1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
|
/*
NHHall -- a stereo reverb
Version 2018-06-24
https://github.com/snappizz/nh-ugens
Copyright 2018 Nathan Ho.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
-------------------------------------------------------------------------------
NHHall is an open source algorithmic reverb unit in a single C++11 header
file. Features:
- Allpass loop topology with delay line modulaton for a lush 90's IDM sound
- True stereo signal path with controllable spread
- Infinite hold support
- Respectable CPU use
- Sample-rate independence
- No dependencies outside the C++ standard library
- Bring your own real-time safe memory allocator (no unwanted malloc calls!)
- Permissive MIT license
- Clean, readable source code for easy modification
NHHall was designed by Nathan Ho specifically for SuperCollider, ChucK, and
Auraglyph. Special thanks:
- Spencer Salazar for advising the project
- Brian Heim and Scott Carver for C++ help
- Patrick Dupuis for testing and feedback
-------------------------------------------------------------------------------
USAGE:
NHHall provides only the wet signal. Pre-delay and post-EQ are left up to you.
If you don't mind a real-time-unsafe call to malloc when initializing the unit
(maybe you're in an NRT context, or you're an absolute rascal), instantiate
the NHHall template with no arguments:
#include "nh_hall.hpp"
// Setup:
float sample_rate = 48000.0f;
nh_ugens::NHHall<> nh_hall(sample_rate);
if (!nh_hall.m_initialization_was_successful) {
// This happens when a memory allocation failed.
...
}
// Calculation:
float in_left = 0.0f;
float in_right = 0.0f;
float out_left, out_right;
std::array<float, 2> result = nh_hall.process(in_left, in_right);
out_left = result[0];
out_right = result[1];
This uses a default allocator class nh_ugens::Allocator which simply wraps
malloc and free.
You can replace this with your own allocator class that defines "allocate" and
"deallocate" methods like this:
class MyAllocator {
public:
Engine* m_engine;
MyAllocator(Engine* engine) : m_engine(engine) { }
void* allocate(int memory_size) {
return m_engine->allocate(memory_size);
}
void deallocate(void* memory) {
m_engine->free(memory_size);
}
};
Then instantiate a std::unique_ptr to a MyAllocator and pass it into the new
NHHall as a second argument:
nh_ugens::NHHall<MyAllocator> nh_hall(
sample_rate,
std::unique_ptr<MyAllocator>(new MyAllocator(engine))
);
The std::unique_ptr is passed into the NHHall with move semantics. I'm sorry if
that's a little complicated, but it ensures that the MyAllocator isn't
unceremoniously tampered with after NHHall receives it and makes the program
easier to reason about. After this initialization, use of the unit is unchanged
from the above.
If the allocator ever returns a null pointer during initialization, NHHall
immediately stops all further allocation and sets the
m_initialization_was_successful flag to false. You should always check that
flag and make sure it worked. If you forget to do this, running NHHall.process
will access garbage memory and probably crash your app.
The following settings are available:
NHHall.set_rt60(float rt60)
Set the 60 dB decay time for mid frequencies.
NHHall.set_stereo(float stereo)
Set the stereo spread. 0 keeps the two channel paths separate, 1 causes
them to bleed into each other almost instantly.
NHHall.set_low_shelf_parameters(float frequency, float ratio)
NHHall.set_hi_shelf_parameters(float frequency, float ratio)
Set the frequency cutoffs and decay ratios of the damping filters.
NHHall.set_early_diffusion(float diffusion)
NHHall.set_late_diffusion(float diffusion)
Diffusion coefficients.
NHHall.set_mod_rate(float mod_rate)
NHHall.set_mod_depth(float mod_depth)
Rate and depth of LFO. These are arbitrarily scaled so that 0..1 offers
musically useful ranges.
NHHall.seed(uint32_t seed)
Seed the random LFO. By default, the LFO has a fixed seed.
Instead of using set_rt60, you can also use the utility function
float NHHall.compute_k_from_rt60(float rt60)
and manually set the public member NHHall.m_k. When interpolating the reverb
time, it's better to linearly interpolate m_k than to interpolate rt60, because
m_k may be 1 for an infinite hold reverb, putting rt60 at infinity. Trying to
interpolate from a finite value to infinity is asking for trouble.
Speaking of interpolation, it's your responsibility to smooth out these
parameters to avoid clicks when modulating them. All parameters are worth
smoothing out except mod_rate, which only checks its frequency parameter
occasionally.
*/
#pragma once
#include <cstdlib> // malloc / free
#include <cstring> // memset
#include <memory> // std::unique_ptr
#include <array> // std::array
#include <cmath> // cosf/sinf
namespace nh_ugens {
typedef std::array<float, 2> Stereo;
static inline float flush_denormals(float x) {
x += 1.0e-25;
x -= 1.0e-25;
return x;
}
static inline Stereo flush_denormals(Stereo x) {
Stereo result = {{flush_denormals(x[0]), flush_denormals(x[1])}};
return result;
}
static inline int next_power_of_two(int x) {
int result = 1;
while (result < x) {
result *= 2;
}
return result;
}
static float interpolate_cubic(float x, float y0, float y1, float y2, float y3) {
float c0 = y1;
float c1 = y2 - 1 / 3.0 * y0 - 1 / 2.0 * y1 - 1 / 6.0 * y3;
float c2 = 1 / 2.0 * (y0 + y2) - y1;
float c3 = 1 / 6.0 * (y3 - y0) + 1 / 2.0 * (y1 - y2);
return ((c3 * x + c2) * x + c1) * x + c0;
}
// Unitary rotation matrix.
static inline Stereo rotate(Stereo x, float cos, float sin) {
Stereo result = {
cos * x[0] - sin * x[1],
sin * x[0] + cos * x[1]
};
return result;
}
constexpr float twopi = 6.283185307179586f;
// Default allocator -- not real-time safe!
class Allocator {
public:
void* allocate(int memory_size) {
return malloc(memory_size);
}
void deallocate(void* memory) {
free(memory);
}
};
// Quadrature sine LFO, not used.
class SineLFO {
public:
SineLFO(
float sample_rate
) :
m_sample_rate(sample_rate),
m_cosine(1.0f),
m_sine(0.0f)
{
}
void set_frequency(float frequency) {
m_k = twopi * frequency / m_sample_rate;
}
Stereo process(void) {
m_cosine -= m_k * m_sine;
m_sine += m_k * m_cosine;
Stereo out = {{m_cosine, m_sine}};
return out;
}
private:
const float m_sample_rate;
float m_k;
float m_cosine;
float m_sine;
};
class RandomLFO {
public:
RandomLFO(
float sample_rate
) :
m_sample_rate(sample_rate)
{
update_amplitude();
}
inline void seed(uint32_t seed) {
m_lcg_state = seed;
}
inline uint16_t run_lcg(void) {
m_lcg_state = m_lcg_state * 22695477 + 1;
uint16_t result = m_lcg_state >> 16;
return result;
}
void set_rate(float rate) {
rate = std::max(rate, 0.0f);
m_frequency =
k_min_frequency
+ rate * (k_max_frequency - k_min_frequency);
update_amplitude();
}
void set_depth(float depth) {
depth = std::max(std::min(depth, 1.0f), 0.0f);
m_depth = depth;
update_amplitude();
}
Stereo process(void) {
if (m_timeout <= 0) {
m_timeout = run_lcg() * 0.1f / m_frequency * m_sample_rate / 48000.0f;
m_increment = (run_lcg() * (1.0f / 32767.0f) - 0.5f) * m_frequency / m_sample_rate;
}
m_timeout -= 1;
m_phase += m_increment;
// TODO: optimize
Stereo result = {{
sinf(m_phase) * m_amplitude,
cosf(m_phase) * m_amplitude
}};
return result;
}
private:
const float m_sample_rate;
uint32_t m_lcg_state = 1;
int m_timeout = 0;
float m_depth = 0.5f;
float m_increment = 0.f;
float m_phase = 0.f;
float m_frequency = 10.f;
float m_amplitude;
static constexpr float k_min_frequency = 1.0f;
static constexpr float k_max_frequency = 50.0f;
static constexpr float k_max_depth = 5e-3f;
void update_amplitude(void) {
m_amplitude = m_depth * k_max_depth / m_frequency;
}
public:
static constexpr float k_max_amplitude = k_max_depth / k_min_frequency;
};
class DCBlocker {
public:
DCBlocker(
float sample_rate
) :
m_sample_rate(sample_rate)
{
}
float process(float in) {
float x = in;
float y = x - m_x1 + m_k * m_y1;
float out = y;
m_x1 = x;
m_y1 = y;
return out;
}
private:
const float m_sample_rate;
float m_x1 = 0.0f;
float m_y1 = 0.0f;
float m_k = 0.99f;
};
class HiShelf {
public:
HiShelf(
float sample_rate
) :
m_sample_rate(sample_rate)
{
}
void set_parameters(float frequency, float ratio) {
float w0 = twopi * frequency / m_sample_rate;
float sin_w0 = sinf(w0);
float cos_w0 = cosf(w0);
float a = sqrtf(ratio);
float s = 1.0f;
float alpha = sin_w0 * 0.5 * sqrtf((a + 1 / a) * (1 / s - 1) + 2);
float x = 2 * sqrtf(a) * alpha;
float a0 = (a + 1) - (a - 1) * cos_w0 + x;
float inv_a0 = 1 / a0;
m_b0 = (a * ((a + 1) + (a - 1) * cos_w0 + x)) * inv_a0;
m_b1 = (-2 * a * ((a - 1) + (a + 1) * cos_w0)) * inv_a0;
m_b2 = (a * ((a + 1) + (a - 1) * cos_w0 - x)) * inv_a0;
m_a1 = (2 * ((a - 1) - (a + 1) * cos_w0)) * inv_a0;
m_a2 = ((a + 1) - (a - 1) * cos_w0 - x) * inv_a0;
}
float process(float in) {
float out =
m_b0 * in + m_b1 * m_x1 + m_b2 * m_x2
- m_a1 * m_y1 - m_a2 * m_y2;
m_x2 = m_x1;
m_x1 = in;
m_y2 = flush_denormals(m_y1);
m_y1 = flush_denormals(out);
return out;
}
private:
const float m_sample_rate;
float m_x1 = 0.0f;
float m_x2 = 0.0f;
float m_y1 = 0.0f;
float m_y2 = 0.0f;
float m_b0 = 1.0f, m_b1 = 0.0f, m_b2 = 0.0f, m_a1 = 0.0f, m_a2 = 0.0f;
};
class LowShelf {
public:
LowShelf(
float sample_rate
) :
m_sample_rate(sample_rate)
{
}
void set_parameters(float frequency, float ratio) {
float w0 = twopi * frequency / m_sample_rate;
float sin_w0 = sinf(w0);
float cos_w0 = cosf(w0);
float a = sqrtf(ratio);
float s = 1.0f;
float alpha = sin_w0 * 0.5 * sqrtf((a + 1 / a) * (1 / s - 1) + 2);
float x = 2 * sqrtf(a) * alpha;
float a0 = (a + 1) + (a - 1) * cos_w0 + x;
float inv_a0 = 1 / a0;
m_b0 = (a * ((a + 1) - (a - 1) * cos_w0 + x)) * inv_a0;
m_b1 = (2 * a * ((a - 1) - (a + 1) * cos_w0)) * inv_a0;
m_b2 = (a * ((a + 1) - (a - 1) * cos_w0 - x)) * inv_a0;
m_a1 = (-2 * ((a - 1) + (a + 1) * cos_w0)) * inv_a0;
m_a2 = ((a + 1) + (a - 1) * cos_w0 - x) * inv_a0;
}
float process(float in) {
float out =
m_b0 * in + m_b1 * m_x1 + m_b2 * m_x2
- m_a1 * m_y1 - m_a2 * m_y2;
m_x2 = m_x1;
m_x1 = in;
m_y2 = flush_denormals(m_y1);
m_y1 = flush_denormals(out);
return out;
}
private:
const float m_sample_rate;
float m_x1 = 0.0f;
float m_x2 = 0.0f;
float m_y1 = 0.0f;
float m_y2 = 0.0f;
float m_b0 = 1.0f, m_b1 = 0.0f, m_b2 = 0.0f, m_a1 = 0.0f, m_a2 = 0.0f;
};
class BaseDelay {
public:
int m_size;
float* m_buffer = nullptr;
BaseDelay(
float sample_rate,
float max_delay,
float delay
) :
m_sample_rate(sample_rate)
{
int max_delay_in_samples = m_sample_rate * max_delay;
m_size = next_power_of_two(max_delay_in_samples);
m_mask = m_size - 1;
m_read_position = 0;
m_delay = delay;
m_delay_in_samples = m_sample_rate * delay;
}
protected:
const float m_sample_rate;
int m_mask;
int m_read_position;
float m_delay;
int m_delay_in_samples;
};
// Fixed delay line.
class Delay : public BaseDelay {
public:
Delay(
float sample_rate,
float delay
) :
BaseDelay(sample_rate, delay, delay)
{
}
float process(float in) {
float out_value = m_buffer[(m_read_position - m_delay_in_samples) & m_mask];
m_buffer[m_read_position] = in;
m_read_position = (m_read_position + 1) & m_mask;
float out = out_value;
return out;
}
float tap(float delay) {
int delay_in_samples = delay * m_sample_rate;
int position = m_read_position - 1 - delay_in_samples;
float out = m_buffer[position & m_mask];
return out;
}
};
// Fixed Schroeder allpass.
class Allpass : public BaseDelay {
public:
float m_k = 0.5;
Allpass(
float sample_rate,
float delay,
float diffusion_sign
) :
BaseDelay(sample_rate, delay, delay),
m_diffusion_sign(diffusion_sign)
{
}
void set_diffusion(float diffusion) {
m_k = diffusion * m_diffusion_sign;
}
float process(float in) {
float delayed_signal = m_buffer[(m_read_position - m_delay_in_samples) & m_mask];
float feedback_plus_input = in + delayed_signal * m_k;
m_buffer[m_read_position] = flush_denormals(feedback_plus_input);
m_read_position = (m_read_position + 1) & m_mask;
float out = feedback_plus_input * -m_k + delayed_signal;
return out;
}
private:
float m_diffusion_sign;
};
// Schroeder allpass with variable delay and cubic interpolation.
class VariableAllpass : public BaseDelay {
public:
float m_k = 0.5;
VariableAllpass(
float sample_rate,
float delay,
float max_mod_depth,
float diffusion_sign
) :
BaseDelay(sample_rate, delay + max_mod_depth + 4.0 / sample_rate, delay),
m_diffusion_sign(diffusion_sign)
{
}
void set_diffusion(float diffusion) {
m_k = diffusion * m_diffusion_sign;
}
float process(float in, float offset) {
float position = m_read_position - (m_delay + offset) * m_sample_rate;
// This catches a very sneaky bug -- casting position to int rounds
// toward zero. To mitigate this, we ensure that the position is always
// above zero before rounding it down, using the fact that
// (m_delay + offset) * m_sample_rate < m_size.
position += m_size;
int iposition = position;
float position_frac = position - iposition;
float y0 = m_buffer[iposition & m_mask];
float y1 = m_buffer[(iposition + 1) & m_mask];
float y2 = m_buffer[(iposition + 2) & m_mask];
float y3 = m_buffer[(iposition + 3) & m_mask];
float delayed_signal = interpolate_cubic(position_frac, y0, y1, y2, y3);
float feedback_plus_input = in + delayed_signal * m_k;
m_buffer[m_read_position] = flush_denormals(feedback_plus_input);
m_read_position = (m_read_position + 1) & m_mask;
float out = feedback_plus_input * -m_k + delayed_signal;
return out;
}
private:
float m_diffusion_sign;
};
template <class Alloc = Allocator>
class NHHall {
public:
float m_k;
bool m_initialization_was_successful;
NHHall(
float sample_rate,
std::unique_ptr<Alloc> allocator
) :
m_sample_rate(sample_rate),
m_allocator(std::move(allocator)),
m_lfo(sample_rate),
m_dc_blocker(sample_rate),
m_low_shelves {{sample_rate, sample_rate, sample_rate, sample_rate}},
m_hi_shelves {{sample_rate, sample_rate, sample_rate, sample_rate}},
m_early_allpasses {{
Allpass(sample_rate, 9.5e-3f, 1),
Allpass(sample_rate, 12.0e-3f, -1),
Allpass(sample_rate, 7.8e-3f, 1),
Allpass(sample_rate, 14.2e-3f, -1),
Allpass(sample_rate, 23.5e-3f, 1),
Allpass(sample_rate, 8.0e-3f, -1),
Allpass(sample_rate, 25.8e-3f, 1),
Allpass(sample_rate, 7.2e-3f, -1)
}},
m_early_delays {{
Delay(sample_rate, 5.45e-3),
Delay(sample_rate, 3.25e-3),
Delay(sample_rate, 2.36e-3),
Delay(sample_rate, 7.17e-3)
}},
m_late_variable_allpasses {{
VariableAllpass(sample_rate, 25.6e-3f, RandomLFO::k_max_amplitude, 1),
VariableAllpass(sample_rate, 50.7e-3f, RandomLFO::k_max_amplitude, -1),
VariableAllpass(sample_rate, 68.6e-3f, RandomLFO::k_max_amplitude, 1),
VariableAllpass(sample_rate, 45.7e-3f, RandomLFO::k_max_amplitude, -1)
}},
m_late_allpasses {{
Allpass(sample_rate, 41.4e-3f, -1),
Allpass(sample_rate, 25.6e-3f, 1),
Allpass(sample_rate, 29.4e-3f, -1),
Allpass(sample_rate, 23.6e-3f, 1)
}},
m_late_delays {{
Delay(sample_rate, k_delay_time_1),
Delay(sample_rate, k_delay_time_2),
Delay(sample_rate, k_delay_time_3),
Delay(sample_rate, k_delay_time_4)
}}
{
m_k = 0.0f;
m_initialization_was_successful = allocate_delay_lines();
}
// If no allocator object is passed in, we try to make one ourselves by
// calling the constructor with no arguments.
NHHall(
float sample_rate
) :
NHHall(sample_rate, std::unique_ptr<Alloc>(new Alloc()))
{ }
~NHHall() {
free_delay_lines();
}
inline float compute_k_from_rt60(float rt60) {
return powf(0.001f, k_average_delay_time / rt60);
}
inline void set_rt60(float rt60) {
m_k = compute_k_from_rt60(rt60);
}
inline void set_stereo(float stereo) {
float angle = stereo * twopi * 0.25f;
m_rotate_cos = cosf(angle);
m_rotate_sin = sinf(angle);
}
inline void set_low_shelf_parameters(float frequency, float ratio) {
float k = powf(m_k, 1.0f / ratio - 1.0f);
k = std::max(k, 0.01f);
for (auto& x : m_low_shelves) {
x.set_parameters(frequency, k);
}
}
inline void set_hi_shelf_parameters(float frequency, float ratio) {
float k = powf(m_k, 1.0f / ratio - 1.0f);
k = std::max(k, 0.01f);
for (auto& x : m_hi_shelves) {
x.set_parameters(frequency, k);
}
}
inline void set_early_diffusion(float diffusion) {
for (auto& x : m_early_allpasses) {
x.set_diffusion(diffusion);
}
}
inline void set_late_diffusion(float diffusion) {
for (auto& x : m_late_allpasses) {
x.set_diffusion(diffusion);
}
for (auto& x : m_late_variable_allpasses) {
x.set_diffusion(diffusion);
}
}
inline void set_mod_rate(float mod_rate) {
m_lfo.set_rate(mod_rate);
}
inline void set_mod_depth(float mod_depth) {
m_lfo.set_depth(mod_depth);
}
inline void seed(uint32_t seed) {
m_lfo.seed(seed);
}
Stereo process(Stereo in) {
Stereo lfo = m_lfo.process();
Stereo early = process_early(in);
Stereo out = process_outputs(early);
Stereo late = {{
process_late_left(early[0], lfo),
process_late_right(early[1], lfo)
}};
late = rotate(late, m_rotate_cos, m_rotate_sin);
m_feedback = flush_denormals(late);
return out;
}
Stereo process(float in_left, float in_right) {
Stereo in = {{in_left, in_right}};
return process(in);
}
private:
static constexpr float k_delay_time_1 = 153.6e-3f;
static constexpr float k_delay_time_2 = 94.3e-3f;
static constexpr float k_delay_time_3 = 187.6e-3f;
static constexpr float k_delay_time_4 = 123.6e-3f;
static constexpr float k_average_delay_time =
(k_delay_time_1 + k_delay_time_2 + k_delay_time_3 + k_delay_time_4) / 4.0f;
std::unique_ptr<Alloc> m_allocator;
const float m_sample_rate;
Stereo m_feedback = {{0.f, 0.f}};
float m_rotate_cos = 0.0f;
float m_rotate_sin = 1.0f;
RandomLFO m_lfo;
DCBlocker m_dc_blocker;
std::array<LowShelf, 4> m_low_shelves;
std::array<HiShelf, 4> m_hi_shelves;
// NOTE: When adding new delay units, don't forget to allocate the memory
// in the constructor and free it in the destructor.
std::array<Allpass, 8> m_early_allpasses;
std::array<Delay, 4> m_early_delays;
std::array<VariableAllpass, 4> m_late_variable_allpasses;
std::array<Allpass, 4> m_late_allpasses;
std::array<Delay, 4> m_late_delays;
bool allocate_delay_lines() {
for (auto& x : m_early_allpasses) {
bool success = allocate_delay_line(x);
if (!success) {
return false;
}
}
for (auto& x : m_early_delays) {
bool success = allocate_delay_line(x);
if (!success) {
return false;
}
}
for (auto& x : m_late_variable_allpasses) {
bool success = allocate_delay_line(x);
if (!success) {
return false;
}
}
for (auto& x : m_late_allpasses) {
bool success = allocate_delay_line(x);
if (!success) {
return false;
}
}
for (auto& x : m_late_delays) {
bool success = allocate_delay_line(x);
if (!success) {
return false;
}
}
return true;
}
void free_delay_lines() {
for (auto& x : m_early_allpasses) {
free_delay_line(x);
}
for (auto& x : m_early_delays) {
free_delay_line(x);
}
for (auto& x : m_late_variable_allpasses) {
free_delay_line(x);
}
for (auto& x : m_late_allpasses) {
free_delay_line(x);
}
for (auto& x : m_late_delays) {
free_delay_line(x);
}
}
bool allocate_delay_line(BaseDelay& delay) {
void* memory = m_allocator->allocate(sizeof(float) * delay.m_size);
if (!memory) {
return false;
}
delay.m_buffer = static_cast<float*>(memory);
memset(delay.m_buffer, 0, sizeof(float) * delay.m_size);
return true;
}
void free_delay_line(BaseDelay& delay) {
if (delay.m_buffer != nullptr) {
m_allocator->deallocate(delay.m_buffer);
}
}
inline Stereo process_early(Stereo in) {
Stereo sig = {{in[0], in[1]}};
sig[0] = m_early_allpasses[0].process(sig[0]);
sig[0] = m_early_allpasses[1].process(sig[0]);
sig[1] = m_early_allpasses[2].process(sig[1]);
sig[1] = m_early_allpasses[3].process(sig[1]);
sig = rotate(sig, m_rotate_cos, m_rotate_sin);
Stereo early = sig;
sig[0] = m_early_delays[0].process(sig[0]);
sig[1] = m_early_delays[1].process(sig[1]);
sig[0] = m_early_allpasses[4].process(sig[0]);
sig[0] = m_early_allpasses[5].process(sig[0]);
sig[1] = m_early_allpasses[6].process(sig[1]);
sig[1] = m_early_allpasses[7].process(sig[1]);
sig = rotate(sig, m_rotate_cos, m_rotate_sin);
early[0] += sig[0] * 0.5f;
early[1] += sig[1] * 0.5f;
return early;
}
inline float process_late_left(float early_left, Stereo lfo) {
float sig = 0.f;
sig += m_feedback[0];
sig += early_left;
sig = m_late_variable_allpasses[0].process(sig, -lfo[0]);
sig = m_late_allpasses[0].process(sig);
sig *= m_k;
sig = m_late_delays[0].process(sig);
sig = m_low_shelves[0].process(sig);
sig = m_hi_shelves[0].process(sig);
sig += early_left;
sig = m_late_variable_allpasses[1].process(sig, -lfo[1]);
sig = m_late_allpasses[1].process(sig);
sig *= m_k;
sig = m_late_delays[1].process(sig);
sig = m_low_shelves[1].process(sig);
sig = m_hi_shelves[1].process(sig);
return sig;
}
inline float process_late_right(float early_right, Stereo lfo) {
float sig = 0.f;
sig += m_feedback[1];
sig += early_right;
sig = m_late_variable_allpasses[2].process(sig, lfo[0]);
sig = m_late_allpasses[2].process(sig);
sig *= m_k;
sig = m_late_delays[2].process(sig);
sig = m_low_shelves[2].process(sig);
sig = m_hi_shelves[2].process(sig);
sig += early_right;
sig = m_late_variable_allpasses[3].process(sig, lfo[1]);
sig = m_late_allpasses[3].process(sig);
sig *= m_k;
sig = m_late_delays[3].process(sig);
sig = m_low_shelves[3].process(sig);
sig = m_hi_shelves[3].process(sig);
return sig;
}
inline Stereo process_outputs(Stereo early) {
// Keep the inter-channel delays somewhere between 0.1 and 0.7 ms --
// this allows the Haas effect to come in.
Stereo out = {{early[0] * 0.5f, early[1] * 0.5f}};
float haas_multiplier = -0.6f;
out[0] += m_late_delays[0].tap(0.0e-3f);
out[1] += m_late_delays[0].tap(0.3e-3f) * haas_multiplier;
out[0] += m_late_delays[1].tap(0.0e-3f);
out[1] += m_late_delays[1].tap(0.1e-3f) * haas_multiplier;
out[0] += m_late_delays[2].tap(0.7e-3f) * haas_multiplier;
out[1] += m_late_delays[2].tap(0.0e-3f);
out[0] += m_late_delays[3].tap(0.2e-3f) * haas_multiplier;
out[1] += m_late_delays[3].tap(0.0e-3f);
return out;
}
};
} // namespace nh_ugens
|