1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
|
#include "SC_PlugIn.h"
static InterfaceTable *ft;
struct Logger : public Unit
{
float m_prevtrig, m_prevreset;
unsigned int m_writepos;
// Also the Buffer stuff used by BufWr
float m_fbufnum;
SndBuf *m_buf;
bool m_maypost, m_notfull;
};
struct ListTrig : public Unit
{
float m_prevreset;
unsigned int m_bufpos;
double m_timepos, m_timeincrement;
float m_fbufnum;
SndBuf *m_buf;
};
struct ListTrig2 : public Unit
{
float m_prevreset;
unsigned int m_bufpos;
double m_timepos, m_timeincrement;
float m_fbufnum;
SndBuf *m_buf;
};
struct GaussClass : public Unit
{
int m_numdims, m_numclasses, m_numnumsperclass;
float *m_indata;
float *m_centred; // data after mean-removal
float m_result, m_fbufnum;
SndBuf *m_buf;
};
struct BufMax : public Unit
{
float m_fbufnum;
SndBuf *m_buf;
float m_bestval;
float m_bestpos;
};
struct BufMin : BufMax {};
struct ArrayMax : public Unit {};
struct ArrayMin : ArrayMax {};
/*
const size_t MIDelay_numbins = 6;
struct MIDelay : public Unit
{
uint32 *m_xbins, *m_ybins, *m_xybins;
int m_mindly, m_maxdly;
float m_bestval, m_bestpos;
float *m_in1, *m_in2, *m_cutoffs1, *m_cutoffs2;
size_t m_inbufsize;
};
*/
//////////////////////////////////////////////////////////////////
extern "C"
{
void load(InterfaceTable *inTable);
void Logger_Ctor(Logger* unit);
void Logger_next(Logger *unit, int inNumSamples);
void ListTrig_Ctor(ListTrig* unit);
void ListTrig_next(ListTrig *unit, int inNumSamples);
void ListTrig2_Ctor(ListTrig2* unit);
void ListTrig2_next(ListTrig2 *unit, int inNumSamples);
void GaussClass_Ctor(GaussClass* unit);
void GaussClass_next(GaussClass *unit, int inNumSamples);
void GaussClass_Dtor(GaussClass* unit);
void BufMax_Ctor(BufMax* unit);
void BufMax_next(BufMax *unit, int inNumSamples);
void BufMin_Ctor(BufMin* unit);
void BufMin_next(BufMin *unit, int inNumSamples);
void ArrayMax_Ctor(ArrayMax* unit);
void ArrayMax_next(ArrayMax *unit, int inNumSamples);
void ArrayMin_Ctor(ArrayMin* unit);
void ArrayMin_next(ArrayMin *unit, int inNumSamples);
//void MIDelay_Ctor(MIDelay* unit);
//void MIDelay_next(MIDelay *unit, int inNumSamples);
//void MIDelay_Dtor(MIDelay* unit);
};
//////////////////////////////////////////////////////////////////
#define GET_BUF_ALTERED \
float fbufnum = ZIN0(0); \
bool justInitialised = false; \
if (fbufnum != unit->m_fbufnum) { \
uint32 bufnum = (int)fbufnum; \
World *world = unit->mWorld; \
if (bufnum >= world->mNumSndBufs) { \
int localBufNum = bufnum - world->mNumSndBufs; \
Graph *parent = unit->mParent; \
if(localBufNum <= parent->localBufNum) { \
unit->m_buf = parent->mLocalSndBufs + localBufNum; \
} else { \
bufnum = 0; \
unit->m_buf = world->mSndBufs + bufnum; \
} \
} else { \
unit->m_buf = world->mSndBufs + bufnum; \
} \
unit->m_fbufnum = fbufnum; \
justInitialised = true; \
} \
SndBuf *buf = unit->m_buf; \
float *bufData __attribute__((__unused__)) = buf->data; \
uint32 bufChannels __attribute__((__unused__)) = buf->channels; \
uint32 bufSamples __attribute__((__unused__)) = buf->samples; \
uint32 bufFrames = buf->frames; \
int mask __attribute__((__unused__)) = buf->mask; \
int guardFrame __attribute__((__unused__)) = bufFrames - 2;
#define CHECK_BUF \
if (!bufData) { \
unit->mDone = true; \
ClearUnitOutputs(unit, inNumSamples); \
return; \
}
#define SETUP_IN(offset) \
uint32 numInputs = unit->mNumInputs - (uint32)offset; \
if (numInputs != bufChannels) { \
unit->mDone = true; \
ClearUnitOutputs(unit, inNumSamples); \
return; \
} \
float *in[64]; \
for (uint32 i=0; i<numInputs; ++i) in[i] = ZIN(i+offset);
//////////////////////////////////////////////////////////////////
void Logger_Ctor(Logger* unit)
{
SETCALC(Logger_next);
// a la BufWr
unit->m_fbufnum = -1e9f;
unit->m_prevtrig = 0.f;
unit->m_prevreset = 0.f;
unit->m_writepos = 0;
unit->m_maypost = (unit->mWorld->mVerbosity >= 0);
//Logger_next(unit, 1);
ClearUnitOutputs(unit, 1);
}
void Logger_next(Logger *unit, int inNumSamples)
{
float trig = ZIN0(1);
float reset = ZIN0(2);
float prevtrig = unit->m_prevtrig;
float prevreset = unit->m_prevreset;
unsigned int writepos = unit->m_writepos; // The write position (takes account of num channels)
// Stuff a la BufWr - NB I have modified GET_BUF slightly
GET_BUF_ALTERED
CHECK_BUF
SETUP_IN(3)
float* table0 = bufData + writepos;
// First, handle reset
if(justInitialised || (reset > 0.f && prevreset <= 0.f)){
writepos = 0;
unit->m_notfull = true;
memset(bufData, 0, bufChannels * bufFrames * sizeof(float));
}
// Now check for trigger
if(unit->m_notfull && trig > 0.f && prevtrig <= 0.f){
if(writepos == bufChannels * bufFrames){
unit->m_notfull = false;
if(unit->m_maypost){
Print("Logger.kr warning: Buffer full, dropped values: first channel %g\n", *in[0]);
}
}else{
for(uint32 i=0; i<numInputs; ++i){
table0[i] = *++(in[i]);
}
writepos += numInputs;
}
}
// Store state
unit->m_prevtrig = trig;
unit->m_prevreset = reset;
unit->m_writepos = writepos;
ZOUT0(0) = unit->m_notfull ? 1.f : 0.f;
}
////////////////////////////////////////////////////////////////////
void ListTrig_Ctor(ListTrig* unit)
{
SETCALC(ListTrig_next);
unit->m_fbufnum = -1e9f;
unit->m_prevreset = 0.f;
unit->m_bufpos = 0;
unit->m_timepos = 0.0 - (double)ZIN0(2);
unit->m_timeincrement = (double)BUFDUR;
//Print("ListTrig: time increment set to %g, i.e. freq of %g/s", unit->m_timeincrement, 1.0/unit->m_timeincrement);
ClearUnitOutputs(unit, 1);
}
void ListTrig_next(ListTrig *unit, int inNumSamples)
{
float reset = ZIN0(1);
unsigned int numframes = (unsigned int)ZIN0(3);
float prevreset = unit->m_prevreset;
unsigned int bufpos = unit->m_bufpos; // The readback position
double timepos = unit->m_timepos;
double timeinc = unit->m_timeincrement;
float out = 0.f;
// Stuff a la BufWr - NB I have modified GET_BUF slightly
GET_BUF
CHECK_BUF
// First, handle reset
if(reset > 0.f && prevreset <= 0.f){
bufpos = 0;
timepos = 0.0 - (double)ZIN0(2);
}
if(bufpos<numframes){
float* table0 = bufData + bufpos;
if(table0[0] <= (float)timepos){
out = 1.f;
// Also increment buffer read position until we're either at the end of the buffer, or we've found a "future" value
while((bufpos<numframes) && (table0[0] <= (float)timepos)){
bufpos++;
table0 = bufData + bufpos;
}
}
}
// Store state
unit->m_prevreset = reset;
unit->m_bufpos = bufpos;
unit->m_timepos = timepos + timeinc; // Shift time on to what it will be on the next go
ZOUT0(0) = out;
}
////////////////////////////////////////////////////////////////////
/** ListTrig2 by nescivi
Does the same as ListTrig but instead of absolute times the buffer contains intervals
*/
void ListTrig2_Ctor(ListTrig2* unit)
{
SETCALC(ListTrig2_next);
unit->m_fbufnum = -1e9f;
unit->m_prevreset = 0.f;
unit->m_bufpos = 0;
unit->m_timepos = 0.0;
unit->m_timeincrement = (double)BUFDUR;
//Print("ListTrig: time increment set to %g, i.e. freq of %g/s", unit->m_timeincrement, 1.0/unit->m_timeincrement);
ClearUnitOutputs(unit, 1);
}
void ListTrig2_next(ListTrig2 *unit, int inNumSamples)
{
float reset = ZIN0(1);
unsigned int numframes = (unsigned int)ZIN0(2);
float prevreset = unit->m_prevreset;
unsigned int bufpos = unit->m_bufpos; // The readback position
double timepos = unit->m_timepos;
double timeinc = unit->m_timeincrement;
float out = 0.f;
// Stuff a la BufWr - NB I have modified GET_BUF slightly
GET_BUF
CHECK_BUF
// First, handle reset
if(reset > 0.f && prevreset <= 0.f){
bufpos = 0;
timepos = 0.0;
}
if(bufpos<numframes){
float* table0 = bufData + bufpos;
if(table0[0] <= (float)timepos){
out = 1.f;
// reset timepos to zero
timepos = 0.f;
// Also increment buffer read position until we're either at the end of the buffer, or we've found a "future" value
if( bufpos<numframes ){
bufpos++;
}
}
}
// Store state
unit->m_prevreset = reset;
unit->m_bufpos = bufpos;
unit->m_timepos = timepos + timeinc; // Shift time on to what it will be on the next go
ZOUT0(0) = out;
}
////////////////////////////////////////////////////////////////////
void GaussClass_Ctor(GaussClass* unit)
{
SETCALC(GaussClass_next);
// The dimensionality is specified by the dimensionality of inputs, appended to params
int numdims = unit->mNumInputs - 2;
unit->m_numdims = numdims;
unit->m_numclasses = 0; // This will be filled in when the buffer first arrives
unit->m_numnumsperclass = numdims*numdims + numdims + 1;
unit->m_indata = (float*)RTAlloc(unit->mWorld, numdims * sizeof(float));
unit->m_centred = (float*)RTAlloc(unit->mWorld, numdims * sizeof(float));
unit->m_result = 0.f;
unit->m_fbufnum = -1e9f;
ClearUnitOutputs(unit, 1);
}
// Exponent for any Gaussian PDF. The (inverted) covariance matrix is in row-first order.
inline double GaussClass_exponent(const int numdims, const float *centred, const float *invcov);
inline double GaussClass_exponent(const int numdims, const float *centred, const float *invcov){
int covpos = -1;
double sum=0., partial;
for(int i=0; i<numdims; ){
partial=0.;
for(int j=0; j<numdims; ){
partial += centred[j++] * invcov[++covpos];
}
sum += partial * centred[i++];
}
return sum * -0.5;
}
void GaussClass_next(GaussClass *unit, int inNumSamples)
{
if(ZIN0(1)>0.f){ // If gate>0
int numdims = unit->m_numdims;
int numnumsperclass = unit->m_numnumsperclass;
// Do the GET_BUF-like bit
float fbufnum = ZIN0(0);
if (fbufnum != unit->m_fbufnum) {
uint32 bufnum = (int)fbufnum;
World *world = unit->mWorld;
if (bufnum >= world->mNumSndBufs) bufnum = 0;
unit->m_fbufnum = fbufnum;
unit->m_buf = world->mSndBufs + bufnum;
uint32 bufFrames = unit->m_buf->frames;
if(unit->m_buf->channels != 1 && world->mVerbosity > -1){
Print("GaussClass: warning, Buffer should be single-channel\n");
}
// Infer the number of classes:
unit->m_numclasses = bufFrames / numnumsperclass;
}
SndBuf *buf = unit->m_buf;
float *bufData = buf->data;
CHECK_BUF
int numclasses = unit->m_numclasses;
float *indata = unit->m_indata;
float *centred = unit->m_centred;
// Grab the input data
for(int i=0; i<numdims; ++i){
indata[i] = ZIN0(i + 2);
}
// Locations of the (first) class's data, these will be incremented
float *mean = bufData;
float *invcov = bufData + numdims;
float *weightoversqrtdetcov = bufData + numnumsperclass - 1;
// Iterate the classes, calculating the score
int winningclass=0;
double winningclassscore=0.;
double curscore;
for(int i=0; i<numclasses; ++i){
// Centre the input data on the current gaussian
for(int j=0; j<numdims; ++j){
centred[j] = indata[j] - mean[j];
}
// Now calculate the score, see if we've won
curscore = (*weightoversqrtdetcov)
* exp(GaussClass_exponent(numdims, centred, invcov));
if(curscore > winningclassscore){
winningclassscore = curscore;
winningclass = i;
}
// Increment pointers for the next class
mean += numnumsperclass;
invcov += numnumsperclass;
weightoversqrtdetcov += numnumsperclass;
}
// Store the winner
unit->m_result = (float)winningclass;
} // end gate check
ZOUT0(0) = unit->m_result;
}
void GaussClass_Dtor(GaussClass* unit)
{
RTFree(unit->mWorld, unit->m_indata );
RTFree(unit->mWorld, unit->m_centred);
}
////////////////////////////////////////////////////////////////////
void BufMax_Ctor(BufMax* unit)
{
SETCALC(BufMax_next);
unit->m_fbufnum = -1e9f;
unit->m_bestval = 0.f;
unit->m_bestpos = 0;
BufMax_next(unit, 1);
}
void BufMax_next(BufMax *unit, int inNumSamples)
{
bool gate = ZIN0(1) > 0.f;
GET_BUF
CHECK_BUF
// Print("BufMax: fbufnum %g, gate %i\n", fbufnum, gate);
float bestval = unit->m_bestval;
uint32 bestpos = unit->m_bestpos;
if(gate){
bestval = -INFINITY;
bestpos = 0;
for(uint32 i=0; i<bufSamples; ++i){
if(bestval < bufData[i]){
bestval = bufData[i];
bestpos = i;
}
}
// Store result
unit->m_bestval = bestval;
unit->m_bestpos = bestpos;
}
ZOUT0(0) = bestval;
ZOUT0(1) = bestpos;
}
////////////////////////////////////////////////////////////////////
void BufMin_Ctor(BufMin* unit)
{
SETCALC(BufMin_next);
unit->m_fbufnum = -1e9f;
unit->m_bestval = 0.f;
unit->m_bestpos = 0;
BufMin_next(unit, 1);
}
void BufMin_next(BufMin *unit, int inNumSamples)
{
bool gate = ZIN0(1) > 0.f;
GET_BUF
CHECK_BUF
float bestval = unit->m_bestval;
uint32 bestpos = unit->m_bestpos;
if(gate){
bestval = INFINITY;
bestpos = 0;
for(uint32 i=0; i<bufSamples; ++i){
if(bestval > bufData[i]){
bestval = bufData[i];
bestpos = i;
}
}
// Store result
unit->m_bestval = bestval;
unit->m_bestpos = bestpos;
}
ZOUT0(0) = bestval;
ZOUT0(1) = bestpos;
}
////////////////////////////////////////////////////////////////////
void ArrayMax_Ctor(ArrayMax* unit)
{
SETCALC(ArrayMax_next);
ArrayMax_next(unit, 1);
}
void ArrayMax_next(ArrayMax *unit, int inNumSamples)
{
float *out0 = ZOUT(0);
float *out1 = ZOUT(1);
uint16 numInputs = unit->mNumInputs;
float val, bestval;
uint16 bestpos;
for(int j=0; j<inNumSamples; ++j){
bestval = -INFINITY;
bestpos = 0;
for(uint16 i=0; i<numInputs; ++i){
val = IN(i)[j];
if(bestval < val){
bestval = val;
bestpos = i;
}
}
ZXP(out0) = bestval;
ZXP(out1) = (float)bestpos;
}
}
//////////
void ArrayMin_Ctor(ArrayMin* unit)
{
SETCALC(ArrayMin_next);
ArrayMin_next(unit, 1);
}
void ArrayMin_next(ArrayMin *unit, int inNumSamples)
{
float *out0 = ZOUT(0);
float *out1 = ZOUT(1);
uint16 numInputs = unit->mNumInputs;
float val, bestval;
uint16 bestpos;
for(int j=0; j<inNumSamples; ++j){
bestval = INFINITY;
bestpos = 0;
for(uint16 i=0; i<numInputs; ++i){
val = IN(i)[j];
if(bestval > val){
bestval = val;
bestpos = i;
}
}
ZXP(out0) = bestval;
ZXP(out1) = (float)bestpos;
}
}
////////////////////////////////////////////////////////////////////
/*
void MIDelay_Ctor(MIDelay* unit)
{
SETCALC(MIDelay_next);
unit->m_bestval = 0.f;
unit->m_bestpos = 0.f;
// Decide (in samples) the lowest and highest delay, in samples (can be +ve or -ve)
unit->m_mindly = 0;//(int)(ZIN0(2) * SAMPLERATE);
unit->m_maxdly = (int)(ZIN0(2) * FULLRATE);
// Allocate the buffers for incoming audio
unit->m_inbufsize = sc_max(unit->m_maxdly, 0 - unit->m_mindly) * 2;
unit->m_in1 = (float*)RTAlloc(unit->mWorld, unit->m_inbufsize * sizeof(float));
unit->m_in2 = (float*)RTAlloc(unit->mWorld, unit->m_inbufsize * sizeof(float));
// Allocate space for the bins
unit->m_xbins = (uint32*)RTAlloc(unit->mWorld, MIDelay_numbins * sizeof(uint32));
unit->m_ybins = (uint32*)RTAlloc(unit->mWorld, MIDelay_numbins * sizeof(uint32));
unit->m_xybins = (uint32*)RTAlloc(unit->mWorld, MIDelay_numbins * MIDelay_numbins * sizeof(uint32));
// and for the cutoffs
unit->m_cutoffs1 = (float*)RTAlloc(unit->mWorld, MIDelay_numbins * sizeof(float));
unit->m_cutoffs2 = (float*)RTAlloc(unit->mWorld, MIDelay_numbins * sizeof(float));
ClearUnitOutputs(unit, 1);
}
void MIDelay_next(MIDelay *unit, int inNumSamples)
{
bool gate = ZIN0(3) > 0.f;
// Add new samples to the storage buffers
// (NB here we assume the buffers are at least large enough to hold inNumSamples)
float* in1 = unit->m_in1;
float* in2 = unit->m_in2;
size_t inbufsize = unit->m_inbufsize;
// inNumSamples isn't right!
inNumSamples = unit->mWorld->mFullRate.mBufLength;
memmove(in1, in1 + inNumSamples, (inbufsize - inNumSamples) * sizeof(float));
memmove(in2, in2 + inNumSamples, (inbufsize - inNumSamples) * sizeof(float));
Copy(inNumSamples, in1 + (inbufsize - inNumSamples), IN(0));
Copy(inNumSamples, in2 + (inbufsize - inNumSamples), IN(1));
if(gate){
// Iterate over the two buffers to find min and max
float min1 = INFINITY, min2 = INFINITY, max1 = -INFINITY, max2=-INFINITY;
for(size_t i=0; i<inbufsize; ++i){
if(min1 > in1[i]) min1 = in1[i];
if(min2 > in2[i]) min2 = in2[i];
if(max1 < in1[i]) max1 = in1[i];
if(max2 < in2[i]) max2 = in2[i];
}
// Print("min1 %g max1 %g min2 %g max2 %g\n", min1, max1, min2, max2);
if(min1==max1){
}else if(min2==max2){
}else{
// Establish the lists of boundaries
float* cutoffs1 = unit->m_cutoffs1;
float* cutoffs2 = unit->m_cutoffs2;
for(size_t i=0; i<MIDelay_numbins; ++i){
cutoffs1[i] = min1 + (max1 - min1) * (i+1) / MIDelay_numbins;
cutoffs2[i] = min2 + (max2 - min2) * (i+1) / MIDelay_numbins;
// Print("cutoffs1[%i] = %g, cutoffs2[%i] = %g\n", i, cutoffs1[i], i, cutoffs2[i]);
}
// Print("Expected total: %u\n", inbufsize);
uint32* xbins = unit->m_xbins;
uint32* ybins = unit->m_ybins;
// First zero the 1D bins
memset(xbins, 0, MIDelay_numbins);
memset(ybins, 0, MIDelay_numbins);
// Iterate over the joint buffers to accumulate the marginal bin subtotals
for(size_t i=0; i<inbufsize; ++i){
size_t x=0, y=0;
while(in1[i] > cutoffs1[x]) ++x;
while(in2[i] > cutoffs2[y]) ++y;
++xbins[x];
++ybins[y];
}
uint32* xybins = unit->m_xybins;
int mindly = unit->m_mindly, maxdly = unit->m_maxdly;
double bestmi=-INFINITY;
int bestdelta=0;
// Foreach shiftval:
for(int delta = mindly; delta < maxdly; ++delta){
// Zero the 2D bins
memset(xybins, 0, MIDelay_numbins * MIDelay_numbins);
// Print("xybins[0][0]: %u\n", *xybins);
// Get pointers to the buffers, shunted so as to represent the time shift
float *in1win, *in2win;
size_t winsize;
if(delta < 0){
in1win = in1 - delta;
in2win = in2;
winsize = inbufsize + delta;
}else{
in1win = in1;
in2win = in2 + delta;
winsize = inbufsize - delta;
}
// Iterate along a suitable region of the buffers, incrementing the 2D bins
uint32 x, y;
for(size_t i=0; i<winsize; ++i){
x=0, y=0;
while(in1win[i] > cutoffs1[x]) ++x;
while(in2win[i] > cutoffs2[y]) ++y;
// if(delta==0){
// printf("Item [%g, %g] goes in bin [%i, %i] (not smaller )\n", in1win[i], in2win[i], x, y);
// }
// Print("increment xybins[%u][%u] from value of %u\n", x, y, xybins[x * MIDelay_numbins + y]);
// note, x-val (chan 1) is the big leap
++xybins[x * MIDelay_numbins + y];
}
// Iterate the 2D bins, calculating the MI value
double mi = 0.;
for(size_t x=0; x < MIDelay_numbins; ++x){
for(size_t y=0; y < MIDelay_numbins; ++y){
// MI = sum of p(x,y) log [ p(x,y) / p(x)p(y) ]
// = sum of n(x,y)/winsize log [ N N n(x,y) / n(x)n(y)winsize ]
// if(delta==0){
// printf("%u,", xybins[x * MIDelay_numbins + y]);
// }
if(xybins[x * MIDelay_numbins + y] != 0){
// double logthing = winsize * xybins[x * MIDelay_numbins + y] / (xbins[x] * ybins[y]);
// mi += (xybins[x * MIDelay_numbins + y] / winsize)
// * log(logthing);
double logthing = inbufsize * (double)inbufsize * (double)xybins[x * MIDelay_numbins + y]
/
(xbins[x] * ybins[y] * (double)winsize);
mi += ((double)xybins[x * MIDelay_numbins + y] / (double)winsize)
* log(logthing);
}
}
// if(delta==0){
// printf("\n");
// }
}
Print("MI[%i]\t %g \n", delta, mi);
// If the MI value is the highest so far, store it and the current shift
if(bestmi < mi){
bestmi = mi;
bestdelta = delta;
}
} // end foreach shiftval
Print("Best MI was %g at offset %i (offset range was [%i, %i])\n", bestmi, bestdelta, mindly, maxdly);
//unit->m_bestval = bestmi;
unit->m_bestpos = bestdelta / SAMPLERATE;
} // end check for nonzero range
}
ZOUT0(0) = unit->m_bestpos;
}
void MIDelay_Dtor(MIDelay* unit)
{
if(unit->m_xbins){
RTFree(unit->mWorld, unit->m_xbins );
RTFree(unit->mWorld, unit->m_ybins );
RTFree(unit->mWorld, unit->m_xybins);
RTFree(unit->mWorld, unit->m_in1);
RTFree(unit->mWorld, unit->m_in2);
RTFree(unit->mWorld, unit->m_cutoffs1);
RTFree(unit->mWorld, unit->m_cutoffs2);
}
}
*/
//////////////////////////////////////////////////////////////////
PluginLoad(MCLDBuffer)
{
ft = inTable;
DefineSimpleUnit(Logger);
DefineSimpleUnit(ListTrig);
DefineSimpleUnit(ListTrig2);
DefineDtorUnit(GaussClass);
DefineSimpleUnit(BufMax);
DefineSimpleUnit(BufMin);
DefineSimpleUnit(ArrayMax);
DefineSimpleUnit(ArrayMin);
//DefineDtorUnit(MIDelay);
}
|