1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
#include "SC_PlugIn.h"
#include <stdio.h>
// realtime Matching Pursuit ugen
// (c) Dan Stowell 2012. All rights reserved.
static InterfaceTable *ft;
struct MatchingPbase : public Unit
{
// These member names are fixed by the GET_BUF macro:
SndBuf* m_buf;
float m_fbufnum;
int m_dictsize;
};
struct MatchingP : public MatchingPbase
{
int m_audiowritepos, m_audioplaybackpos;
int m_hopspls, m_shuntspls;
// Arrays allocated in the ctor:
float *m_audiobuf, *m_activations;
};
struct MatchingPResynth : public MatchingPbase
{
int m_audioplaybackpos, m_nactivs;
float *m_audiobuf;
};
static void MatchingP_next(MatchingP *unit, int inNumSamples);
static void MatchingP_Ctor(MatchingP* unit);
static void MatchingP_Dtor(MatchingP* unit);
static void MatchingPResynth_next(MatchingPResynth *unit, int inNumSamples);
static void MatchingPResynth_Ctor(MatchingPResynth* unit);
static void MatchingPResynth_Dtor(MatchingPResynth* unit);
//////////////////////////////////////////////////////////////////
// The "generic" 1D matching pursuit code (in principle could be applied to fft mags or time-domain)
static void doMatchingPursuit(float* input, float* activations, const float* dict, const int natoms, const int nsamples, const int niters);
static double innerproductWithDictAtom(const float* input, const float* dict, const int whichatom, const int natoms, const int nsamples);
// NB! The 'input' arg points to an array which WILL BE MODIFIED: on return, it will contain the residual.
// "activations" will contain [index0, activ0, index1, activ1, ... ]
static void doMatchingPursuit(float* input, float* activations, const float* dict, const int natoms, const int nsamples, const int niters)
{
Clear(niters * 2, activations); // initialise activations (correlations) to zero
for(int whichiter=0; whichiter<niters; ++whichiter){
int chosenatom=-1;
double chosencorr=0.f, chosenabscorr=0.f;
for(int whichatom=0; whichatom<natoms; ++whichatom){
float corr = innerproductWithDictAtom(input, dict, whichatom, natoms, nsamples);
float abscorr = sc_abs(corr);
if(abscorr>chosenabscorr){
chosencorr = corr;
chosenabscorr = abscorr;
chosenatom = whichatom;
}
}
if(chosenatom == -1){
//printf("MP (iter %i): no atoms selected, finished early.\n", whichiter);
}else{
//printf("MP (iter %i): selected atom %i (corr %g)\n", whichiter, chosenatom, chosencorr);
// Now we have our winner for this iter, time to update: subtract the projection from the residual, and add chosencorr to the resultsarray
//float projectionfac = -1.f / chosencorr;
float projectionfac = -chosencorr;
//printf("projectionfac %g\n", projectionfac);
const float* readpos = dict + chosenatom;
for(int i=0; i<nsamples; ++i){
input[i] += projectionfac * (*readpos);
readpos += natoms;
}
activations[whichiter * 2 ] = chosenatom;
activations[whichiter * 2 + 1] = chosencorr;
}
}
}
static double innerproductWithDictAtom(const float* input, const float* dict, const int whichatom, const int natoms, const int nsamples){
// TODO optimise eg by using vDSP_dotpr() on mac, and/or nova-simd calls.
double sum = 0.f;
const float* readpos = dict + whichatom;
for(int i=0; i<nsamples; ++i){
sum += input[i] * (*readpos);
readpos += natoms;
}
return sum;
}
//////////////////////////////////////////////////////////////////
// macro copied from DelayUGens.cpp
#define CTOR_GET_BUF \
float fbufnum = ZIN0(0); \
fbufnum = sc_max(0.f, fbufnum); \
uint32 bufnum = (int)fbufnum; \
World *world = unit->mWorld; \
SndBuf *buf; \
if (bufnum >= world->mNumSndBufs) { \
int localBufNum = bufnum - world->mNumSndBufs; \
Graph *parent = unit->mParent; \
if(localBufNum <= parent->localBufNum) { \
buf = parent->mLocalSndBufs + localBufNum; \
} else { \
bufnum = 0; \
buf = world->mSndBufs + bufnum; \
} \
} else { \
buf = world->mSndBufs + bufnum; \
}
void MatchingP_Ctor(MatchingP* unit)
{
SETCALC(MatchingP_next);
// [trigger, residual, activ0, activ1,...] = MatchingP.ar(dict, in, dictsize, ntofind, hop=1, method=0)
CTOR_GET_BUF
// initialize the unit generator state variables.
unit->m_dictsize = IN0(2);
if(unit->m_dictsize != buf->channels){
printf("ERROR: (unit->m_dictsize != bufChannels)\n");
SETCALC(ClearUnitOutputs);
return;
}
unit->m_hopspls = static_cast<int>(sc_max(0.f, sc_min(1.f, IN0(4))) * buf->frames);
unit->m_shuntspls = buf->frames - unit->m_hopspls;
const int ntofind = (const int)IN0(3);
// UNUSED: unit->mMethod = IN0(5);
unit->m_audiowritepos = unit->m_hopspls;
unit->m_audioplaybackpos = 0;
// audiobuf size is bufFrames + hopspls -- playback happens in first bufFrames, input is written in last hopspls, analysis is in last bufFrames
unit->m_audiobuf = (float* )RTAlloc(unit->mWorld, sizeof(float) * (buf->frames + unit->m_hopspls));
Clear(buf->frames + unit->m_hopspls, unit->m_audiobuf);
// "activations" will contain [index0, activ0, index1, activ1, ... ]
unit->m_activations = (float* )RTAlloc(unit->mWorld, sizeof(float) * 2 * ntofind);
// calculate one sample of output.
unit->m_fbufnum = -9.9e9; // set it to something that will force the buffer info to be updated when _next runs
MatchingP_next(unit, 1);
}
void MatchingP_Dtor(MatchingP* unit)
{
if (unit->m_audiobuf ) RTFree(unit->mWorld, unit->m_audiobuf );
if (unit->m_activations) RTFree(unit->mWorld, unit->m_activations);
}
void MatchingP_next(MatchingP *unit, int inNumSamples)
{
// [trigger, residual, activ0, activ1,...] = MatchingP.ar(dict, in, dictsize, ntofind, hop=1, method=0)
float *input = IN(1);
const int ntofind = (const int)IN0(3);
GET_BUF
float *out_trig = OUT(0);
float *out_resid = OUT(1);
int audiowritepos = unit->m_audiowritepos;
int audioplaybackpos = unit->m_audioplaybackpos;
float* audiobuf = unit->m_audiobuf;
float* activations = unit->m_activations;
int hopspls = unit->m_hopspls;
int shuntspls = unit->m_shuntspls;
for (int i=0; i < inNumSamples; ++i)
{
if (audiowritepos == (bufFrames+hopspls)){
doMatchingPursuit(audiobuf + hopspls, activations, bufData, bufChannels, bufFrames, ntofind);
// At this point, the first "hopspls" of audiobuf contains old stuff we output in the past,
// while the range [hopspls .. bufFrames+hopspls] now contains residual
// shunt the residual down AND ZERO the remainder
memmove(audiobuf, audiobuf + hopspls, bufFrames * sizeof(float)); // memmove is safe for overlap (unlike memcpy or Copy)
Clear(hopspls, audiobuf + bufFrames);
// At this point, the first "bufFrames" of audiobuf contains the residual,
// while the range [bufFrames .. bufFrames+hopspls] is empty and will accumulate the input
audioplaybackpos = 0;
audiowritepos = bufFrames;
out_trig[i] = 1.f;
}else{
out_trig[i] = 0.f;
}
// Now do the outputs and inputs
out_resid[i] = audiobuf[audioplaybackpos];
audiobuf[audiowritepos] += input[i];
for(int o=0; o < (ntofind * 2); ++o){
OUT(o+2)[i] = activations[o];
}
++audioplaybackpos;
++audiowritepos;
}
// store state back to the struct
unit->m_audiowritepos = audiowritepos;
unit->m_audioplaybackpos = audioplaybackpos;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
void MatchingPResynth_Ctor(MatchingPResynth* unit)
{
SETCALC(MatchingPResynth_next);
CTOR_GET_BUF
// initialize the unit generator state variables.
// ^this.multiNewList(['audio', dict, method, activs.length, trigger, residual] ++ activs)
// UNUSED: unit->mMethod = IN0(1);
unit->m_nactivs = IN0(2);
unit->m_dictsize = buf->channels;
unit->m_audioplaybackpos = 0;
unit->m_audiobuf = (float* )RTAlloc(unit->mWorld, sizeof(float) * buf->frames * 2);
Clear(buf->frames * 2, unit->m_audiobuf);
// calculate one sample of output.
unit->m_fbufnum = -9.9e9; // set it to something that will force the buffer info to be updated when _next runs
MatchingPResynth_next(unit, 1);
}
void MatchingPResynth_Dtor(MatchingPResynth* unit)
{
if (unit->m_audiobuf ) RTFree(unit->mWorld, unit->m_audiobuf );
}
void MatchingPResynth_next(MatchingPResynth *unit, int inNumSamples)
{
GET_BUF
int audioplaybackpos = unit->m_audioplaybackpos;
float* audiobuf = unit->m_audiobuf;
int nactivs = unit->m_nactivs;
float* triggerinput = IN(3);
float* residualinput = IN(4);
for (int i=0; i < inNumSamples; ++i)
{
// Ensure we keep within internal buffer limit
if (audioplaybackpos == bufFrames){
// Shunt the top half down to the start
memmove(audiobuf, audiobuf + bufFrames, bufFrames * sizeof(float));
audioplaybackpos = 0;
// Clear the 'new' top half
Clear(bufFrames, audiobuf + bufFrames);
}
// If trigger, add the activations to the output buffer
if (triggerinput[i] > 0.f){
//printf("Triggered\n");
for(int which=0; which<nactivs; ++which){
int whichchannel = static_cast<int>(IN(5 + which + which )[i]);
float magnitude = IN(5 + which + which + 1)[i];
//printf("Outputting channel %i at magnitude %g\n", whichchannel, magnitude);
float *readpos = buf->data + whichchannel;
for(int j=0; j<bufFrames; ++j){
audiobuf[audioplaybackpos + j] += (*readpos) * magnitude;
readpos += bufChannels;
}
}
}
// Output the reconstructed version plus residual
float residualval = residualinput[i];
OUT(0)[i] = audiobuf[audioplaybackpos] + residualval;
++audioplaybackpos;
}
unit->m_audioplaybackpos = audioplaybackpos;
}
//////////////////////////////////////////////////////////////////
PluginLoad(MCLDSparseUGens)
{
ft = inTable;
DefineDtorCantAliasUnit(MatchingP);
DefineDtorCantAliasUnit(MatchingPResynth);
}
|