1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
/*
Tree UGens for SuperCollider, by Dan Stowell.
(c) Dan Stowell 2009-2011.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "SC_PlugIn.h"
#include <cfloat> // for FLT_MAX
static InterfaceTable *ft;
struct PlaneTree : public Unit
{
// The GET_BUF macro fills in these two:
float m_fbufnum;
SndBuf *m_buf;
float *m_inputdata; // Input data will be remembered in here
float *m_workingdata; // ...and mangled in here
int m_ndims;
float m_result;
};
struct NearestN : public Unit
{
// The GET_BUF macro fills in these two:
float m_fbufnum;
SndBuf *m_buf;
int m_ndims;
int m_num; // number of results requested
float *m_inputdata; // Input data will be remembered in here
float *m_bestlist;
};
// declare unit generator functions
extern "C"
{
void load(InterfaceTable *inTable);
void PlaneTree_Ctor(PlaneTree* unit);
void PlaneTree_next(PlaneTree *unit, int inNumSamples);
void PlaneTree_Dtor(PlaneTree* unit);
void NearestN_Ctor(NearestN* unit);
void NearestN_next(NearestN *unit, int inNumSamples);
void NearestN_Dtor(NearestN* unit);
};
//////////////////////////////////////////////////////////////////
/**
* Functions for manipulating the specially-formatted path integer.
* The root is always 1, and you branch 'left' by appending a zero, 'right' by appending a 1.
*/
inline bool pathInt_isRoot ( const int pathInt) { return (pathInt == 1 ); }
inline int pathInt_goLeft( const int pathInt) { return (pathInt << 1 ); }
inline int pathInt_goRight( const int pathInt) { return (pathInt << 1 | 1); }
inline int pathInt_goSibling(const int pathInt) { return (pathInt ^ 1 ); }
inline int pathInt_goParent( const int pathInt) { return (pathInt >> 1 ); }
inline int pathInt_depth( const int pathInt) { return ( NUMBITS(pathInt) - 1 ); } // root is depth 0, its kids are depth 1, etc
//////////////////////////////////////////////////////////////////
void PlaneTree_Ctor(PlaneTree* unit)
{
// Infer the size of the "inputs" array which has been tagged on to the end of the arguments list.
int ndims = unit->mNumInputs - 2;
//Print("PlaneTree_Ctor: ndims is %i\n", ndims);
// Allocate a comfy bit of memory where we'll put the input data while we process it
unit->m_inputdata = (float*)RTAlloc(unit->mWorld, ndims * sizeof(float));
unit->m_workingdata = (float*)RTAlloc(unit->mWorld, ndims * sizeof(float));
// Try and ensure that the first ever input won't get accidentally skipped:
unit->m_inputdata[0] = -1e9f;
// Get the buffer reference, and check that the size and num channels matches what we expect.
unit->m_fbufnum = -1e9f;
GET_BUF
if((int)bufChannels != (ndims * 2 + 2)){
Print("PlaneTree_Ctor: number of channels in buffer (%i) != number of input dimensions (%i) * 2 + 2\n",
bufChannels, ndims);
SETCALC(*ClearUnitOutputs);
return;
}
// initialize the unit generator state variables.
unit->m_ndims = ndims;
unit->m_result = -1e9f; // hopefully this will get filled in soon by a classification...
SETCALC(PlaneTree_next);
PlaneTree_next(unit, 1);
}
// recursive function, returns the classification result.
// NB the "pathInt" val MUST be one-indexed (i.e. "1" is the FIRST frame)
float PlaneTree_recurse(int ndims, float *inputdata, float *workingdata, float *bufData, uint32 bufChannels, unsigned long pathInt);
float PlaneTree_recurse(int ndims, float *inputdata, float *workingdata, float *bufData, uint32 bufChannels, unsigned long pathInt){
// This pointer will be incremented as we go along:
float* ourFrame = bufData + (pathInt - 1) * bufChannels; // Note the "-1" - because the indexing starts at 1 not 0 !
// First subtract the offset, the first D items in the frame
int i;
for(i=0; i<ndims; ++i){
workingdata[i] = inputdata[i] - *(ourFrame++);
}
// Then multiply by the normal vector, the next D items; and sum
float sum = 0.f;
for(i=0; i<ndims; ++i){
sum += workingdata[i] * *(ourFrame++);
}
// Now if the sum is positive we go left (ourFrame already pointing at the correct place), otherwise right.
// "pathInt" here becomes the index of the child, which is either returned or branched into.
if(sum > 0.f){
pathInt = pathInt_goLeft(pathInt);
}else{
pathInt = pathInt_goRight(pathInt);
++ourFrame; // increment to find the float indicating whether we'll be branching or not
}
// So now we can check if we want to branch and recurse, or if we've hit a leaf and want to return
if(*(ourFrame) == 0.f){
return PlaneTree_recurse(ndims, inputdata, workingdata, bufData, bufChannels, pathInt); // branch further
}else{
return static_cast<float>(pathInt); // leaf
}
}
void PlaneTree_next(PlaneTree *unit, int inNumSamples)
{
GET_BUF
int ndims = unit->m_ndims;
float *inputdata = unit->m_inputdata;
float *workingdata = unit->m_workingdata;
float result = unit->m_result;
for(int i=0; i<inNumSamples; ++i){
if(IN(1)[i] > 0.f){ // If gate > 0
// Get data inputs, ALSO checking whether they've changed
bool inputchanged=false;
float chanval;
for(int chan=0; chan<ndims; ++chan){
chanval = IN(chan + 2)[i];
if(inputdata[chan] != chanval){
inputdata[chan] = chanval;
inputchanged = true;
}
}
if(inputchanged){
result = PlaneTree_recurse(ndims, inputdata, workingdata, bufData, bufChannels, 1);
}
} // End gate check
OUT(0)[i] = result;
} // end loop inNumSamples
unit->m_result = result;
}
void PlaneTree_Dtor(PlaneTree* unit)
{
if(unit->m_inputdata ) RTFree(unit->mWorld, unit->m_inputdata );
if(unit->m_workingdata) RTFree(unit->mWorld, unit->m_workingdata);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void NearestN_Ctor(NearestN* unit){
// Infer the size of the "inputs" array which has been tagged on to the end of the arguments list.
int ndims = unit->mNumInputs - 3;
int num = ZIN0(2);
// Allocate a comfy bit of memory where we'll put the input data while we process it
unit->m_inputdata = (float*)RTAlloc(unit->mWorld, ndims * sizeof(float));
unit->m_bestlist = (float*)RTAlloc(unit->mWorld, num * 3 * sizeof(float));
Clear(num * 3, unit->m_bestlist);
// Try and ensure that the first ever input won't get accidentally skipped:
unit->m_inputdata[0] = -1e9f;
// Get the buffer reference, and check that the size and num channels matches what we expect.
unit->m_fbufnum = -1e9f;
{
GET_BUF
// initialize the unit generator state variables.
unit->m_ndims = ndims;
unit->m_num = num;
SETCALC(NearestN_next);
}
NearestN_next(unit, 1);
}
/**
* kd-tree descent - recursive function simply drops down from its starting point to the closest leaf, returning that leaf's index.
* It doesn't update the bestlist; it's only ascent that does that.
*/
int NearestN_descend(const int index, const int ndims, const float* inputData, const float* bufData, const int bufChannels, const int bufFrames){
if(index >= bufFrames) return pathInt_goParent(index); // protect against going out of our memory bounds
int whichdim = pathInt_depth(index) % ndims;
bool goRight = inputData[whichdim] > bufData[bufChannels * index + 2 + whichdim];
if(goRight){
if(bufData[bufChannels * index + 1] > 0.f)
return index;
else
return NearestN_descend(pathInt_goRight(index), ndims, inputData, bufData, bufChannels, bufFrames);
}else{
if(bufData[bufChannels * index ] > 0.f)
return index;
else
return NearestN_descend(pathInt_goLeft( index), ndims, inputData, bufData, bufChannels, bufFrames);
}
} // end descend func
/**
* kd-tree ascent - Starts at index 'fromLeaf', and checks each sibling (inc if it exists!) until it's got as high as asFarAs.
* That main iteration is non-recursive, just a loop.
* But when going down a different trouser-leg, it calls 'descend' followed by a truncated 'ascend' (i.e. it recurses).
*/
void NearestN_ascend(const int fromLeaf, const int asFarAs, const int ndims, const float* inputData, const float* bufData,
float* bestlist, const int num, const int bufChannels, const int bufFrames){
int index = fromLeaf;
while(index >= asFarAs){
// here we check if the actual distance of current node is near enough to add to the results list.
float distsq = 0.f;
for (int whichdim=0; whichdim<ndims; ++whichdim){
float delta = bufData[bufChannels * index + 2 + whichdim] - inputData[whichdim];
distsq += delta * delta;
}
// this can be more efficient: rather than iterating upwards, iterate downwards, and first time we are beaten, appendinsert and break
for(int i=0; i<num; ++i){
if(distsq < bestlist[i * 3 + 1]){
// shuffle the remainder of the list down
for(int k=num*3-4; k>=i*3; --k){
bestlist[k + 3] = bestlist[k];
}
// and add ourselves in to the list
bestlist[i * 3 ] = index;
bestlist[i * 3 + 1] = distsq;
bestlist[i * 3 + 2] = bufData[bufChannels * (index+1) - 1]; // last is label
break;
}
}
if(pathInt_isRoot(index) || (index == asFarAs)){
break;
}else{
// check if parent's splitting plane is near enough the splitting plane to warrant investigation down the other branch
int parent = pathInt_goParent(index);
int whichdim = pathInt_depth(parent) % ndims;
float perpdist = bufData[bufChannels * parent + 2 + whichdim] - inputData[whichdim];
float perpdistsq = perpdist * perpdist;
// we don't need to check all items in the best-so-far since it's sorted; just check the last one
if(perpdistsq <= bestlist[num * 3 - 2]){
// ok so we're not yet so far away. descend the sibling, then ascend again.
int sibling = pathInt_goSibling(index);
int firstLeaf = NearestN_descend(sibling, ndims, inputData, bufData, bufChannels, bufFrames);
NearestN_ascend(firstLeaf, sibling, ndims, inputData, bufData, bestlist, num, bufChannels, bufFrames);
}
// ok, so go up to the parent and continue checking
index = parent;
}
}
} // end ascend func
void NearestN_next(NearestN *unit, int inNumSamples){
GET_BUF
int ndims = unit->m_ndims;
if((int)bufChannels != (ndims + 3)){
Print("NearestN: number of channels in buffer (%i) != number of input dimensions (%i) + 3\n",
bufChannels, ndims);
SETCALC(*ClearUnitOutputs);
return;
}
int num = unit->m_num;
float* bestlist = unit->m_bestlist;
float* inputdata = unit->m_inputdata;
for(int i=0; i<inNumSamples; ++i){
if(IN(1)[i] > 0.f){ // If gate > 0
// Get data inputs, ALSO checking whether they've changed
bool inputchanged=false;
float chanval;
for(int chan=0; chan<ndims; ++chan){
chanval = IN(chan + 3)[i];
if(inputdata[chan] != chanval){
inputdata[chan] = chanval;
inputchanged = true;
}
}
if(inputchanged){
// init the search: must set the results array to infinitely bad
for(int j=0; j<num; ++j){
bestlist[3 * j ] = -1;
bestlist[3 * j + 1] = FLT_MAX;
bestlist[3 * j + 2] = -1;
}
// First, recurse from very top to get to the 'first guess' leaf.
int firstLeaf = NearestN_descend(1, ndims, inputdata, bufData, bufChannels, bufFrames);
// Then ascend back up the full tree (which may itself involve more descend+ascend loops)
NearestN_ascend(firstLeaf, 0, ndims, inputdata, bufData, bestlist, num, bufChannels, bufFrames);
}
} // End gate check
// The results should now be in 'bestlist' - let's write them to the output
for(int j=0; j< (num*3); ++j){
OUT(j)[i] = bestlist[j];
}
} // end loop inNumSamples
}
void NearestN_Dtor(NearestN* unit){
if(unit->m_inputdata ) RTFree(unit->mWorld, unit->m_inputdata );
if(unit->m_bestlist ) RTFree(unit->mWorld, unit->m_bestlist );
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// the load function is called by the host when the plug-in is loaded
PluginLoad(MCLDTree)
{
ft = inTable;
DefineDtorUnit(PlaneTree);
DefineDtorUnit(NearestN);
}
|