPV *unit, int ibufnum);

//calculate by summing
//void oscillatorbankresynthesis(TPV *unit, int numsamples);
//void peakmatch(TPV *unit);
void newframe(TPV* unit, int ibufnum);


void TPV_Ctor(TPV* unit) {

	//CHECK SAMPLING RATE AND BUFFER SIZE
	unit->m_blocksize = unit->mWorld->mFullRate.mBufLength;

	if(unit->m_blocksize!=64) printf("TPV complains: block size not 64, you have %d\n", unit->m_blocksize);

	unit->m_sr = unit->mWorld->mSampleRate;

	if(unit->m_sr!=44100) printf("TPV complains: sample rate not 44100, you have %d\n", unit->m_sr);

	//assumption for now is that FFT size and hop rate match the temporal window size and hop rate
	unit->m_windowsize=(int)(ZIN0(1)+0.0001); //defaults for now, may have to set as options later
	unit->m_hopsize=(int)(ZIN0(2)+0.00001);

	//unit->tcache=  (float*)RTAlloc(unit->mWorld, unit->m_hopsize * sizeof(float));
	unit->t2cache=  (float*)RTAlloc(unit->mWorld, unit->m_hopsize * sizeof(float));
	unit->t3cache=  (float*)RTAlloc(unit->mWorld, unit->m_hopsize * sizeof(float));
	unit->tpropcache=  (float*)RTAlloc(unit->mWorld, unit->m_hopsize * sizeof(float));

	float rhop= 1.0/unit->m_hopsize;

	for (int i=0; i<unit->m_hopsize; ++i) {
		unit->t2cache[i]=i*i;
		unit->t3cache[i]=unit->t2cache[i]*i;
		unit->tpropcache[i]= (float)i*rhop;
	}

	//printf("another check %d windowsize %d hopsize %d \n", unit->m_numoutputs, unit->m_windowsize, unit->m_hopsize);

	unit->m_nover2=unit->m_windowsize/2;
	//unit->m_nover4=unit->m_windowsize/4;

	//	World *world = unit->mWorld;
	//
	//	uint32 bufnum = (uint32)(ZIN0(2)+0.001);
	//	if (bufnum >= world->mNumSndBufs) bufnum = 0;
	//	//unit->m_bufNum=bufnum;
	//
	//	SndBuf *buf = world->mSndBufs + bufnum;
	//	//unit->m_bufSize = buf->samples; //should just be size 4


	unit->m_maxpeaks=(int)(ZIN0(3)+0.0001);
	//int m_maxlistsize; //double m_maxpeaks

	unit->m_tracks= (PartialTrack*)RTAlloc(unit->mWorld, 2*unit->m_maxpeaks * sizeof(PartialTrack));

	//use buffer swapping of pointer as needed
	unit->m_prevpeaks = (TPVPeak*)RTAlloc(unit->mWorld, unit->m_maxpeaks * sizeof(TPVPeak));
	unit->m_newpeaks=(TPVPeak*)RTAlloc(unit->mWorld, unit->m_maxpeaks * sizeof(TPVPeak));

	//no need to initialise these arrays since filled as needed

	unit->m_numprevpeaks =0;
	unit->m_numnewpeaks =0;
	unit->m_numtracks=0;
	unit->m_resynthesisposition=0;

	unit->mCalcFunc = (UnitCalcFunc)&TPV_next;

}



void TPV_Dtor(TPV *unit)
{
	RTFree(unit->mWorld, unit->m_tracks);
	RTFree(unit->mWorld, unit->m_prevpeaks);
	RTFree(unit->mWorld, unit->m_newpeaks);

	//RTFree(unit->mWorld, unit->tcache);
	RTFree(unit->mWorld, unit->t2cache);
	RTFree(unit->mWorld, unit->t3cache);
	RTFree(unit->mWorld, unit->tpropcache);
}


//can dynamically reduce or increase the number of peaks stored (trails will automatically birth and die)
//TPV(chain, windowsize, hopsize,maxpeaks,currentpeaks,freqmult);

void TPV_next(TPV *unit, int numSamples)
{
	int i,j;

	float fftbufnum = IN0(0)+0.001;
	//float* in = IN(1);
	float* out = OUT(0);

	//int numSamples = unit->mWorld->mFullRate.mBufLength;
    

    
	if (fftbufnum> (-0.5)) {

		newframe(unit, (int)fftbufnum);
		unit->m_resynthesisposition=0;
	}

	//implement here in code
	//oscillatorbankresynthesis

	PartialTrack * tracks = unit->m_tracks;
	int numtracks = unit->m_numtracks;

	int resynthesisposition = unit->m_resynthesisposition;

	float T = unit->m_hopsize;

	PartialTrack * pointer;

	float output;
	float t,t2,t3;
	float tpos;
	int index;

	//precalculated for efficiency
	float * t2cache = unit->t2cache;
	float * t3cache = unit->t3cache;
	float * tpropcache = unit->tpropcache;


	//zero output first in case silent output
	for (j=0; j<numSamples; ++j) {
		out[j]=0.0;
	}

	//printf("numtracks %d \n", numtracks);

	for (i=0; i<numtracks; ++i) {

		pointer = &(tracks[i]);

		float amp1= pointer->amp1;
		float amp2=pointer->amp2;
		float theta1=pointer->theta1;
		float omega1= pointer->omega1;
		float alpha=pointer->alpha;
		float beta= pointer->beta;

		for (j=0; j<numSamples; ++j) {

			index= resynthesisposition+j;

			t= index; ///T;
			t2=t2cache[index]; //t*t;
			t3=t3cache[index]; //t*t2;
			tpos= tpropcache[index]; //((float)t/T);

			//linear interpolation of amplitude
			float amp= amp1 + (tpos*(amp2- amp1));
			//printf("amp %f temp3 %f amp2 %f number %f \n",amp,temp3, tracks[i].amp2, ((float)t/T));

			//cubic interpolation of phase; probably this is the chief cause of inefficiency...
			float phase = (theta1) + (t*omega1)+(t2*alpha) +(t3*beta);

			float phasetemp= phase*rtwopi*g_costableTPVsize;

			//linear interpolation into costable
			//could use fmod if add very big multiple of pi so modulo works properly; ie, no negative phases allowed BUT fmod is really inefficient!
			float wrapval= sc_wrap(phasetemp,0.0f,1024.0f); //modulo or fold won't work correctly- i.e., we need -1 = 1023
			int prev= (int)wrapval;
			float prop=  wrapval-prev; //linear interpolation parameter
			float interp= ((1.0-prop)*(g_costableTPV[prev])) + (prop*(g_costableTPV[prev+1]));

			//printf("pos %d amp %f phase %f interp %f \n",resynthesisposition,amp, phase, interp);

			out[j] += amp*interp; //g_costableTPV[((int)(phasetemp))%g_costableTPVsize];
		}

	}


	resynthesisposition += numSamples;

	/*		///OLD VERSION: LESS EFFICIENT
	//zero output first in case silent output
	for (j=0; j<numSamples; ++j) {

		output= 0.0;

		t= resynthesisposition; ///T;
		t2=t2cache[resynthesisposition]; //t*t;
		t3=t3cache[resynthesisposition]; //t*t2;
		tpos= tpropcache[resynthesisposition]; //((float)t/T);

		//sum over all active tracks
		for (i=0; i<numtracks; ++i) {

			pointer = &(tracks[i]);

			//if(i==20) {

			float temp3= pointer->amp1;
			//linear interpolation of amplitude
			float amp= temp3 + (tpos*(pointer->amp2- temp3));
			//printf("amp %f temp3 %f amp2 %f number %f \n",amp,temp3, tracks[i].amp2, ((float)t/T));

			//cubic interpolation of phase
			float phase = (pointer->theta1) + (t*pointer->omega1)+(t2*pointer->alpha) +(t3*pointer->beta);
			//divide omegas by sampling rate?

			//just use naive linear calc for now as test
			//float phase= t*((i+1)*(pi/512)); //(tracks[i].theta1) + (t*tracks[i].omega1);

			float phasetemp= phase*rtwopi*g_costableTPVsize;

			//if(phasetemp<0.0)
			//phasetemp= phasetemp-0.5;
			//else
			//phasetemp=phasetemp+0.5;

			//linear interpolation into costable
			float wrapval= sc_wrap(phasetemp,0.0f,1024.0f); //modulo or fold won't work correctly- i.e., we need -1 = 1023
			int prev= (int)wrapval;
			float prop=  wrapval-prev; //linear interpolation parameter
			float interp= ((1.0-prop)*(g_costableTPV[prev])) + (prop*(g_costableTPV[prev+1]));

			//printf("pos %d amp %f phase %f interp %f \n",resynthesisposition,amp, phase, interp);

			output += amp*interp; //g_costableTPV[((int)(phasetemp))%g_costableTPVsize];

			//need cosine lookup else will be too many trignometric calls per second
			//naive closest point algorithm for now; will make subtle distortions but can switch to linear or cubic interpolation later

			//if negative phase, gets moduloed wrongly? NO, OK, see tests below
			//output += amp*g_costableTPV[((int)(0.5+(phase*rtwopi*g_costableTPVsize)))%g_costableTPVsize];   //cos(phase);

			//}
		}

		out[j]=output;
		++resynthesisposition;
	}
	*/

	unit->m_resynthesisposition=resynthesisposition;

}



void newframe(TPV *unit, int ibufnum) {

	int i,j;
    
	//get FFT buf, allow for local buffers and supernova LOCK_SNDBUF
	World *world = unit->mWorld;
    SndBuf *buf; // = world->mSndBufs + ibufnum;
    
    if (ibufnum >= world->mNumSndBufs) { 
        int localBufNum = ibufnum - world->mNumSndBufs; 
        Graph *parent = unit->mParent; 
        if(localBufNum <= parent->localBufNum) { 
            buf = parent->mLocalSndBufs + localBufNum; 
        } else { 
            buf = world->mSndBufs; 
        } 
	} else { 
        buf = world->mSndBufs + ibufnum; 
	}
    
	LOCK_SNDBUF(buf); 

	//int numbins = buf->samples - 2 >> 1;

	//float * data= buf->data;
	//assumed in this representation
	//dc, nyquist then complex pairs
	//SCComplexBuf *p = ToComplexApx(buf);
	SCPolarBuf *p = ToPolarApx(buf);

	int nover2= unit->m_nover2;
	//int nover4= unit->m_nover4;

	//swap new peaks to old; current now safe to overwrite;

	TPVPeak * prevpeaks= unit->m_prevpeaks;
	TPVPeak * newpeaks= unit->m_newpeaks;
	int numprevpeaks= unit->m_numprevpeaks;
	int numnewpeaks= unit->m_numnewpeaks;

	//printf("prev pointer %p new pointer %p \n",prevpeaks, newpeaks);

	//ditch old
	numprevpeaks= numnewpeaks;
	numnewpeaks=0;

	//swap pointers ready to write new peaks
	TPVPeak * temp= prevpeaks;
	prevpeaks=newpeaks;
	newpeaks=temp;

	//printf("prev pointer %p new pointer %p temp %p \n",prevpeaks, newpeaks, temp);


	float phase, prevmag, mag, nextmag;

	//bin 1 can't be pick since no interpolation possible! dc should be ignored
	//test each if peak candidate; if so, add to list and add to peaks total

	prevmag= p->bin[0].mag; //this is at analysis frequency, not dc
	mag= p->bin[1].mag;

	int numpeaksrequested= (int)ZIN0(4); //(int)(ZIN0(4)+0.0001);
	int maxpeaks= unit->m_maxpeaks;

	maxpeaks = sc_min(maxpeaks,numpeaksrequested);

	//angular frequency is pi*(i/nover2)

	float angmult= pi/nover2;
	float ampmult= (1.0/unit->m_windowsize); //*(1.0/unit->m_maxpeaks);

		//defined here since needed in backdating phase for track births (and potentially for track deaths too)
	//T = number of samples per interpolaion frame, so equals hopsize
	float T = unit->m_hopsize;

	//float invT= 1.0/T;

	//should also adjust tolerance? (ie change angmult itself)
	float freqmult= ZIN0(5); //(int)(ZIN0(4)+0.0001);

	float ampcheck= ZIN0(7); //0.001

	//could restrict not to go above nover4!
	for (i=2; i<(nover2-1); ++i) {

		//phase= p->bin[i].phase;
		nextmag= p->bin[i].mag;

		if ((prevmag<mag) && (nextmag<mag) && (mag>ampcheck) && (numnewpeaks<maxpeaks)) {
			//found a peak

			//could use cubic interpolation// successive parabolic interpolation to refine peak location; or should have zero padded
			newpeaks[numnewpeaks].mag = mag * ampmult; //must divide by fftsize before resynthesis!
			newpeaks[numnewpeaks].freq =(i-1)*angmult*freqmult; //if should be angular frequency per sample, divide by T
			newpeaks[numnewpeaks].phase = p->bin[i-1].phase;	//is this in range -pi to pi? more like -1 to 5 or so, but hey, is in radians

			//printf("newpeak %d amp %f freq %f phase %f \n",numnewpeaks, mag * ampmult,(i-1)*angmult, p->bin[i-1].phase);

			++numnewpeaks;

		}

		prevmag=mag;
		mag=nextmag;

	}

	unit->m_prevpeaks = prevpeaks;
	unit->m_newpeaks = newpeaks;
	unit->m_numprevpeaks = numprevpeaks;
	unit->m_numnewpeaks = numnewpeaks;


	//now peak matching algorithm
	//int leftsort=0;
	int rightsort=0;
	bool flag= true;
	//float rightfreq= newpeaks[0].freq;

	PartialTrack * tracks = unit->m_tracks;
	int numtracks = 0; //unit->m_numtracks;

	//increase tolerance
	float tolerance= ZIN0(6)*angmult;


	float testfreq;

//	SEEMS OK
//	printf("numprevpeaks %d numnewpeaks %d \n",numprevpeaks, numnewpeaks);
//	//print all and look for junk data
//	for (i=0; i<numnewpeaks; ++i)
//	printf("new i %d amp %f freq %f phase %f \n",i,newpeaks[i].mag,newpeaks[i].freq,newpeaks[i].phase);
//
//	for (i=0; i<numprevpeaks; ++i)
//	printf("prev i %d amp %f freq %f phase %f \n",i,prevpeaks[i].mag,prevpeaks[i].freq,prevpeaks[i].phase);
//
//


	//ASSUMES BOTH PEAKS LISTS ARE IN ORDER OF INCREASING FREQUENCY

	//while right less than left-tolerance then birth on right

	//if right within tolerance, find closest; if less than, match, else must check next on left whether better match. If not, match, else, check previous on right. If within tolerance, match, else death on right.

	//step through prevpeaks
	for (i=0; i<numprevpeaks; ++i) {

		float freqnow= prevpeaks[i].freq;

		flag=true;
		while(flag) {

			if(rightsort>=numnewpeaks) {flag=false;} else {
				testfreq= newpeaks[rightsort].freq;

				if((testfreq+tolerance)<freqnow) {
					//birth on right
					tracks[numtracks].omega1=newpeaks[rightsort].freq;
					tracks[numtracks].theta2=newpeaks[rightsort].phase;
					tracks[numtracks].omega2=newpeaks[rightsort].freq; //match to itself
					tracks[numtracks].theta1=newpeaks[rightsort].phase - (T*(newpeaks[rightsort].freq)); //should really be current phase + freq*hopsize
					tracks[numtracks].amp1=0.0;
					tracks[numtracks].amp2=newpeaks[rightsort].mag;
					++numtracks;
					++rightsort;

				} else {

					flag=false;

				}

			}

		}

		flag=false; //whether match process fails
		if(rightsort>=numnewpeaks) {flag=true;} else {
				//printf("testfreq %f freqnow %f tolerance %f \n ", testfreq, freqnow, tolerance);

			//assumption that testfreq already valid;
			if (testfreq>(freqnow+tolerance)) {flag=true;} else {

				//now have a candidate. search for closest amongst remaining; as soon as no closer, break
				//printf("candidate! \n ");

				float bestsofar= fabs(freqnow- testfreq);
				int bestindex= rightsort;

				for (j=(rightsort+1); j<numnewpeaks; ++j) {
					float newcandidate= newpeaks[j].freq;
					float newproximity= fabs(newcandidate-freqnow);

					//must keep getting closer, else no use
					if(newproximity<bestsofar) {bestindex= j; bestsofar= newproximity;}
					else break; //nothing better
				}

				//now have closest estimate. If less than freqnow have match
				float closest= newpeaks[bestindex].freq;
				bool havematch=false;

				//printf("closest! %f bestindex %d rightsort %d \n ", closest, bestindex, rightsort);

				if(closest<freqnow || (i==(numprevpeaks-1))) havematch=true;
				else { //test next i as available in this case

					float competitor = prevpeaks[i+1].freq;

					if (fabs(competitor-closest)<bestsofar) {

						//if no alternative
						if (bestindex==rightsort) flag= true; //failure to match anything
						else {bestindex= rightsort-1;
							havematch=true;
						}

					} else
					havematch=true;

				}

				if(havematch) {

					//int newrightsort= bestindex;
					//if() newrightsort=

					//TIDY UP ANY CANIDATES MISSED OUT BY THIS PROCESS

					for (j=rightsort; j<=(bestindex-1);++j) {
						//BIRTHS ON RIGHT

						tracks[numtracks].omega1=newpeaks[j].freq;
						tracks[numtracks].theta2=newpeaks[j].phase;
						tracks[numtracks].omega2=newpeaks[j].freq; //match to itself
						tracks[numtracks].theta1=sc_wrap(newpeaks[j].phase - (T*(newpeaks[j].freq)),0.0f,(float)twopi); //backcalculate starting phase
						tracks[numtracks].amp1=0.0;
						tracks[numtracks].amp2=newpeaks[j].mag;
						++numtracks;
						++rightsort;
					}

					//printf("match! \n ");

					//MATCH!
					tracks[numtracks].theta1=prevpeaks[i].phase;
					tracks[numtracks].omega1=prevpeaks[i].freq;
					tracks[numtracks].theta2=newpeaks[rightsort].phase; //match to itself; should really be current phase + freq*hopsize
					tracks[numtracks].omega2=newpeaks[rightsort].freq; //match to itself
					tracks[numtracks].amp1=prevpeaks[i].mag;
					tracks[numtracks].amp2=newpeaks[rightsort].mag;

					//yes, OK
					//printf("amp check i %d amp1 %f amp2 %f source1 %f source2 %f\n",i,tracks[numtracks].amp1, tracks[numtracks].amp2, prevpeaks[i].mag, newpeaks[rightsort].mag);
					++numtracks;
					++rightsort;

					//rightsort=bestindex+1;

				}

				//if was flag==true, then none missed out, still on rightsort

			}

		}


		//match failed, death on left
		if (flag==true) {

			//DEATH ON LEFT

			//death on left
			tracks[numtracks].theta1=prevpeaks[i].phase;
			tracks[numtracks].omega1=prevpeaks[i].freq;
			tracks[numtracks].theta2=sc_wrap(prevpeaks[i].phase + (T*prevpeaks[i].freq),0.0f,(float)twopi); //match to itself; should really be current phase + freq*hopsize
			tracks[numtracks].omega2=prevpeaks[i].freq; //match to itself
			tracks[numtracks].amp1=prevpeaks[i].mag;
			tracks[numtracks].amp2=0.0;
			++numtracks;

			//ADDCODE
			//++leftsort;
		}

	}

	//rightsort should equal numnewpeaks!

	//now iterate through PartialTracks, preparing them for synthesis
	unit->m_numtracks = numtracks;

	float theta1, omega1, theta2, omega2; //, amp1, amp2;  //, alpha, beta


	int M;
	float Tover2= T/2.0;
	//float oneovertwopi = 1.0/(2*PI);
	double temp1, temp2;

	//matrix elements common to all track calculations: eqn (34)
	//for hyperefficiency could precalculate some of this material in constructor of course...
	double r1c1=3.0/(T*T);
	double r1c2= (-1.0)/T;
	double r2c1= (-2.0)/(T*T*T);
	double r2c2= 1.0/(T*T);

	//printf("matrix checks %f %f %f %f \n",r1c1,r1c2,r2c1,r2c2);


	//precalculate cubic interpolation parameters alpha and beta as per eqn (37) in McAulay and Quatieri
	//must go via M, the integer of extra phase for theta2
	for (i=0; i<numtracks; ++i) {

			theta1= tracks[i].theta1;
			theta2= tracks[i].theta2;
			omega1= tracks[i].omega1;
			omega2= tracks[i].omega2;

			//rpitwo= 1/2pi see SC_constants
			//round off as (int)(0.5+val)
			float mtemp= rtwopi*((theta1 + (omega1*T) - theta2) + ((omega2-omega1)*Tover2));

			if(mtemp<0.0)
			M= (int)(mtemp-0.5);
			else
			M= (int)(mtemp+0.5);

			temp1= theta2 - theta1 - (omega1*T) + (twopi*M);
			temp2= omega2-omega1;

			//matrix solution
			tracks[i].alpha= r1c1*temp1 + r1c2*temp2;
			tracks[i].beta= r2c1*temp1 + r2c2*temp2;

			//if(i==20) {
			//printf("track check %d theta1 %f theta2 %f omega1 %f omega2 %f amp1 %f amp2 %f M %d alpha %f beta %f \n",i,theta1,theta2,omega1,omega2,tracks[i].amp1, tracks[i].amp2,M,tracks[i].alpha, tracks[i].beta);
			//}
	}


	//struct PartialTrack {
	//float theta1, omega1, theta2, omega2, alpha, beta; //cubic interpolation of phase
	//float startamp, endamp; //linear interpolation of amplitude
	//};



}



//void peakmatch(TPV *unit) {
//}


void loadTPV(InterfaceTable *inTable)
{

	ft= inTable;

//	init_SCComplex(inTable);

	//printf("TPV LOADED CHECK\n");

	//DefineDtorUnit(TPV);
	//
	DefineDtorCantAliasUnit(TPV);

	for (int i=0; i<=g_costableTPVsize; ++i) {

		float temp= twopi*((float)i/g_costableTPVsize);
		g_costableTPV[i]= cos(temp); //or sin

		//printf("cos check %d %f",i,g_costableTPV[i]);

	}

	//check modulo for negatives
	//printf("modulo test %d %d \n",(-512)%1024,(-2678)%1024);

	//check round off for negatives; ah, yes, rounds down towards zero
	//printf("round off test %d %d \n",(int)(0.5+(-1.4)),(int)(0.5+(-1.7)));

	//gives wrong results for contiguous phase position
	//printf("modulo test 2 %f %f \n",fmod(-34.7,1024), fmod(-1003.7,1024));

	//printf("modulo test 2 %f %f \n",sc_wrap(-34.7,0.0,1024.0), sc_wrap(-1003.7,0.0,1024.0));

	//tests
	//	Peak peaks[3];
	//
	//	Peak * peakpoint=peaks;
	//
	//
	//	peakpoint[0].freq= 4;
	//	peakpoint[1].freq= 7;
	//	peakpoint[0].phase=15;
	//	peakpoint[2].phase=16;
	//
	//	printf("tests %f %f %f %f \n",peakpoint[0].freq, peakpoint[1].freq, peakpoint[0].phase, peakpoint[2].phase);
	//
	//yes, still works with a pointed

	//this works
	//	peaks[0].freq= 4;
	//	peaks[1].freq= 7;
	//	peaks[0].phase=15;
	//	peaks[2].phase=16;
	//
	//	printf("tests %f %f %f %f \n",peaks[0].freq, peaks[1].freq, peaks[0].phase, peaks[2].phase);
	//
	//
	//	int u=0;
	//	printf("u %d \n",u);
	//	printf("tests pre %d \n",++u);
	//	printf("tests post %d \n",u++);  \\returns previous value before increment (ie increment is post)
	//	 //
	//	//works as expected
	//	printf("tests2 %d \n",(int)(10.0));
	//	printf("tests2 %d %d %d \n",(int)(1024.0),(int)0.0, (int)(-1.0));
	//

	//memcpy to same array tests; memcpy requires memcpy(target, source, number)
	//float test1[5]= {1.0f,1.1f,1.2f,1.3f,1.4f};
	//float test2[5]= {2.0f,2.1f,2.2f,2.3f,2.4f};
	//int j;
	//
	//for(j=0; j<5;++j){
	//printf("testmemcpy1 %f \n",test1[j]);
	//}
	//
	//memcpy(test1, test1+2, 3 * sizeof(float));
	//
	//for(j=0; j<5;++j){
	//printf("testmemcpy2 %f \n",test1[j]);
	//}


}