1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
#include "SC_PlugIn.h"
static InterfaceTable *ft;
struct InsideOut : public Unit
{
};
struct WaveLoss : public Unit
{
bool m_on;
int m_pos;
float m_prevval;
};
struct Squiz : public Unit
{
float *m_buf;
int m_buflen;
int m_writepos;
float m_readpos;
float m_prevval;
int m_zcsofar;
};
// declare unit generator functions
extern "C"
{
void load(InterfaceTable *inTable);
void InsideOut_next(InsideOut *unit, int inNumSamples);
void InsideOut_Ctor(InsideOut* unit);
void WaveLoss_next(WaveLoss *unit, int inNumSamples);
void WaveLoss_Ctor(WaveLoss* unit);
void Squiz_Ctor(Squiz* unit);
void Squiz_next(Squiz *unit, int inNumSamples);
void Squiz_Dtor(Squiz* unit);
};
//////////////////////////////////////////////////////////////////
void InsideOut_Ctor(InsideOut* unit)
{
SETCALC(InsideOut_next);
InsideOut_next(unit, 1);
}
void InsideOut_next(InsideOut *unit, int inNumSamples)
{
float *in = ZIN(0);
float *out = ZOUT(0);
float val;
for (int i=0; i < inNumSamples; ++i)
{
val = ZXP(in);
if(val>0.f)
ZXP(out) = 1.0f - val;
else if(val<0.f)
ZXP(out) = - 1.0f - val;
else
ZXP(out) = 0.f;
}
}
//////////////////////////////////////////////////////////////////
void WaveLoss_Ctor(WaveLoss* unit)
{
SETCALC(WaveLoss_next);
unit->m_on = true;
unit->m_pos = 0;
unit->m_prevval = 0.f;
WaveLoss_next(unit, 1);
}
void WaveLoss_next(WaveLoss *unit, int inNumSamples)
{
float *in = ZIN(0);
float *out = ZOUT(0);
bool on = unit->m_on; // Whether the current wave segment is being output
int pos = unit->m_pos; // Which "number" of wave segment we're on
float prevval = unit->m_prevval; // Used for checking for positivegoing zero crossings
int drop = (int)ZIN0(1);
int outof = (int)ZIN0(2);
int mode = (int)ZIN0(3);
float curval;
for (int i=0; i < inNumSamples; ++i)
{
curval = ZXP(in);
// If positive-going zero-crossing, this is a new segment.
if(prevval<0.f && curval>=0.f){
if(++pos >= outof){
pos = 0;
}
if(mode == 2){ // Random
on = (frand(unit->mParent->mRGen->s1, unit->mParent->mRGen->s2, unit->mParent->mRGen->s3)
>= ((float)drop / (float)outof));
}else{ // Nonrandom
on = (pos >= drop);
}
}
//Print("prevval: %g, curval: %g, on: %i, drop: %i, outof: %i, mode: %i\n", prevval, curval, on, drop, outof, mode);
// Now simply output... or don't...
ZXP(out) = on ? curval : 0.f;
prevval = curval;
}
// Store state
unit->m_on = on;
unit->m_pos = pos;
unit->m_prevval = prevval;
}
//////////////////////////////////////////////////////////////////
void Squiz_Ctor(Squiz* unit)
{
SETCALC(Squiz_next);
unit->m_buflen = (int)(ZIN0(3) * SAMPLERATE);
unit->m_writepos = 0;
unit->m_readpos = 0.f;
unit->m_prevval = 0.f;
unit->m_zcsofar = 0;
unit->m_buf = (float*) RTAlloc(unit->mWorld, unit->m_buflen * sizeof(float));
memset(unit->m_buf, 0, unit->m_buflen * sizeof(float));
Squiz_next(unit, 1);
}
void Squiz_next(Squiz *unit, int inNumSamples)
{
float *in = ZIN(0);
float *out = ZOUT(0);
float *buf = unit->m_buf;
int buflen = unit->m_buflen;
float ratio = sc_min(sc_max(ZIN0(1), 1.0f), (float)buflen); // pitch ratio; also === the sample-by-sample readback increment
int zcperchunk = (int)ZIN0(2);
int writepos = unit->m_writepos;
float prevval = unit->m_prevval; // Used for checking for positivegoing zero crossings
float readpos = unit->m_readpos; // Where in the buffer we're reading back from. Float value for accuracy, cast to uninterpolated int position though.
int zcsofar = unit->m_zcsofar;
float curval, outval;
int readposi;
for (int i=0; i < inNumSamples; ++i)
{
// First we read from the buffer
readposi = (int)readpos;
if(readposi >= buflen){
outval = 0.f;
}else{
outval = buf[readposi];
// postincrement the play-head position
readpos += ratio;
}
// Next we write to the buffer
curval = ZXP(in);
writepos++;
// If positive-going zero-crossing (or if buffer full), this is a new segment.
//Print("zcsofar: %i\n", zcsofar);
if((writepos==buflen) || (prevval<0.f && curval>=0.f && (++zcsofar >= zcperchunk))){
writepos = 0;
readpos = 0.f;
zcsofar = 0;
}
buf[writepos] = curval;
//Print("prevval: %g, curval: %g, on: %i, drop: %i, outof: %i, mode: %i\n", prevval, curval, on, drop, outof, mode);
// Now output the thing we read
ZXP(out) = outval;
prevval = curval;
}
// Store state
unit->m_writepos = writepos;
unit->m_readpos = readpos;
unit->m_prevval = prevval;
unit->m_zcsofar = zcsofar;
}
void Squiz_Dtor(Squiz* unit)
{
RTFree(unit->mWorld, unit->m_buf);
}
////////////////////////////////////////////////////////////////////
PluginLoad(MCLDDistortion)
{
ft = inTable;
DefineSimpleUnit(InsideOut);
DefineSimpleUnit(WaveLoss);
DefineDtorUnit(Squiz);
}
|