File: MCLDChaosUGens.cpp

package info (click to toggle)
supercollider-sc3-plugins 3.7.1~repack-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,332 kB
  • ctags: 11,704
  • sloc: cpp: 140,180; lisp: 14,746; ansic: 2,133; xml: 86; makefile: 82; haskell: 21; sh: 8
file content (640 lines) | stat: -rw-r--r-- 16,805 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
/*
 *  MCLDChaosUGens.cpp
 *  xSC3plugins
 *
 *  Chaos UGens by Dan Stowell.
 *  Partly based on Lance Putnam's chaos UGen work.
 *  Available under the terms of the GNU Public License (GPL).
 *
 */

#include "SC_PlugIn.h"
#define TWOPI 6.283185307179586
#define PI 3.141592653589793
#define RECPI 0.3183098861837907
#define RECTWOPI 0.1591549430918953
#define ONESIXTH 0.1666666666666667

// InterfaceTable contains pointers to functions in the host (server).
static InterfaceTable *ft;

struct NonLinear : public Unit {
	double x0, y0, xn, yn, xnm1, ynm1;
	float counter;
	//bool stable;
};

// declare struct to hold unit generator state
struct RosslerL : public NonLinear {
	double z0, zn, znm1, frac;
};
struct FincoSprottL : public NonLinear {
	double z0, zn, znm1, frac;
};
struct FincoSprottM : public NonLinear {
	double z0, zn, znm1, frac;
};
struct FincoSprottS : public NonLinear {
	double z0, zn, znm1, frac;
};

struct Perlin3 : Unit {
};

// declare unit generator functions
extern "C"
{
	void load(InterfaceTable *inTable);

	void RosslerL_next(RosslerL *unit, int inNumSamples);
	void RosslerL_Ctor(RosslerL *unit);

	void FincoSprottL_next(FincoSprottL *unit, int inNumSamples);
	void FincoSprottL_Ctor(FincoSprottL *unit);
	void FincoSprottM_next(FincoSprottM *unit, int inNumSamples);
	void FincoSprottM_Ctor(FincoSprottM *unit);
	void FincoSprottS_next(FincoSprottS *unit, int inNumSamples);
	void FincoSprottS_Ctor(FincoSprottS *unit);

	void Perlin3_next(Perlin3 *unit, int inNumSamples);
	void Perlin3_Ctor(Perlin3 *unit);
};

//////////////////////////////////////////////////////////////////

void RosslerL_next(RosslerL *unit, int inNumSamples)
{
	float *xout = ZOUT(0);
	float *yout = ZOUT(1);
	float *zout = ZOUT(2);
	float freq = ZIN0(0);
	double a = ZIN0(1);
	double b = ZIN0(2);
	double c = ZIN0(3);
	double h = ZIN0(4);
	double x0 = ZIN0(5);
	double y0 = ZIN0(6);
	double z0 = ZIN0(7);

	double xn = unit->xn;
	double yn = unit->yn;
	double zn = unit->zn;
	float counter = unit->counter;
	double xnm1 = unit->xnm1;
	double ynm1 = unit->ynm1;
	double znm1 = unit->znm1;
	double frac = unit->frac;

	float samplesPerCycle;
	double slope;
	if(freq < unit->mRate->mSampleRate){
		samplesPerCycle = unit->mRate->mSampleRate / sc_max(freq, 0.001f);
		slope = 1.f / samplesPerCycle;
	}
	else {
		samplesPerCycle = 1.f;
		slope = 1.f;
	}

	if((unit->x0 != x0) || (unit->y0 != y0) || (unit->z0 != z0)){
		xnm1 = xn;
		ynm1 = yn;
		znm1 = zn;
		unit->x0 = xn = x0;
		unit->y0 = yn = y0;
		unit->z0 = zn = z0;
	}

	double dx = xn - xnm1;
	double dy = yn - ynm1;
	double dz = zn - znm1;

	for (int i=0; i<inNumSamples; ++i) {
		if(counter >= samplesPerCycle){
			counter -= samplesPerCycle;
			frac = 0.f;

			xnm1 = xn;
			ynm1 = yn;
			znm1 = zn;

			double k1x, k2x, k3x, k4x,
				k1y, k2y, k3y, k4y,
				k1z, k2z, k3z, k4z,
				kxHalf, kyHalf, kzHalf;

			// 4th order Runge-Kutta approximate solution for differential equations
			k1x = - (h * (ynm1 + znm1));
			k1y = h * (xnm1 + a * ynm1);
			k1z = h * (b + znm1 * (xnm1 - c));
			kxHalf = k1x * 0.5;
			kyHalf = k1y * 0.5;
			kzHalf = k1z * 0.5;

			k2x = - (h * (ynm1 + kyHalf + znm1 + kzHalf));
			k2y = h * (xnm1 + kxHalf + a * (ynm1 + kyHalf));
			k2z = h * (b + (znm1 + kzHalf) * (xnm1 + kxHalf - c));
			kxHalf = k2x * 0.5;
			kyHalf = k2y * 0.5;
			kzHalf = k2z * 0.5;

			k3x = - (h * (ynm1 + kyHalf + znm1 + kzHalf));
			k3y = h * (xnm1 + kxHalf + a * (ynm1 + kyHalf));
			k3z = h * (b + (znm1 + kzHalf) * (xnm1 + kxHalf - c));

			k4x = - (h * (ynm1 + k3y + znm1 + k3z));
			k4y = h * (xnm1 + k3x + a * (ynm1 + k3y));
			k4z = h * (b + (znm1 + k3z) * (xnm1 + k3x - c));

			xn = xn + (k1x + 2.0*(k2x + k3x) + k4x) * ONESIXTH;
			yn = yn + (k1y + 2.0*(k2y + k3y) + k4y) * ONESIXTH;
			zn = zn + (k1z + 2.0*(k2z + k3z) + k4z) * ONESIXTH;

			dx = xn - xnm1;
			dy = yn - ynm1;
			dz = zn - znm1;
		}
		counter++;
		ZXP(xout) = (xnm1 + dx * frac) * 0.5f;
		ZXP(yout) = (ynm1 + dy * frac) * 0.5f;
		ZXP(zout) = (znm1 + dz * frac) * 1.0f;
		frac += slope;
	}

	unit->xn = xn;
	unit->yn = yn;
	unit->zn = zn;
	unit->counter = counter;
	unit->xnm1 = xnm1;
	unit->ynm1 = ynm1;
	unit->znm1 = znm1;
	unit->frac = frac;
}

void RosslerL_Ctor(RosslerL* unit){
	SETCALC(RosslerL_next);

	unit->x0 = unit->xn = unit->xnm1 = ZIN0(5);
	unit->y0 = unit->yn = unit->ynm1 = ZIN0(6);
	unit->z0 = unit->zn = unit->znm1 = ZIN0(7);
	unit->counter = 0.f;
	unit->frac = 0.f;

	RosslerL_next(unit, 1);
}


//////////////////////////////////////////////////////////////////


void FincoSprottL_next(FincoSprottL *unit, int inNumSamples)
{
	float *xout = ZOUT(0);
	float *yout = ZOUT(1);
	float *zout = ZOUT(2);
	float freq = ZIN0(0);
	double a = ZIN0(1);
	double h = ZIN0(2);
	double x0 = ZIN0(3);
	double y0 = ZIN0(4);
	double z0 = ZIN0(5);

	double xn = unit->xn;
	double yn = unit->yn;
	double zn = unit->zn;
	float counter = unit->counter;
	double xnm1 = unit->xnm1;
	double ynm1 = unit->ynm1;
	double znm1 = unit->znm1;
	double frac = unit->frac;

	float samplesPerCycle;
	double slope;
	if(freq < unit->mRate->mSampleRate){
		samplesPerCycle = unit->mRate->mSampleRate / sc_max(freq, 0.001f);
		slope = 1.f / samplesPerCycle;
	}
	else {
		samplesPerCycle = 1.f;
		slope = 1.f;
	}

	if((unit->x0 != x0) || (unit->y0 != y0) || (unit->z0 != z0)){
		xnm1 = xn;
		ynm1 = yn;
		znm1 = zn;
		unit->x0 = xn = x0;
		unit->y0 = yn = y0;
		unit->z0 = zn = z0;
	}

	double dx = xn - xnm1;
	double dy = yn - ynm1;
	double dz = zn - znm1;

	for (int i=0; i<inNumSamples; ++i) {
		if(counter >= samplesPerCycle){
			counter -= samplesPerCycle;
			frac = 0.f;

			xnm1 = xn;
			ynm1 = yn;
			znm1 = zn;

			double k1x, k2x, k3x, k4x,
				k1y, k2y, k3y, k4y,
				k1z, k2z, k3z, k4z,
				kxHalf, kyHalf, kzHalf;

			// 4th order Runge-Kutta approximate solution for differential equations

			k1x = h * (ynm1 + znm1);
			k1y = h * (a * sc_abs(xnm1) - ynm1);
			k1z = h * (1.0 - xnm1);
			kxHalf = k1x * 0.5;
			kyHalf = k1y * 0.5;
			kzHalf = k1z * 0.5;

			k2x = h * (ynm1 + kyHalf + znm1 + kzHalf);
			k2y = h * (a * sc_abs(xnm1 + kxHalf) - ynm1 - kyHalf);
			k2z = h * (1.0 - xnm1 - kxHalf);
			kxHalf = k2x * 0.5;
			kyHalf = k2y * 0.5;
			kzHalf = k2z * 0.5;

			k3x = h * (ynm1 + kyHalf + znm1 + kzHalf);
			k3y = h * (a * sc_abs(xnm1 + kxHalf) - ynm1 - kyHalf);
			k3z = h * (1.0 - xnm1 - kxHalf);

			k4x = h * (ynm1 + k3y + znm1 + k3z);
			k4y = h * (a * sc_abs(xnm1 + k3x) - ynm1 - k3y);
			k4z = h * (1.0 - xnm1 - k3x);

			xn = xn + (k1x + 2.0*(k2x + k3x) + k4x) * ONESIXTH;
			yn = yn + (k1y + 2.0*(k2y + k3y) + k4y) * ONESIXTH;
			zn = zn + (k1z + 2.0*(k2z + k3z) + k4z) * ONESIXTH;

			dx = xn - xnm1;
			dy = yn - ynm1;
			dz = zn - znm1;
		}
		counter++;
		ZXP(xout) = (xnm1 + dx * frac) * 0.5f;
		ZXP(yout) = (ynm1 + dy * frac) * 0.5f;
		ZXP(zout) = (znm1 + dz * frac) * 1.0f;
		frac += slope;
	}

	unit->xn = xn;
	unit->yn = yn;
	unit->zn = zn;
	unit->counter = counter;
	unit->xnm1 = xnm1;
	unit->ynm1 = ynm1;
	unit->znm1 = znm1;
	unit->frac = frac;
}

void FincoSprottL_Ctor(FincoSprottL* unit){
	SETCALC(FincoSprottL_next);

	unit->x0 = unit->xn = unit->xnm1 = ZIN0(3);
	unit->y0 = unit->yn = unit->ynm1 = ZIN0(4);
	unit->z0 = unit->zn = unit->znm1 = ZIN0(5);
	unit->counter = 0.f;
	unit->frac = 0.f;

	FincoSprottL_next(unit, 1);
}

//////////////////////////////////////////////////////////////////

void FincoSprottM_next(FincoSprottM *unit, int inNumSamples)
{
	float *xout = ZOUT(0);
	float *yout = ZOUT(1);
	float *zout = ZOUT(2);
	float freq = ZIN0(0);
	double a = ZIN0(1);
	double b = ZIN0(2);
	double h = ZIN0(3);
	double x0 = ZIN0(4);
	double y0 = ZIN0(5);
	double z0 = ZIN0(6);

	double xn = unit->xn;
	double yn = unit->yn;
	double zn = unit->zn;
	float counter = unit->counter;
	double xnm1 = unit->xnm1;
	double ynm1 = unit->ynm1;
	double znm1 = unit->znm1;
	double frac = unit->frac;

	float samplesPerCycle;
	double slope;
	if(freq < unit->mRate->mSampleRate){
		samplesPerCycle = unit->mRate->mSampleRate / sc_max(freq, 0.001f);
		slope = 1.f / samplesPerCycle;
	}
	else {
		samplesPerCycle = 1.f;
		slope = 1.f;
	}

	if((unit->x0 != x0) || (unit->y0 != y0) || (unit->z0 != z0)){
		xnm1 = xn;
		ynm1 = yn;
		znm1 = zn;
		unit->x0 = xn = x0;
		unit->y0 = yn = y0;
		unit->z0 = zn = z0;
	}

	double dx = xn - xnm1;
	double dy = yn - ynm1;
	double dz = zn - znm1;

	for (int i=0; i<inNumSamples; ++i) {
		if(counter >= samplesPerCycle){
			counter -= samplesPerCycle;
			frac = 0.f;

			xnm1 = xn;
			ynm1 = yn;
			znm1 = zn;

			double k1x, k2x, k3x, k4x,
				k1y, k2y, k3y, k4y,
				k1z, k2z, k3z, k4z,
				kxHalf, kyHalf, kzHalf;

			// 4th order Runge-Kutta approximate solution for differential equations

			k1x = h * (0.0 - znm1);
			k1y = h * (a * sc_abs(xnm1) - ynm1);
			k1z = h * (1.0 + b * xnm1 + ynm1);
			kxHalf = k1x * 0.5;
			kyHalf = k1y * 0.5;
			kzHalf = k1z * 0.5;

			k2x = h * (0.0 - znm1 - kzHalf);
			k2y = h * (a * sc_abs(xnm1 + kxHalf) - ynm1 - kyHalf);
			k2z = h * (1.0 + b * (xnm1 + kxHalf) + ynm1 + kyHalf);
			kxHalf = k2x * 0.5;
			kyHalf = k2y * 0.5;
			kzHalf = k2z * 0.5;

			k3x = h * (0.0 - znm1 - kzHalf);
			k3y = h * (a * sc_abs(xnm1 + kxHalf) - ynm1 - kyHalf);
			k3z = h * (1.0 + b * (xnm1 + kxHalf) + ynm1 + kyHalf);

			k4x = h * (0.0 - znm1 - k3z);
			k4y = h * (a * sc_abs(xnm1 + k3x) - ynm1 - k3y);
			k4z = h * (1.0 + b * (xnm1 + k3x) + ynm1 + k3y);

			xn = xn + (k1x + 2.0*(k2x + k3x) + k4x) * ONESIXTH;
			yn = yn + (k1y + 2.0*(k2y + k3y) + k4y) * ONESIXTH;
			zn = zn + (k1z + 2.0*(k2z + k3z) + k4z) * ONESIXTH;

			dx = xn - xnm1;
			dy = yn - ynm1;
			dz = zn - znm1;
		}
		counter++;
		ZXP(xout) = (xnm1 + dx * frac) * 0.5f;
		ZXP(yout) = (ynm1 + dy * frac) * 0.5f;
		ZXP(zout) = (znm1 + dz * frac) * 1.0f;
		frac += slope;
	}

	unit->xn = xn;
	unit->yn = yn;
	unit->zn = zn;
	unit->counter = counter;
	unit->xnm1 = xnm1;
	unit->ynm1 = ynm1;
	unit->znm1 = znm1;
	unit->frac = frac;
}

void FincoSprottM_Ctor(FincoSprottM* unit){
	SETCALC(FincoSprottM_next);

	unit->x0 = unit->xn = unit->xnm1 = ZIN0(3);
	unit->y0 = unit->yn = unit->ynm1 = ZIN0(4);
	unit->z0 = unit->zn = unit->znm1 = ZIN0(5);
	unit->counter = 0.f;
	unit->frac = 0.f;

	FincoSprottM_next(unit, 1);
}

//////////////////////////////////////////////////////////////////

void FincoSprottS_next(FincoSprottS *unit, int inNumSamples)
{
	float *xout = ZOUT(0);
	float *yout = ZOUT(1);
	float *zout = ZOUT(2);
	float freq = ZIN0(0);
	double a = ZIN0(1);
	double b = ZIN0(2);
	double h = ZIN0(3);
	double x0 = ZIN0(4);
	double y0 = ZIN0(5);
	double z0 = ZIN0(6);

	double xn = unit->xn;
	double yn = unit->yn;
	double zn = unit->zn;
	float counter = unit->counter;
	double xnm1 = unit->xnm1;
	double ynm1 = unit->ynm1;
	double znm1 = unit->znm1;
	double frac = unit->frac;

	float samplesPerCycle;
	double slope;
	if(freq < unit->mRate->mSampleRate){
		samplesPerCycle = unit->mRate->mSampleRate / sc_max(freq, 0.001f);
		slope = 1.f / samplesPerCycle;
	}
	else {
		samplesPerCycle = 1.f;
		slope = 1.f;
	}

	if((unit->x0 != x0) || (unit->y0 != y0) || (unit->z0 != z0)){
		xnm1 = xn;
		ynm1 = yn;
		znm1 = zn;
		unit->x0 = xn = x0;
		unit->y0 = yn = y0;
		unit->z0 = zn = z0;
	}

	double dx = xn - xnm1;
	double dy = yn - ynm1;
	double dz = zn - znm1;

	for (int i=0; i<inNumSamples; ++i) {
		if(counter >= samplesPerCycle){
			counter -= samplesPerCycle;
			frac = 0.f;

			xnm1 = xn;
			ynm1 = yn;
			znm1 = zn;

			double k1x, k2x, k3x, k4x,
				k1y, k2y, k3y, k4y,
				k1z, k2z, k3z, k4z,
				kxHalf, kyHalf, kzHalf;

			// 4th order Runge-Kutta approximate solution for differential equations

			k1x = h * (0.0 - (xnm1 + a * ynm1));
			k1y = h * (xnm1 + b * sc_abs(znm1));
			k1z = h * (xnm1 + 1.0);
			kxHalf = k1x * 0.5;
			kyHalf = k1y * 0.5;
			kzHalf = k1z * 0.5;

			k2x = h * (0.0 - (xnm1 + kxHalf + a * (ynm1 + kyHalf)));
			k2y = h * (xnm1 + kxHalf + b * sc_abs(znm1 + kzHalf));
			k2z = h * (xnm1 + kxHalf + 1.0);
			kxHalf = k2x * 0.5;
			kyHalf = k2y * 0.5;
			kzHalf = k2z * 0.5;

			k3x = h * (0.0 - (xnm1 + kxHalf + a * (ynm1 + kyHalf)));
			k3y = h * (xnm1 + kxHalf + b * sc_abs(znm1 + kzHalf));
			k3z = h * (xnm1 + kxHalf + 1.0);

			k4x = h * (0.0 - (xnm1 + k3x + a * (ynm1 + k3y)));
			k4y = h * (xnm1 + k3x + b * sc_abs(znm1 + k3z));
			k4z = h * (xnm1 + k3x + 1.0);

			xn = xn + (k1x + 2.0*(k2x + k3x) + k4x) * ONESIXTH;
			yn = yn + (k1y + 2.0*(k2y + k3y) + k4y) * ONESIXTH;
			zn = zn + (k1z + 2.0*(k2z + k3z) + k4z) * ONESIXTH;

			dx = xn - xnm1;
			dy = yn - ynm1;
			dz = zn - znm1;
		}
		counter++;
		ZXP(xout) = (xnm1 + dx * frac) * 0.5f;
		ZXP(yout) = (ynm1 + dy * frac) * 0.5f;
		ZXP(zout) = (znm1 + dz * frac) * 1.0f;
		frac += slope;
	}

	unit->xn = xn;
	unit->yn = yn;
	unit->zn = zn;
	unit->counter = counter;
	unit->xnm1 = xnm1;
	unit->ynm1 = ynm1;
	unit->znm1 = znm1;
	unit->frac = frac;
}

void FincoSprottS_Ctor(FincoSprottS* unit){
	SETCALC(FincoSprottS_next);

	unit->x0 = unit->xn = unit->xnm1 = ZIN0(3);
	unit->y0 = unit->yn = unit->ynm1 = ZIN0(4);
	unit->z0 = unit->zn = unit->znm1 = ZIN0(5);
	unit->counter = 0.f;
	unit->frac = 0.f;

	FincoSprottS_next(unit, 1);
}

//////////////////////////////////////////////////////////////////

// Perlin noise isn't chaos, I know. But I'm adding it to this collection anyway.
// Based on java code by Ken Perlin, published at http://mrl.nyu.edu/~perlin/noise/
static int p[512], permutation[256] = { 151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
};

static double fade(double t) { return t * t * t * (t * (t * 6. - 15.) + 10.); }
static double lerp(double t, double a, double b) { return a + t * (b - a); }
static double grad(int hash, double x, double y, double z) {
  int h = hash & 15;                      // CONVERT LO 4 BITS OF HASH CODE
  double u = h<8 ? x : y,                 // INTO 12 GRADIENT DIRECTIONS.
		 v = h<4 ? y : h==12||h==14 ? x : z;
  return ((h&1) == 0 ? u : -u) + ((h&2) == 0 ? v : -v);
}
double perlin_noise(double x, double y, double z) {
	int X = (int)std::floor(x) & 255,                  // FIND UNIT CUBE THAT
	  Y = (int)std::floor(y) & 255,                  // CONTAINS POINT.
	  Z = (int)std::floor(z) & 255;
	x -= std::floor(x);                                // FIND RELATIVE X,Y,Z
	y -= std::floor(y);                                // OF POINT IN CUBE.
	z -= std::floor(z);
	double u = fade(x),                                // COMPUTE FADE CURVES
		 v = fade(y),                                // FOR EACH OF X,Y,Z.
		 w = fade(z);
	int A = p[X  ]+Y, AA = p[A]+Z, AB = p[A+1]+Z,      // HASH COORDINATES OF
	  B = p[X+1]+Y, BA = p[B]+Z, BB = p[B+1]+Z;      // THE 8 CUBE CORNERS,

	return lerp(w, lerp(v, lerp(u, grad(p[AA  ], x  , y  , z   ),  // AND ADD
								 grad(p[BA  ], x-1, y  , z   )), // BLENDED
						 lerp(u, grad(p[AB  ], x  , y-1, z   ),  // RESULTS
								 grad(p[BB  ], x-1, y-1, z   ))),// FROM  8
				 lerp(v, lerp(u, grad(p[AA+1], x  , y  , z-1 ),  // CORNERS
								 grad(p[BA+1], x-1, y  , z-1 )), // OF CUBE
						 lerp(u, grad(p[AB+1], x  , y-1, z-1 ),
								 grad(p[BB+1], x-1, y-1, z-1 ))));
}



void Perlin3_next(Perlin3 *unit, int inNumSamples)
{
	float *x = IN(0), *y = IN(1), *z = IN(2), *out = OUT(0);
	for (int i=0; i<inNumSamples; ++i) {
		out[i] = perlin_noise(x[i], y[i], z[i]);
		//printf("result @[%g, %g, %g] is %g\n", x[i], y[i], z[i], out[i]);
	}
}

void Perlin3_Ctor(Perlin3* unit){
	SETCALC(Perlin3_next);
	Perlin3_next(unit, 1);
}

//////////////////////////////////////////////////////////////////


// the load function is called by the host when the plug-in is loaded
PluginLoad(MCLDChaos)
{
	ft = inTable;

	// perlin noise init
	for (int i=0; i < 256 ; i++) p[256+i] = p[i] = permutation[i];

	DefineSimpleUnit(RosslerL);
	DefineSimpleUnit(FincoSprottL);
	DefineSimpleUnit(FincoSprottM);
	DefineSimpleUnit(FincoSprottS);
	DefineSimpleUnit(Perlin3);
}

////////////////////////////////////////////////////////////////////