1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
|
//SuperCollider is under GNU GPL version 3, http://supercollider.sourceforge.net/
//these extensions released under the same license
/*
* AuditoryModelingUGens.cpp
*
* Created by Nicholas Collins on 1/07/2010.
* Copyright 2010 Nicholas M Collins. All rights reserved.
*
*/
#include "SC_PlugIn.h"
#include "MeddisHairCell.h"
#include "SimpleHairCell.h"
InterfaceTable *ft;
//int g_pitchnotetaken =0; //only one UGen can be running with this at once, else zero outputs.
//PitchNote g_pitchnote; //will just create, at default 44100 sampling rate.
struct Meddis : public Unit
{
MeddisHairCell * cell; //will need to create and destroy in NRT thread
void * mydata;
};
struct HairCell : public Unit
{
SimpleHairCell * cell; //will need to create and destroy in NRT thread
void * mydata;
};
//based on V Hohmann Frequency analysis and synthesis using a Gammatone filterbank Acta Acustica vol 88 (2002): 433--442
//converted to straight struct form for SuperCollider from my own GammatoneComplexBandpass class code
struct Gammatone : public Unit
{
double centrefrequency;
double bandwidth;
double normalisation;
double reala, imaga;
double oldreal[4];
double oldimag[4];
};
//data to be shared between RT and NRT threads
//struct CmdData {
// enum Type
// {
// NRTCtorMeddis,
// NRTDtorMeddis,
// NRTCtorHairCell,
// NRTDtorHairCell
// };
//
// Type type;
// Unit * unit;
// void * nrtallocated;
// float samplingrate_;
//
//};
extern "C" {
void Meddis_next(Meddis *unit, int inNumSamples);
void Meddis_Ctor(Meddis* unit);
void Meddis_Dtor(Meddis* unit);
void HairCell_next(HairCell *unit, int inNumSamples);
void HairCell_Ctor(HairCell* unit);
void HairCell_Dtor(HairCell* unit);
void Gammatone_next(Gammatone *unit, int inNumSamples);
void Gammatone_Ctor(Gammatone* unit);
//void Gammatone_Dtor(Gammatone* unit);
}
//since classes are simple, can use basic placement new and explicit destructor call
/*
//for NRT allocation and deallocation
bool cmdStage2(World* inWorld, CmdData* cmd) // NRT
{
//Unit* unit = cmd->unit;
switch (cmd->type) {
case CmdData::NRTCtorMeddis:
cmd->nrtallocated = (void *)(new MeddisHairCell(cmd->samplingrate_));
return true;
case CmdData::NRTCtorHairCell:
cmd->nrtallocated = (void *)(new SimpleHairCell(cmd->samplingrate_));
return true;
case CmdData::NRTDtorMeddis:
delete ((Meddis*)cmd->nrtallocated);
return true;
case CmdData::NRTDtorHairCell:
delete ((HairCell*)cmd->nrtallocated);
return true;
}
return false;
}
bool cmdStage3(World* world, CmdData* cmd) // RT
{
switch (cmd->type) {
case CmdData::NRTCtorMeddis: {
((Meddis*)cmd->unit)->cell = (MeddisHairCell*)cmd->nrtallocated;
return true;
}
case CmdData::NRTCtorHairCell: {
((HairCell*)cmd->unit)->cell = (SimpleHairCell*)cmd->nrtallocated;
}
return true;
}
return true;
}
bool cmdStage4(World* world, CmdData* cmd) // NRT
{
return true;
}
void cmdCleanup(World* world, void* cmd)
{
RTFree(world, cmd);
}
//if just using for construction and destruction, can have named functions for construction and destruction, don't need to share same function with switch on type
void Meddis_Ctor( Meddis* unit ) {
unit->cell= NULL;
CmdData* cmd = (CmdData*)RTAlloc(unit->mWorld, sizeof(CmdData));
cmd->samplingrate_ = unit->mRate->mSampleRate; //unit->mWorld->mFullRate.mSampleRate;
cmd->unit = (Unit *)unit;
cmd->nrtallocated = NULL; //will be allocated in NRT thread
cmd->type = CmdData::NRTCtorMeddis;
//(AsyncStageFn)PitchNoteUGencmdStage4
DoAsynchronousCommand(unit->mWorld, 0, "", (void*)cmd,
(AsyncStageFn)cmdStage2,
(AsyncStageFn)cmdStage3,
NULL,
cmdCleanup,
0, 0);
SETCALC(Meddis_next);
}
void HairCell_Ctor( HairCell* unit ) {
unit->cell= NULL;
CmdData* cmd = (CmdData*)RTAlloc(unit->mWorld, sizeof(CmdData));
cmd->samplingrate_ = unit->mRate->mSampleRate; //unit->mWorld->mFullRate.mSampleRate;
cmd->unit = (Unit *)unit;
cmd->nrtallocated = NULL; //will be allocated in NRT thread
cmd->type = CmdData::NRTCtorHairCell;
//(AsyncStageFn)PitchNoteUGencmdStage4
DoAsynchronousCommand(unit->mWorld, 0, "", (void*)cmd,
(AsyncStageFn)cmdStage2,
(AsyncStageFn)cmdStage3,
NULL,
cmdCleanup,
0, 0);
SETCALC(HairCell_next);
}
void Meddis_Dtor(Meddis *unit)
{
if (unit->cell) {
CmdData* cmd = (CmdData*)RTAlloc(unit->mWorld, sizeof(CmdData));
cmd->unit = unit;
cmd->nrtallocated = unit->cell;
unit->cell = NULL; //no longer available, will be deallocated in NRT thread
cmd->type = CmdData::NRTDtorMeddis;
DoAsynchronousCommand(unit->mWorld, 0, "", (void*)cmd,
(AsyncStageFn)cmdStage2,
NULL,NULL,
cmdCleanup,
0, 0);
}
}
void HairCell_Dtor(HairCell *unit)
{
if (unit->cell) {
CmdData* cmd = (CmdData*)RTAlloc(unit->mWorld, sizeof(CmdData));
cmd->unit = unit;
cmd->nrtallocated = unit->cell;
unit->cell = NULL; //no longer available, will be deallocated in NRT thread
cmd->type = CmdData::NRTDtorHairCell;
DoAsynchronousCommand(unit->mWorld, 0, "", (void*)cmd,
(AsyncStageFn)cmdStage2,
NULL,NULL,
cmdCleanup,
0, 0);
}
}
*/
void Meddis_Ctor( Meddis* unit ) {
unit->cell= NULL;
float samplingrate = unit->mRate->mSampleRate; //unit->mWorld->mFullRate.mSampleRate;
unit->mydata = RTAlloc(unit->mWorld, sizeof(MeddisHairCell));
unit->cell= new(unit->mydata)MeddisHairCell(samplingrate);
SETCALC(Meddis_next);
}
void HairCell_Ctor( HairCell* unit ) {
unit->cell= NULL;
float samplingrate = unit->mRate->mSampleRate; //unit->mWorld->mFullRate.mSampleRate;
unit->mydata = RTAlloc(unit->mWorld, sizeof(SimpleHairCell));
unit->cell= new(unit->mydata)SimpleHairCell(samplingrate);
SETCALC(HairCell_next);
}
void Meddis_Dtor(Meddis *unit)
{
//explicitly call destructor
unit->cell->~MeddisHairCell();
//free associated memory explicitly via SC mechanism
RTFree(unit->mWorld, unit->mydata);
}
void HairCell_Dtor(HairCell *unit)
{
unit->cell->~SimpleHairCell();
//free associated memory explicitly via SC mechanism
RTFree(unit->mWorld, unit->mydata);
}
void Meddis_next( Meddis *unit, int inNumSamples ) {
//if(unit->cell) {
float *input = IN(0);
float *output = OUT(0);
unit->cell->compute( input, output, inNumSamples );
//} else
//ClearUnitOutputs(unit, inNumSamples);
}
void HairCell_next( HairCell *unit, int inNumSamples ) {
//if(unit->cell) {
float *input = IN(0);
float *output = OUT(0);
SimpleHairCell * cell= unit->cell;
//k-rate or i-rate controls for transfer of chemicals and stimulation decay
float minflow = ZIN0(1);
float feedflow = ZIN0(2);
float restoreflow = ZIN0(3);
float loss = ZIN0(4);
float dt= cell->dt;
if(minflow<0.f) minflow=0.f;
if(minflow>20000.f) minflow= 20000.f;
if(feedflow<0.f) feedflow=0.f;
if(feedflow>20000.f) feedflow= 20000.f;
if(restoreflow<0.f) restoreflow=0.f;
if(restoreflow>20000.f) restoreflow= 20000.f;
if(loss<0.f) loss=0.f;
if(loss>1.0f) loss= 1.0f;
cell->loss = loss;
//
cell->minflow = dt*2.8284271247462f*minflow; //compensation for half cycle and RMS
cell->feedflow = dt*2.8284271247462f*feedflow;
cell->restoreflow = dt*restoreflow;
//
unit->cell->compute( input, output, inNumSamples );
//} else
// ClearUnitOutputs(unit, inNumSamples);
}
//assumes audio rate, else auditory frequencies make less sense
void Gammatone_Ctor(Gammatone* unit) {
for(int i=0; i<4; ++i) {
unit->oldreal[i]=0.0;
unit->oldimag[i]=0.0;
}
float centrefrequency= ZIN0(1);
float bandwidth= ZIN0(2);
float samplingrate = unit->mRate->mSampleRate;
double samplingperiod= 1.0/samplingrate;
float nyquist= samplingrate*0.5;
if (centrefrequency< 20.0) centrefrequency = 20.0;
if (centrefrequency>nyquist) centrefrequency = nyquist;
if ((centrefrequency-(0.5*bandwidth))<1.0) bandwidth = 2.0*(centrefrequency-1.0);
//if ((centrefrequency+(0.5*bandwidth))>nyquist) bandwidth =
if (bandwidth>nyquist) bandwidth= nyquist; //assuming there is even room!
unit->centrefrequency = centrefrequency;
//actually need to convert ERBs to 3dB bandwidth
bandwidth= 0.887*bandwidth; //converting to 3dB bandwith in Hz, //PH96 pg 3
unit->bandwidth= bandwidth;
// filter coefficients to calculate, p.435 hohmann paper
double beta= 6.2831853071796*centrefrequency*samplingperiod;
double phi= 3.1415926535898*bandwidth*samplingperiod;
double p= (1.6827902832904*cos(phi) -2)*6.3049771007832;
double lambda= (p*(-0.5))-(sqrt(p*p*0.25-1.0));
unit->reala= lambda*cos(beta);
unit->imaga= lambda*sin(beta);
//avoid b= 0 or Nyquist, otherise must remove factor of 2.0 here
unit->normalisation= 2.0*(pow(1-fabs(lambda),4));
//printf("set-up gammatone filter %f %f %f %f %f \n",centrefrequency, bandwidth, unit->normalisation, unit->reala, unit->imaga);
SETCALC(Gammatone_next);
}
// this is a function for preventing pathological math operations in ugens.
// can be used at the end of a block to fix any recirculating filter values.
//inline float zapgremlins(float x)
//{
// float absx = fabs(x);
// // very small numbers fail the first test, eliminating denormalized numbers
// // (zero also fails the first test, but that is OK since it returns zero.)
// // very large numbers fail the second test, eliminating infinities
// // Not-a-Numbers fail both tests and are eliminated.
// return (absx > (float)1e-15 && absx < (float)1e15) ? x : (float)0.;
//}
void Gammatone_next(Gammatone *unit, int inNumSamples) {
int i,j;
float *input = IN(0);
float *output = OUT(0);
double newreal, newimag;
double * oldreal = &(unit->oldreal[0]);
double * oldimag = &(unit->oldimag[0]);
double reala = unit->reala;
double imaga = unit->imaga;
double normalisation = unit->normalisation;
for (i=0; i<inNumSamples; ++i) {
newreal= input[i]; //real input
newimag=0.0;
for (j=0; j<4; ++j) {
newreal= newreal + (reala*oldreal[j])-(imaga*oldimag[j]);
newimag= newimag + (reala*oldimag[j])+(imaga*oldreal[j]);
oldreal[j]= newreal; //zapgremlins(newreal); //trying to avoid denormals which mess up processing via underflow
oldimag[j]= newimag; //zapgremlins(newimag);
}
output[i]= newreal*normalisation;
//imaginary output too could be useful
}
//printf("testing a %f %f %f %f \n",newreal, newimag, normalisation, output[0]);
}
//void Gammatone_Dtor(Gammatone* unit) {
//
//
//}
PluginLoad(AuditoryModeling) {
ft = inTable;
//DefineSimpleCantAliasUnit(PitchNoteUGen);
DefineSimpleUnit(Gammatone);
DefineDtorCantAliasUnit(Meddis);
DefineDtorCantAliasUnit(HairCell);
//see http://www.listarc.bham.ac.uk/lists/sc-dev-2003/msg03275.html
//DefinePlugInCmd; at scope of whole plugin
//DefineUnitCmd; at scope of single UGen; I believe which node is passed in so can be specific to one running instance
}
|