1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
|
/*
Self-Organising Map (SOM) UGens for SuperCollider, by Dan Stowell.
(c) Dan Stowell 2008, 2012.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "SC_PlugIn.h"
static InterfaceTable *ft;
// This struct holds things that both the trainer and the reader need to use
struct SOMUnit : public Unit
{
// The GET_BUF macro fills in these two:
float m_fbufnum;
SndBuf *m_buf;
float *m_inputdata; // Input data will be dropped in here for processing
int m_netsize, m_numdims, m_numinputdims;
int *m_bestcoords;
float m_reconsterror;
};
struct SOMTrain : public SOMUnit
{
int m_traindur, m_traincountdown, m_traincountup;
double m_nhood, m_nhooddelta/* , m_alpha, m_alphadelta*/;
float m_mfactor, m_weightfactor;
float m_writeloc; // The (flattened) location that we decided to write to, for fdbk to user.
};
struct SOMRd : public SOMUnit
{
};
struct SOMAreaWr : public SOMUnit
{
};
struct KMeansRT : public SOMUnit
{
bool m_learning;
};
// declare unit generator functions
extern "C"
{
void load(InterfaceTable *inTable);
void SOMTrain_Ctor(SOMTrain* unit);
void SOMTrain_Dtor(SOMTrain* unit);
void SOMTrain_next(SOMTrain *unit, int inNumSamples);
void SOMRd_Ctor(SOMRd* unit);
void SOMRd_next(SOMRd *unit, int inNumSamples);
void SOMRd_Dtor(SOMRd* unit);
void SOMAreaWr_Ctor(SOMAreaWr* unit);
void SOMAreaWr_next(SOMAreaWr *unit, int inNumSamples);
void SOMAreaWr_Dtor(SOMAreaWr* unit);
void KMeansRT_Ctor(KMeansRT* unit);
void KMeansRT_next(KMeansRT* unit, int inNumSamples);
void KMeansRT_Dtor(KMeansRT* unit);
};
//////////////////////////////////////////////////////////////////
// Collapse a multidim index position back down to a standard frame index
#define SOM_SERIALISEINDEX_1D(i0) (i0)
#define SOM_SERIALISEINDEX_2D(i0,i1) (i1 * netsize + i0)
#define SOM_SERIALISEINDEX_3D(i0,i1,i2) ((i2 * netsize + i1) * netsize + i0)
#define SOM_SERIALISEINDEX_4D(i0,i1,i2,i3) (((i3 * netsize + i2) * netsize + i1) * netsize + i0)
// How to get a reference to the intended Buffer frame, given the spatial coordinates
#define SOM_GETFRAME_1D(i0) (bufData + SOM_SERIALISEINDEX_1D(i0) * numinputdims)
#define SOM_GETFRAME_2D(i0,i1) (bufData + SOM_SERIALISEINDEX_2D(i0,i1) * numinputdims)
#define SOM_GETFRAME_3D(i0,i1,i2) (bufData + SOM_SERIALISEINDEX_3D(i0,i1,i2) * numinputdims)
#define SOM_GETFRAME_4D(i0,i1,i2,i3) (bufData + SOM_SERIALISEINDEX_4D(i0,i1,i2,i3) * numinputdims)
// Grabbing the buffer object contents. Note that some of this chunk is copied from GET_BUF
#define SOM_GET_BUF \
SndBuf *buf = unit->m_buf; \
float *bufData __attribute__((__unused__)) = buf->data; \
uint32 bufChannels __attribute__((__unused__)) = buf->channels; \
uint32 bufSamples __attribute__((__unused__)) = buf->samples; \
uint32 bufFrames __attribute__((__unused__)) = buf->frames; \
int numdims = unit->m_numdims; \
int numinputdims = unit->m_numinputdims; \
float* inputdata = unit->m_inputdata; \
int* bestcoords = unit->m_bestcoords; \
int netsize = unit->m_netsize;
// This constant affects the "shape" of the updating neighbourhood.
// When set at 0.0 the updating is "flat" - all units in the neighbourhood are updated to the same extent.
// When set at 1.0 the updating is "triangular" - update strength tails off linearly towards the edge of the neighbourhood.
// A compromise allows for plenty of learning but still concentrating the learning more strongly at the centre.
// #define LRNSCALE 0.0
#define LRNSCALE 0.3
// #define LRNSCALE 1.0
//////////////////////////////////////////////////////////////////
inline double SOM_findnearest_1d(float *bufData, float *inputdata, int *bestcoords, int netsize, int numinputdims);
inline double SOM_findnearest_2d(float *bufData, float *inputdata, int *bestcoords, int netsize, int numinputdims);
inline double SOM_findnearest_3d(float *bufData, float *inputdata, int *bestcoords, int netsize, int numinputdims);
inline double SOM_findnearest_4d(float *bufData, float *inputdata, int *bestcoords, int netsize, int numinputdims);
inline double SOM_findnearest_getdist(float *celldata, int numinputdims, float *inputdata);
inline void SOMTrain_updatenodes_1d(float *bufData, float *inputdata, int *bestcoords, int netsize, int numinputdims, double alpha, int nhoodi, int nhoodisq);
inline void SOMTrain_updatenodes_2d(float *bufData, float *inputdata, int *bestcoords, int netsize, int numinputdims, double alpha, int nhoodi, int nhoodisq);
inline void SOMTrain_updatenodes_3d(float *bufData, float *inputdata, int *bestcoords, int netsize, int numinputdims, double alpha, int nhoodi, int nhoodisq);
inline void SOMTrain_updatenodes_4d(float *bufData, float *inputdata, int *bestcoords, int netsize, int numinputdims, double alpha, int nhoodi, int nhoodisq);
inline void SOMTrain_updatenodes_update(float* celldata, int numinputdims, double alpha, float *inputdata);
// Some constructor stuff is common to all units
void SOM_Ctor_base(SOMUnit* unit, int inputsOffset);
void SOM_Ctor_base(SOMUnit* unit, int inputsOffset)
{
int netsize = (int)ZIN0(1);
int numdims = (int)ZIN0(2);
int numnodes = (int)pow(netsize, numdims);
// Infer the size of the "inputs" array which has been tagged on to the end of the arguments list.
int numinputdims = unit->mNumInputs - inputsOffset;
// Allocate a comfy bit of memory where we'll put the input data while we process it
unit->m_inputdata = (float*)RTAlloc(unit->mWorld, numinputdims * sizeof(float));
// And here's where we'll cache the net coord of the best-node-so-far
unit->m_bestcoords = (int*)RTAlloc(unit->mWorld, numdims * sizeof(int));
// Get the buffer reference, and check that the size and num channels matches what we expect.
unit->m_fbufnum = -1e9f;
GET_BUF
if((int)bufChannels != numinputdims){
Print("SOM_Ctor_base: number of channels in buffer (%i) != number of input dimensions (%i)\n",
bufChannels, numinputdims);
SETCALC(*ClearUnitOutputs);
return;
}
if((int)bufFrames != numnodes){
Print("SOM_Ctor_base: number of frames in buffer (%i) != requested number of nodes in net (%i)\n",
bufFrames, numnodes);
SETCALC(*ClearUnitOutputs);
return;
}
// initialize the unit generator state variables.
unit->m_netsize = netsize;
unit->m_numdims = numdims;
unit->m_numinputdims = numinputdims;
unit->m_reconsterror = 0.f;
}
void SOM_Dtor_base(SOMUnit* unit);
void SOM_Dtor_base(SOMUnit* unit)
{
RTFree(unit->mWorld, unit->m_inputdata);
RTFree(unit->mWorld, unit->m_bestcoords);
}
//////////////////////////////////////////////////////////////////
void SOMTrain_Ctor(SOMTrain* unit)
{
// set the calculation function. do this before the base ctor because it may want to change it!
SETCALC(SOMTrain_next);
SOM_Ctor_base(unit, 7); // 7 is the offset before we get input data
int traindur = (int)ZIN0(3);
int traincountdown = traindur; // Decrement by one on each occasion
double nhood = ZIN0(4) * (unit->m_netsize) * 0.5; // Neighbourhood size (fraction of total, here converted to span of nodes) to be included in a training update. Will decrement slowly.
// The reason we halve it is for convenience: we look nhood/2 in positive direction, nhood/2 in negative direction.
double nhooddelta = nhood / traindur; // This is how much it decrements by, each occasion.
float weightfactor = ZIN0(6); // Scaling factor for how much the node "bends" towards the datum
float mfactor = traindur * 0.25f; // Empirical scaling - weight falls to half of its value after 0.25 of the training
// initialize the unit generator state variables.
unit->m_traindur = traindur;
unit->m_traincountdown = traincountdown;
unit->m_traincountup = 0;
unit->m_nhood = nhood;
unit->m_nhooddelta = nhooddelta;
unit->m_weightfactor = weightfactor;
unit->m_mfactor = mfactor;
unit->m_writeloc = 0.f;
// calculate one sample of output.
ZOUT0(0) = 0.f;
ZOUT0(1) = 0.f;
}
void SOMTrain_next(SOMTrain *unit, int inNumSamples)
{
int traincountdown = unit->m_traincountdown;
if(ZIN0(5) > 0.f){ // If gate > 0
// Get the buffer and some other standard stuff...
SOM_GET_BUF
// Get data inputs
for(int chan=0; chan<numinputdims; ++chan){
inputdata[chan] = ZIN0(chan + 7);
}
// Get state from struct
float mfactor = unit->m_mfactor;
float weightfactor = unit->m_weightfactor;
//RM float alpha = (float)unit->m_alpha;
// get "nhood" as an integer, NB use ceil to make sure the neighbourhood errs on side of bigness
int nhoodi = (int)ceil(unit->m_nhood);
// squared distance comparisons are used in the neighbourhood-update function. The "plus one" is done so we can use "<" rather than "<=" later
int nhoodisq = nhoodi * nhoodi + 1;
// DO THE NEAREST-NEIGHBOUR SEARCH
switch(numdims){
case 1: unit->m_reconsterror = SOM_findnearest_1d(bufData, inputdata, bestcoords, netsize, numinputdims);
unit->m_writeloc = (float)SOM_SERIALISEINDEX_1D(bestcoords[0]);
break;
case 2: unit->m_reconsterror = SOM_findnearest_2d(bufData, inputdata, bestcoords, netsize, numinputdims);
unit->m_writeloc = (float)SOM_SERIALISEINDEX_2D(bestcoords[0], bestcoords[1]);
break;
case 3: unit->m_reconsterror = SOM_findnearest_3d(bufData, inputdata, bestcoords, netsize, numinputdims);
unit->m_writeloc = (float)SOM_SERIALISEINDEX_3D(bestcoords[0], bestcoords[1], bestcoords[2]);
break;
case 4: unit->m_reconsterror = SOM_findnearest_4d(bufData, inputdata, bestcoords, netsize, numinputdims);
unit->m_writeloc = (float)SOM_SERIALISEINDEX_4D(bestcoords[0], bestcoords[1], bestcoords[2], bestcoords[3]);
break;
}
if(traincountdown != 0){
//float alpha = weightfactor / (mfactor * unit->m_traincountup + 1.f); // mulier's approach
float alpha = weightfactor * mfactor / (mfactor + unit->m_traincountup); // dan's empirical approach
// UPDATE THE NODES
switch(numdims){
case 1: SOMTrain_updatenodes_1d(bufData, inputdata, bestcoords, netsize, numinputdims, alpha, nhoodi, nhoodisq); break;
case 2: SOMTrain_updatenodes_2d(bufData, inputdata, bestcoords, netsize, numinputdims, alpha, nhoodi, nhoodisq); break;
case 3: SOMTrain_updatenodes_3d(bufData, inputdata, bestcoords, netsize, numinputdims, alpha, nhoodi, nhoodisq); break;
case 4: SOMTrain_updatenodes_4d(bufData, inputdata, bestcoords, netsize, numinputdims, alpha, nhoodi, nhoodisq); break;
}
// Save state to struct.
unit->m_nhood = unit->m_nhood - unit->m_nhooddelta;
++(unit->m_traincountup);
unit->m_traincountdown = traincountdown = traincountdown - 1;
if(traincountdown==0){
unit->mDone = true;
}
} // End still-training-check
} // End gate check
ZOUT0(0) = traincountdown;
ZOUT0(1) = unit->m_reconsterror;
ZOUT0(2) = unit->m_writeloc;
}
void SOMTrain_Dtor(SOMTrain* unit)
{
SOM_Dtor_base(unit);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void SOMRd_Ctor(SOMRd* unit)
{
// set the calculation function. do this before the base ctor because it may want to change it!
SETCALC(SOMRd_next);
SOM_Ctor_base(unit, 4); // 4 is the offset before we get input data
ClearUnitOutputs(unit, 1);
}
void SOMRd_next(SOMRd *unit, int inNumSamples)
{
// Get the buffer and some other standard stuff...
SOM_GET_BUF
for(int i=0; i<inNumSamples; ++i){
if(IN(3)[i] > 0.f){ // If gate > 0
// Get data inputs, ALSO checking whether they've changed
bool inputchanged=false;
float chanval;
for(int chan=0; chan<numinputdims; ++chan){
chanval = IN(chan + 4)[i];
if(inputdata[chan] != chanval){
inputdata[chan] = chanval;
inputchanged = true;
}
}
if(inputchanged){
// DO THE NEAREST-NEIGHBOUR SEARCH
switch(numdims){
case 1: unit->m_reconsterror = SOM_findnearest_1d(bufData, inputdata, bestcoords, netsize, numinputdims); break;
case 2: unit->m_reconsterror = SOM_findnearest_2d(bufData, inputdata, bestcoords, netsize, numinputdims); break;
case 3: unit->m_reconsterror = SOM_findnearest_3d(bufData, inputdata, bestcoords, netsize, numinputdims); break;
case 4: unit->m_reconsterror = SOM_findnearest_4d(bufData, inputdata, bestcoords, netsize, numinputdims); break;
}
}
} // End gate check
// So now we output bestcoords, which has been filled in by the findnearest. bestcoords is the INDEX of the best node, in the SOM grid
switch(numdims){
// NOTE: the cases are SUPPOSED to fall through to each other here :) so no "break"
case 4: OUT(3)[i] = (float)bestcoords[3];
case 3: OUT(2)[i] = (float)bestcoords[2];
case 2: OUT(1)[i] = (float)bestcoords[1];
case 1: OUT(0)[i] = (float)bestcoords[0];
}
} // end loop inNumSamples
}
void SOMRd_Dtor(SOMRd* unit)
{
SOM_Dtor_base(unit);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// THE FIND-NEAREST-NEIGHBOUR FUNCTIONS
// Find closest cell, using simplistic iteration over nodes.
// Note: We store/compare SQUARED distances since that's more efficient.
#define SOM_findnearest_INIT \
double curdist, bestdist = INFINITY; \
float* celldata;
inline double SOM_findnearest_1d(float *bufData, float *inputdata, int *bestcoords, int netsize, int numinputdims){
SOM_findnearest_INIT
for(int i0 = 0; i0 < netsize; ++i0){
celldata = SOM_GETFRAME_1D(i0); // a float-pointer to the desired frame
curdist = SOM_findnearest_getdist(celldata, numinputdims, inputdata);
// OK, so curdist is the (squared) distance. But is it better?
if(curdist < bestdist){
bestdist = curdist;
bestcoords[0] = i0;
}
}
return bestdist;
}
inline double SOM_findnearest_2d(float *bufData, float *inputdata, int *bestcoords, int netsize, int numinputdims){
SOM_findnearest_INIT
for(int i0 = 0; i0 < netsize; ++i0){
for(int i1 = 0; i1 < netsize; ++i1){
celldata = SOM_GETFRAME_2D(i0, i1); // a float-pointer to the desired frame
curdist = SOM_findnearest_getdist(celldata, numinputdims, inputdata);
// OK, so curdist is the (squared) distance. But is it better?
if(curdist < bestdist){
bestdist = curdist;
bestcoords[0] = i0;
bestcoords[1] = i1;
}
}
}
return bestdist;
}
inline double SOM_findnearest_3d(float *bufData, float *inputdata, int *bestcoords, int netsize, int numinputdims){
SOM_findnearest_INIT
for(int i0 = 0; i0 < netsize; ++i0){
for(int i1 = 0; i1 < netsize; ++i1){
for(int i2 = 0; i2 < netsize; ++i2){
celldata = SOM_GETFRAME_3D(i0, i1, i2); // a float-pointer to the desired frame
curdist = SOM_findnearest_getdist(celldata, numinputdims, inputdata);
// OK, so curdist is the (squared) distance. But is it better?
if(curdist < bestdist){
bestdist = curdist;
bestcoords[0] = i0;
bestcoords[1] = i1;
bestcoords[2] = i2;
}
}
}
}
return bestdist;
}
inline double SOM_findnearest_4d(float *bufData, float *inputdata, int *bestcoords, int netsize, int numinputdims){
SOM_findnearest_INIT
for(int i0 = 0; i0 < netsize; ++i0){
for(int i1 = 0; i1 < netsize; ++i1){
for(int i2 = 0; i2 < netsize; ++i2){
for(int i3 = 0; i3 < netsize; ++i3){
celldata = SOM_GETFRAME_4D(i0, i1, i2, i3); // a float-pointer to the desired frame
curdist = SOM_findnearest_getdist(celldata, numinputdims, inputdata);
// OK, so curdist is the (squared) distance. But is it better?
if(curdist < bestdist){
bestdist = curdist;
bestcoords[0] = i0;
bestcoords[1] = i1;
bestcoords[2] = i2;
bestcoords[3] = i3;
}
}
}
}
}
return bestdist;
}
inline double SOM_findnearest_getdist(float *celldata, int numinputdims, float *inputdata){
double curdist = 0.0;
float dist1d;
switch(numinputdims){
// Unrolled versions for small input dimensionality
case 1:
dist1d = celldata[0] - inputdata[0];
curdist = dist1d * dist1d;
break;
case 2:
dist1d = celldata[0] - inputdata[0];
curdist = dist1d * dist1d;
dist1d = celldata[1] - inputdata[1];
curdist += dist1d * dist1d;
break;
case 3:
dist1d = celldata[0] - inputdata[0];
curdist = dist1d * dist1d;
dist1d = celldata[1] - inputdata[1];
curdist += dist1d * dist1d;
dist1d = celldata[2] - inputdata[2];
curdist += dist1d * dist1d;
break;
case 4:
dist1d = celldata[0] - inputdata[0];
curdist = dist1d * dist1d;
dist1d = celldata[1] - inputdata[1];
curdist += dist1d * dist1d;
dist1d = celldata[2] - inputdata[2];
curdist += dist1d * dist1d;
dist1d = celldata[3] - inputdata[3];
curdist += dist1d * dist1d;
break;
default:
// non-unrolled version, for any input dimensionality
for(int chan = 0; chan < numinputdims; ++chan){
dist1d = *celldata - inputdata[chan]; //[chan]; - instead of indexing use postincrement; "celldata" address moves through the channels
curdist = curdist + (dist1d * dist1d);
++celldata;
}
}
return curdist;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// THE NODE-UPDATING FUNCTIONS
// Determine the start and end points of the neighbourhood. NB "lo0" is the starting point but "hi0" is never reached
#define SOMTrain_UN_INITFORDIM(x) \
int lo##x, hi##x, i##x; \
lo##x = bestcoords[x] - nhoodi; \
if(lo##x < 0) \
lo##x = 0; \
hi##x = bestcoords[x] + nhoodi + 1; \
if(hi##x > netsize) \
hi##x = netsize;
inline void SOMTrain_updatenodes_1d(float *bufData, float *inputdata, int *bestcoords, int netsize, int numinputdims, double alpha, int nhoodi, int nhoodisq){
float* celldata;
int distsq;
SOMTrain_UN_INITFORDIM(0)
// Foreach cell in the NN's neighbourhood:
// NB "lo0" is the starting point but "hi0" is never reached
for(i0 = lo0; i0 < hi0; ++i0){
// NB for 1D, we don't need to narrow down from hypercubic region to hyperspherical region - they're the same
distsq = (i0-bestcoords[0]) * (i0-bestcoords[0]);
celldata = SOM_GETFRAME_1D(i0); // a float-pointer to the desired frame
SOMTrain_updatenodes_update(celldata, numinputdims, alpha * (1.0 - LRNSCALE * sqrt((double)distsq/nhoodisq)), inputdata);
}
}
inline void SOMTrain_updatenodes_2d(float *bufData, float *inputdata, int *bestcoords, int netsize, int numinputdims, double alpha, int nhoodi, int nhoodisq){
float* celldata;
int distsq;
SOMTrain_UN_INITFORDIM(0)
SOMTrain_UN_INITFORDIM(1)
// Foreach cell in the NN's neighbourhood:
// NB "lo0" is the starting point but "hi0" is never reached
for(i0 = lo0; i0 < hi0; ++i0){
for(i1 = lo1; i1 < hi1; ++i1){
if((distsq = (i0-bestcoords[0])*(i0-bestcoords[0]) + (i1-bestcoords[1])*(i1-bestcoords[1])) < nhoodisq){ // Narrow down from hypercubic region to hyperspherical region
celldata = SOM_GETFRAME_2D(i0, i1); // a float-pointer to the desired frame
SOMTrain_updatenodes_update(celldata, numinputdims, alpha * (1.0 - LRNSCALE * sqrt((double)distsq/nhoodisq)), inputdata);
}
}
}
}
inline void SOMTrain_updatenodes_3d(float *bufData, float *inputdata, int *bestcoords, int netsize, int numinputdims, double alpha, int nhoodi, int nhoodisq){
float* celldata;
int distsq;
SOMTrain_UN_INITFORDIM(0)
SOMTrain_UN_INITFORDIM(1)
SOMTrain_UN_INITFORDIM(2)
// Foreach cell in the NN's neighbourhood:
// NB "lo0" is the starting point but "hi0" is never reached
for(i0 = lo0; i0 < hi0; ++i0){
for(i1 = lo1; i1 < hi1; ++i1){
for(i2 = lo2; i2 < hi2; ++i2){
if((distsq = (i0-bestcoords[0])*(i0-bestcoords[0]) + (i1-bestcoords[1])*(i1-bestcoords[1]) + (i2-bestcoords[2])*(i2-bestcoords[2])) < nhoodisq){ // Narrow down from hypercubic region to hyperspherical region
celldata = SOM_GETFRAME_3D(i0, i1, i2); // a float-pointer to the desired frame
SOMTrain_updatenodes_update(celldata, numinputdims, alpha * (1.0 - LRNSCALE * sqrt((double)distsq/nhoodisq)), inputdata);
}
}
}
}
}
inline void SOMTrain_updatenodes_4d(float *bufData, float *inputdata, int *bestcoords, int netsize, int numinputdims, double alpha, int nhoodi, int nhoodisq){
float* celldata;
int distsq;
SOMTrain_UN_INITFORDIM(0)
SOMTrain_UN_INITFORDIM(1)
SOMTrain_UN_INITFORDIM(2)
SOMTrain_UN_INITFORDIM(3)
// Foreach cell in the NN's neighbourhood:
// NB "lo0" is the starting point but "hi0" is never reached
for(i0 = lo0; i0 < hi0; ++i0){
for(i1 = lo1; i1 < hi1; ++i1){
for(i2 = lo2; i2 < hi2; ++i2){
for(i3 = lo3; i3 < hi3; ++i3){
if((distsq = (i0-bestcoords[0])*(i0-bestcoords[0]) + (i1-bestcoords[1])*(i1-bestcoords[1]) + (i2-bestcoords[2])*(i2-bestcoords[2]) + (i3-bestcoords[3])*(i3-bestcoords[3])) < nhoodisq){ // Narrow down from hypercubic region to hyperspherical region
celldata = SOM_GETFRAME_4D(i0, i1, i2, i3); // a float-pointer to the desired frame
SOMTrain_updatenodes_update(celldata, numinputdims, alpha * (1.0 - LRNSCALE * sqrt((double)distsq/nhoodisq)), inputdata);
}
}
}
}
}
}
// Update a single node to "push" its vector towards the input values: data <--- data + alpha * (indata - data)
inline void SOMTrain_updatenodes_update(float* celldata, int numinputdims, double alpha, float *inputdata){
for(int chan=0; chan < numinputdims; ++chan){
// NB instead of indexing into the channels use postincrement; "celldata" address moves through the channels
*celldata = (*celldata) + alpha * (inputdata[chan] - *celldata);
++celldata;
}
}
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void SOMAreaWr_Ctor(SOMAreaWr* unit)
{
// set the calculation function. do this before the base ctor because it may want to change it!
SETCALC(SOMAreaWr_next);
int numdims = ZIN0(2);
SOM_Ctor_base(unit, 5 + numdims); // 5 is the offset before we get input data, plus "numdims" as a hacky way to make it infer the correct # of input dims
ClearUnitOutputs(unit, 1);
}
void SOMAreaWr_next(SOMAreaWr *unit, int inNumSamples)
{
// Get the buffer and some other standard stuff...
SOM_GET_BUF
int nhood = (int)ceil(sc_min(1.f, sc_max(0.f, ZIN0(3))) * (float)(netsize-1));
for(int i=0; i<inNumSamples; ++i){
if(IN(4)[i] > 0.f){ // If gate > 0
// Get data inputs
for(int chan=0; chan<numinputdims; ++chan){
inputdata[chan] = IN(chan + 5)[i];
}
// Get co-ords for writing, stored in the (cofusingly-named, here) "bestcoords"
for(int dim=0; dim<numdims; ++dim){
bestcoords[dim] = IN(dim + 5 + numinputdims)[i];
}
/*
Print("SOMAreaWr: writing [%g", inputdata[0]);
for(int k=1; k<numinputdims; ++k)
Print(", %g", inputdata[k]);
Print("] to [%i", bestcoords[0]);
for(int k=1; k<numdims; ++k)
Print(", %i", bestcoords[k]);
Print("] %i\n", nhood);
*/
size_t bytestowrite = numinputdims * sizeof(float);
// Now iterate: if cell is in the chosen neighbourhood, we overwrite
switch(numdims){
case 1:
for(int i0=sc_max(0, bestcoords[0]-nhood); i0<sc_min(netsize, bestcoords[0]+nhood+1); ++i0){
memcpy(SOM_GETFRAME_1D(i0), inputdata, bytestowrite);
}
break;
case 2:
for(int i0=sc_max(0, bestcoords[0]-nhood); i0<sc_min(netsize, bestcoords[0]+nhood+1); ++i0){
for(int i1=sc_max(0, bestcoords[1]-nhood); i1<sc_min(netsize, bestcoords[1]+nhood+1); ++i1){
memcpy(SOM_GETFRAME_2D(i0, i1), inputdata, bytestowrite);
}
}
break;
case 3:
for(int i0=sc_max(0, bestcoords[0]-nhood); i0<sc_min(netsize, bestcoords[0]+nhood+1); ++i0){
for(int i1=sc_max(0, bestcoords[1]-nhood); i1<sc_min(netsize, bestcoords[1]+nhood+1); ++i1){
for(int i2=sc_max(0, bestcoords[2]-nhood); i2<sc_min(netsize, bestcoords[2]+nhood+1); ++i2){
memcpy(SOM_GETFRAME_3D(i0, i1, i2), inputdata, bytestowrite);
}
}
}
break;
case 4:
for(int i0=sc_max(0, bestcoords[0]-nhood); i0<sc_min(netsize, bestcoords[0]+nhood+1); ++i0){
for(int i1=sc_max(0, bestcoords[1]-nhood); i1<sc_min(netsize, bestcoords[1]+nhood+1); ++i1){
for(int i2=sc_max(0, bestcoords[2]-nhood); i2<sc_min(netsize, bestcoords[2]+nhood+1); ++i2){
for(int i3=sc_max(0, bestcoords[3]-nhood); i3<sc_min(netsize, bestcoords[3]+nhood+1); ++i3){
memcpy(SOM_GETFRAME_4D(i0, i1, i2, i3), inputdata, bytestowrite);
}
}
}
}
break;
}
} // End gate check
} // end loop inNumSamples
}
void SOMAreaWr_Dtor(SOMAreaWr* unit)
{
SOM_Dtor_base(unit);
}
////////////////////////////////////////////////////////////////////
const int KMeansRT_inputsOffset = 5; // this unit has this many non-inputdata inputs
void KMeansRT_Ctor(KMeansRT* unit)
{
SETCALC(KMeansRT_next);
int k = (int)ZIN0(1); // like "netsize" in SOMs
// Infer the size of the "inputs" array which has been tagged on to the end of the arguments list.
int numinputdims = unit->mNumInputs - KMeansRT_inputsOffset;
// Allocate a comfy bit of memory where we'll put the input data while we process it
unit->m_inputdata = (float*)RTAlloc(unit->mWorld, numinputdims * sizeof(float));
// And here's where we'll cache the net coord of the best-node-so-far
unit->m_bestcoords = (int*)RTAlloc(unit->mWorld, 1 * sizeof(int));
// Get the buffer reference, and check that the size and num channels matches what we expect.
unit->m_fbufnum = -1e9f;
GET_BUF
if((int)bufChannels != numinputdims + 1){
Print("KMeansRT_Ctor: number of channels in buffer (%i) != number of input dimensions (%i) + 1\n",
bufChannels, numinputdims);
SETCALC(*ClearUnitOutputs);
return;
}
if((int)bufFrames != k){
Print("KMeansRT_Ctor: number of frames in buffer (%i) != requested number of clusters (%i)\n",
bufFrames, k);
SETCALC(*ClearUnitOutputs);
return;
}
bool learning = (ZIN0(4) > 0.f);
if(learning){
// Zero it out
Clear(bufFrames * bufChannels, bufData);
};
unit->m_learning = learning;
// initialize the unit generator state variables.
unit->m_netsize = k;
unit->m_numdims = 1;
unit->m_numinputdims = numinputdims;
unit->m_reconsterror = 0.f;
// calculate one sample of output
KMeansRT_next(unit, 1);
}
inline double KMeansRT_findnearest(float *bufData, float *inputdata, int *bestcoords, int k, int numinputdims){
// This function is related to SOM_findnearest_1d
SOM_findnearest_INIT
int bufnumchans = numinputdims + 1;
for(int i0 = 0; i0 < k; ++i0){
celldata = bufData + i0 * bufnumchans; // a float-pointer to the desired frame
// Note: unlike SOM*, McFee's algorithm for choosing the index is not pure nearest-neighbour -
// we must scale each squared distance by n_i / (n_i + 1)
double curdist = 0.0;
float dist1d;
for(int chan = 0; chan < numinputdims; ++chan){
dist1d = *celldata - inputdata[chan];
curdist = curdist + (dist1d * dist1d);
++celldata;
}
curdist *= (*celldata) / (1 + *celldata);
if(curdist < bestdist){
bestdist = curdist;
bestcoords[0] = i0;
}
}
return bestdist; // not actually used, vestigial
}
void KMeansRT_next(KMeansRT *unit, int inNumSamples)
{
// Get the buffer and some other standard stuff...
SOM_GET_BUF
bool learning = unit->m_learning;
if(learning && (ZIN0(3) > 0.f)){ // If reset
// set count back to zero for each cluster
for(int clust=0; clust < bufChannels; ++clust){
bufData[bufChannels * clust + (bufChannels - 1)] = 0.f;
}
}
if(ZIN0(2) > 0.f){ // If gate
int k = netsize;
// Get data inputs
for(int chan=0; chan<numinputdims; ++chan){
inputdata[chan] = ZIN0(chan + KMeansRT_inputsOffset);
}
KMeansRT_findnearest(bufData, inputdata, bestcoords, k, numinputdims);
int clusterIndex = bestcoords[0];
if(learning){
// now update the cluster
float *celldata = bufData + clusterIndex * (numinputdims + 1); // a float-pointer to the desired frame
float old_n_i = celldata[numinputdims]; // index of number count
float new_n_i = old_n_i + 1.f;
// the new centroid position is a mixture of old pos and input pos
for(int chan=0; chan<numinputdims; ++chan){
celldata[chan] = ((old_n_i / new_n_i) * celldata[chan])
+ ( (1.f / new_n_i) * inputdata[chan]);
}
celldata[numinputdims] = new_n_i;
} // end learn-gate check
// Save state to struct... - actually I don't think any needs saving.
} // End gate check
ZOUT0(0) = bestcoords[0]; // i.e. output cluster number selected for latest datum
}
void KMeansRT_Dtor(KMeansRT* unit)
{
RTFree(unit->mWorld, unit->m_inputdata);
RTFree(unit->mWorld, unit->m_bestcoords);
}
////////////////////////////////////////////////////////////////////
// the load function is called by the host when the plug-in is loaded
PluginLoad(MCLDSOM)
{
ft = inTable;
DefineDtorUnit(SOMTrain);
DefineDtorUnit(SOMRd);
DefineDtorUnit(SOMAreaWr);
DefineDtorUnit(KMeansRT);
}
|