1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
|
/*
SuperCollider real time audio synthesis system
Copyright (c) 2002 James McCartney. All rights reserved.
http://www.audiosynth.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
//This file is part of MachineListening. Copyright (C) 2006 Nicholas M.Collins distributed under the terms of the GNU General Public License full notice in file MachineListening.license
//this file 8/1/05 by Nicholas M. Collins after Brown/Puckette
//updated for fftw 13/12/06
//converted to SC fft interface, 26 March 2011
#include "PitchDetection.h"
#define TWOPI 6.28318530717952646f
//float g_fmin;
//int g_qbands;
//float * g_qfreqs;
//float * g_kernels;
//non windowed FFT for the signal x[n] because the kernels are pre windowed
//float * g_hanning;
//for pitch search, MATLAB calculated
//sieve= round(24*log(1:11)/log(2))
//amps= fliplr(0.6:0.04:1.0);
int g_sieve[11]= {0,24,38,48,56,62,67,72,76,80,83};
float g_amps[11]={1,0.96,0.92,0.88,0.84,0.8,0.76,0.72,0.68,0.64,0.6};
//116 is near 5000 Hz in this , 90 is 2500Hz or so
//other functions
void Qitch_preparefft(Qitch *unit, float* in, int n);
void Qitch_dofft(Qitch *unit);
void Qitch_Ctor(Qitch* unit)
{
int i;
///////constant Q data in buffer passed in
World *world = unit->mWorld;
uint32 bufnum = (uint32)ZIN0(1);
if (bufnum >= world->mNumSndBufs) bufnum = 0;
SndBuf *buf = world->mSndBufs + bufnum;
int bufsize = buf->samples;
//printf("bufnum %d size %d\n",bufnum, bufsize);
float * pdata= buf->data;
//get Q data
int SR= (int)pdata[0];
int fftN= (int)pdata[1];
int numbands= (int)pdata[2];
unit->m_qbands=numbands;
//int cumulsize= (int)pdata[3];
//printf("SR %d N %d bands %d cumulsize %d \n",unit->m_SR, unit->m_N, unit->m_qbands, cumulsize);
//if(g_SR != SR){
//
// g_SR=SR;
// g_Nyquist=(int)(SR/2);
// g_framespersec= (float)g_overlap/g_SR;
// g_freqperbin= (float)g_SR/(float)g_N;
//
// };
//other globals like g_N assumed correct for now
//all FFTs are taken as a multiple of 1024
unit->m_SR= SR;
unit->m_Nyquist= SR/2;
unit->m_N= fftN;
unit->m_log2N=(int)(log2(fftN)+0.5); ;
unit->m_Nover2= fftN/2;
unit->m_overlap= fftN-1024;
unit->m_overlapindex= (1024)%fftN;
unit->m_framespersec= (float)(unit->m_overlap)/(float)SR;
unit->m_fftscale= 1.0/(2.0*fftN); //altivec 1.0/(2.0*fftN);
unit->m_freqperbin= (float)SR/(float)fftN;
//constants for efficiency
unit->m_twopioverN= TWOPI/(float)fftN;
unit->realb=cos(unit->m_twopioverN);
unit->imagb=sin(unit->m_twopioverN);
////////FFT data///////////
unit->m_prepareFFTBuf = (float*)RTAlloc(unit->mWorld, fftN * sizeof(float));
unit->m_FFTBuf = (float*)RTAlloc(unit->mWorld, fftN * sizeof(float));
unit->m_bufWritePos = 0;
SCWorld_Allocator alloc(ft, world);
//no overlap
//no windowing for constant Q
unit->m_scfft = scfft_create(fftN, fftN, kRectWindow, unit->m_FFTBuf, unit->m_FFTBuf, kForward, alloc);
float * qfreqs=(float*)RTAlloc(world, numbands * sizeof(float));
int * startindex=(int*)RTAlloc(world, numbands * sizeof(int));
int * numindices=(int*)RTAlloc(world, numbands * sizeof(int));
float ** speckernelvals=(float**)RTAlloc(world, numbands * sizeof(float*));
float * qmags= (float*)RTAlloc(world, numbands * sizeof(float));
/*
unit->m_qfreqs= (float*)RTAlloc(world, numbands * sizeof(float));
unit->m_startindex= (int*)RTAlloc(world, numbands * sizeof(int));
unit->m_numindices= (int*)RTAlloc(world, numbands * sizeof(int));
//unit->m_cumulindices= (int*)RTAlloc(world, numbands * sizeof(int));
//unit->m_speckernelvals = (float*)RTAlloc(world, cumulsize * sizeof(float));
unit->m_speckernelvals = (float*)RTAlloc(world, numbands * sizeof(float*));
unit->m_qmags = (float*)RTAlloc(world, numbands * sizeof(float));
*/
//load data
int bufpos=3; //4;
//printf("%d %p %d %p \n",i,&(pdata[bufpos]),bufpos,pdata);
//can be made more efficient with pointers
for (i=0;i<numbands; ++i) {
//printf("%d %p %d %p \n",i,&(pdata[bufpos]),bufpos,pdata);
//freq startind cumul numvals vals'
qfreqs[i]= pdata[bufpos];
startindex[i]= (int) pdata[bufpos+1];
numindices[i]= (int) pdata[bufpos+2]; //+3
//int specind= pdata[bufpos+2]; //cumulative position into this buffer
//unit->m_cumulindices[i]=specind;
//printf("%d startind %d numind %d cumul %d \n",i, unit->m_startindex[i], unit->m_numindices[i], unit->m_cumulindices[i]);
bufpos+=3; //4;
speckernelvals[i]= pdata+bufpos;
//printf("%d %p %d %p %p \n",i,&(pdata[bufpos]),bufpos,pdata+bufpos, speckernelvals[i]);
/*
for (j=0;j<unit->m_numindices[i]; ++j) {
unit->m_speckernelvals[specind+j]= pdata[bufpos+j];
//if(pdata[bufpos+j]>1000) printf("%d big %f indtarget %d indsource %d",i,pdata[bufpos+j],specind+j,bufpos+j);
}*/
bufpos+= numindices[i];
}
unit->m_qfreqs=qfreqs;
unit->m_startindex= startindex;
unit->m_numindices= numindices;
unit->m_speckernelvals= speckernelvals;
unit->m_qmags= qmags;
/////storing complex numbers from previous frames for instananeous frequency calculation
unit->m_topqcandidate=numbands-(g_sieve[10])-1; //85
float tempfreq= unit->m_qfreqs[unit->m_topqcandidate];
unit->m_ifbins=((int)ceil((tempfreq/(unit->m_freqperbin))+0.5))+1; //cover yourself for safety
//printf("numbinsstored %d tempfreq %f topcand %d \n",unit->m_ifbins,tempfreq, unit->m_topqcandidate); //more info!
//if input amp template can correct search comb
for (i=0;i<11;++i)
unit->m_amps[i]= g_amps[i];
uint32 ampbufnum = (uint32)ZIN0(4);
if (!((ampbufnum > world->mNumSndBufs) || ampbufnum<0)) {
SndBuf *buf2 = world->mSndBufs + ampbufnum;
bufsize = buf2->samples;
pdata= buf2->data;
if(bufsize==11) {
for (i=0;i<11;++i)
unit->m_amps[i]= pdata[i];
}
}
unit->m_minfreq= ZIN0(5);
unit->m_maxfreq= ZIN0(6);
//search qfreqs
unit->m_minqband= 0;
unit->m_maxqband=unit->m_topqcandidate;
for(i=0;i<numbands; ++i) {
if(qfreqs[i]>=unit->m_minfreq) {unit->m_minqband=i; break;}
}
for(i=numbands-1;i>=0; --i) {
if(qfreqs[i]<=unit->m_maxfreq) {unit->m_maxqband=i; break;}
}
//unecessary, already true unit->m_maxqband= sc_min(unit->m_topqcandidate, unit->m_maxqband);
unit->m_minqband= sc_min(unit->m_minqband, unit->m_maxqband); //necessary test if input stupid
//printf("minfreq %f maxfreq %f minqband %d maxqband %d \n", unit->m_minfreq, unit->m_maxfreq, unit->m_minqband,unit->m_maxqband);
unit->m_currfreq=440;
unit->m_hasfreq=0;
unit->mCalcFunc = (UnitCalcFunc)&Qitch_next;
}
void Qitch_Dtor(Qitch *unit)
{
RTFree(unit->mWorld, unit->m_prepareFFTBuf);
RTFree(unit->mWorld, unit->m_FFTBuf);
RTFree(unit->mWorld, unit->m_qfreqs);
RTFree(unit->mWorld, unit->m_startindex);
RTFree(unit->mWorld, unit->m_numindices);
//RTFree(unit->mWorld, unit->m_cumulindices);
RTFree(unit->mWorld, unit->m_speckernelvals);
//RTFree(unit->mWorld, unit->m_store[0]);
//RTFree(unit->mWorld, unit->m_store[1]);
if(unit->m_scfft) {
SCWorld_Allocator alloc(ft, unit->mWorld);
scfft_destroy(unit->m_scfft, alloc);
}
}
void Qitch_next(Qitch *unit, int wrongNumSamples)
{
//would normally be float,will be cast to int for Tristan's optimisation
float *in = IN(0);
int numSamples = unit->mWorld->mFullRate.mBufLength;
//float *output = ZOUT(0);
Qitch_preparefft(unit, in, numSamples);
ZOUT0(0)=unit->m_currfreq;
ZOUT0(1)=unit->m_hasfreq;
//float outval= 0.0;
// for (int i=0; i<numSamples; ++i) {
// *++output = outval;
// }
//
}
//update for unknown SR, overlap
//Tristan Jehan recommends copying ints rather than floats- I say negligible compared to over algorithm costs for the moment
void Qitch_preparefft(Qitch *unit, float* in, int n) {
int i, index = 0, cpt = n, maxindex;
int bufpos= unit->m_bufWritePos;
float * preparefftbuf=unit->m_prepareFFTBuf;
float * fftbuf= unit->m_FFTBuf;
// Copy input samples into prepare buffer
while ((bufpos < unit->m_N) && (cpt > 0)) {
preparefftbuf[bufpos] = in[index];
bufpos++;
index++;
cpt--;
}
// When Buffer is full...
if (bufpos >= unit->m_N) {
// Make a copy of prepared buffer into FFT buffer for computation
for (i=0; i<unit->m_N; i++)
fftbuf[i] = preparefftbuf[i];
//if(unit->m_overlap>0) will be safe as long as overlap=0l overlapindex=0 too
// Save overlapping samples back into buffer- no danger since no indices overwritten
for (i=0; i<unit->m_overlap; i++)
preparefftbuf[i] = preparefftbuf[unit->m_overlapindex+i];
maxindex = n - index + unit->m_overlapindex;
//blockSize less than g_N-g_overlapindex so no problem
// Copy the rest of incoming samples into prepareFFTBuffer
for (i=unit->m_overlapindex; i<maxindex; i++) {
preparefftbuf[i] = in[index];
index++;
}
bufpos = maxindex;
//FFT buffer ready- calculate away!
Qitch_dofft(unit);
}
unit->m_bufWritePos= bufpos;
//printf("%d \n",bufpos);
}
//calculation function once FFT data ready, will be removing windowing!
void Qitch_dofft(Qitch *unit) {
int i,j;
int fftN= unit->m_N;
float * fftbuf= unit->m_FFTBuf;
float ampthresh = ZIN0(2);
bool ampok=false;
for (j = 0; j < fftN; ++j) {
if (fabs(fftbuf[j]) >= ampthresh) {
ampok = true;
break;
}
}
if(ampok) {
//NO WINDOWING FOR CONSTANT Q TRANSFORM
// for (i=0; i<g_N; ++i)
// fftbuf[i] *= g_hanning[i];
//
// // Look at the real signal as an interleaved complex vector by casting it.
// // Then call the transformation function ctoz to get a split complex vector,
// // which for a real signal, divides into an even-odd configuration.
// ctoz ((COMPLEX *) fftbuf, 2, &unit->m_vA, 1, unit->m_Nover2);
//
// // Carry out a Forward FFT transform
// fft_zrip(unit->m_vsetup, &unit->m_vA, 1, unit->m_vlog2n, FFT_FORWARD);
//
// //correct for scaling error in ALTIVEC
// //float scale = (float)1.0/(2*n);
// //vsmul( A.realp, 1, &scale, A.realp, 1, nOver2 );
// //vsmul( A.imagp, 1, &scale, A.imagp, 1, nOver2 );
//
// // The output signal is now in a split real form, ie two arrays for real and imag. Use the function
// // ztoc to get a real vector, in format [dc,nyq, bin1realm bin1imag, bin2real, bin2imag, ....] etc
// ztoc ( &unit->m_vA, 1, (COMPLEX *) fftbuf, 2, unit->m_Nover2);
//
//need to convert to a usable form for calculations below? fftw output comes out split
//fftwf_execute(unit->planTime2FFT);
scfft_dofft(unit->m_scfft);
//will probably want to store phase first
// Squared Absolute so get power
//for (i=0; i<g_N; i+=2)
// //i>>1 is i/2
// fftbuf[i>>1] = (fftbuf[i] * fftbuf[i]) + (fftbuf[i+1] * fftbuf[i+1]);
//
//amortise state changes:
///////////////////////////////////////////////////////////////
//constant Q conversion, only need magnitudes
int qtodo= unit->m_qbands;
float * qfreqs= unit->m_qfreqs;
int * startindex= unit->m_startindex;
int * numindices= unit->m_numindices;
float ** speckernelvals= unit->m_speckernelvals ;
float * qmags = unit->m_qmags;
//int cumul=0;
float magtotal=0.0;
//printf("here 2 %p %p %p \n",speckernelvals, speckernelvals[0], speckernelvals[0]-6);
for (i=0; i<qtodo; ++i) {
float realsum=0.0;
float imagsum=0.0;
int start= startindex[i];
int end=start+numindices[i];
float * readbase= speckernelvals[i]-start; //+(unit->m_cumulindices[i])-start;
//printf("%d %p %p %p \n",i, speckernelvals[i], speckernelvals[i]-start, readbase);
for (j=start; j<end; ++j) {
float mult= readbase[j];
//Altivec version
//realsum+= mult*fftbuf[2*j];
//imagsum+= mult*fftbuf[2*j+1];
//fftw version
//realsum+= mult*fftbuf[j];
//imagsum+= mult*fftbuf[fftN-j];
//sc fft version
realsum+= mult*fftbuf[2*j];
imagsum+= mult*fftbuf[2*j+1];
}
//scale here by 1/(2*g_N)
//sclaing unecessary
//realsum*=unit->m_fftscale;
//imagsum*=unit->m_fftscale;
qmags[i]= realsum*realsum+imagsum*imagsum;
magtotal+=qmags[i];
//if(i>70) printf("%d %f ",i,qmags[i]);
}
//printf("\n");
/////////////////////////////////////////////////////////
float max=0.0;
int maxindex=0;
//done as per Pitch UGen now
//float intensitycheck = ZIN0(2); //intensity check
//only bother to test if amplitude is sufficient
//printf("intensity %f check %f \n",magtotal, intensitycheck);
//if(magtotal<intensitycheck) {unit->m_hasfreq=0;}
//else {
float * pamps= unit->m_amps;
unit->m_hasfreq=1; //could turn off if too close to call...won't bother for now
//pitch detection by cross correlation, only check roots up to 2000 or so, also don't need guard element then!
//can check even less if use minqband, qmaxband
//int minqband= ZIN0(5);
//int maxqband= sc_min(unit->m_topqcandidate, ZIN0(6));
//for (i=0; i<unit->m_topqcandidate; ++i) {
for (i=unit->m_minqband; i<unit->m_maxqband; ++i) {
float sum=0.0;
for (j=0; j<11; ++j) {
sum+= pamps[j]*qmags[i+g_sieve[j]];
}
if(sum>max) {max=sum; maxindex=i;
//printf("maxsum %f maxind %d \n",max, maxindex);
}
}
//printf("pitch %f \n",qfreqs[maxindex]);
float pitchcheck = ZIN0(3);
if(pitchcheck<0.5) { unit->m_currfreq= qfreqs[maxindex];}
else {
//////////////////////////////////////////////////////////INSTANTANEOUS FREQUENCY TRACK
int k= (int)((qfreqs[maxindex]/unit->m_freqperbin)+0.5);
//printf("check k %f %f %f %d \n",qfreqs[maxindex],unit->m_freqperbin,(qfreqs[maxindex]/unit->m_freqperbin)+0.5,k);
//k can't be zero else trouble
//Xhk=0.5*(F.data(k,ii)-0.5*F.data(k+1,ii)-0.5*F.data(k-1,ii));
// Xhk2= 0.5*exp(j*2*pi*k/F.N)*(F.data(k,ii)- (0.5*exp(j*2*pi/F.N)*F.data(k+1,ii)) - (0.5*exp(-j*2*pi/F.N)*F.data(k-1,ii)));
//
// theta2= angle(Xhk2); %atan(imag(Xhk2)/real(Xhk2));
// theta= angle(Xhk); %atan(imag(Xhk)/real(Xhk));
//
// w(ii)= 44100*(abs(theta2-theta))/(2*pi);
//
//
//instantaneous frequency correction
float Xhkreal, Xhkimag, Xhk2real, Xhk2imag;
//Altivec
//Xhkreal=0.5*((fftbuf[2*k])-(0.5*fftbuf[2*(k+1)])-(0.5*fftbuf[2*(k-1)]));
//Xhkimag=0.5*((fftbuf[2*k+1])-(0.5*fftbuf[2*(k+1)+1])-(0.5*fftbuf[2*(k-1)+1]));
Xhkreal=0.5*((fftbuf[k])-(0.5*fftbuf[k+1])-(0.5*fftbuf[k-1]));
Xhkimag=0.5*((fftbuf[fftN- k])-(0.5*fftbuf[fftN- (k+1)])-(0.5*fftbuf[fftN- (k-1)]));
//complex exponentials to calculate a= exp(j*2*pi*k/F.N) b= exp(j*2*pi/F.N) c= exp(-j*2*pi/F.N)
//float areal= cos(TWOPI*k/g_N);
//float aimag= sin(TWOPI*k/g_N);
// float breal= cos(TWOPI/g_N);
// float bimag= sin(TWOPI/g_N);
//
// float creal= breal;
// float cimag= -bimag;
//
// float tmpreal= fftbuf[2*k] - (0.5*((breal*fftbuf[2*(k+1)]) - (bimag*fftbuf[2*(k+1)+1]))) - (0.5*((creal*fftbuf[2*(k-1)]) - (cimag*fftbuf[2*(k-1)+1])));
// float tmpimag= fftbuf[2*k+1] - (0.5*((breal*fftbuf[2*(k+1)+1]) + (bimag*fftbuf[2*(k+1)]))) - (0.5*((creal*fftbuf[2*(k-1)+1]) + (cimag*fftbuf[2*(k-1)])));
//
float calc= (unit->m_twopioverN)*k;
float areal= cos(calc);
float aimag= sin(calc);
float breal= unit->realb;
float bimag= unit->imagb;
//float tmpreal= fftbuf[2*k] - (0.5*((breal*fftbuf[2*(k+1)]) - (bimag*fftbuf[2*(k+1)+1]))) - (0.5*((breal*fftbuf[2*(k-1)]) + (bimag*fftbuf[2*(k-1)+1])));
//float tmpimag= fftbuf[2*k+1] - (0.5*((breal*fftbuf[2*(k+1)+1]) + (bimag*fftbuf[2*(k+1)]))) - (0.5*((breal*fftbuf[2*(k-1)+1]) - (bimag*fftbuf[2*(k-1)])));
float tmpreal= fftbuf[k] - (0.5*((breal*fftbuf[k+1]) - (bimag*fftbuf[fftN- (k+1)]))) - (0.5*((breal*fftbuf[k-1]) + (bimag*fftbuf[fftN- (k-1)])));
float tmpimag= fftbuf[fftN-k] - (0.5*((breal*fftbuf[fftN- (k+1)]) + (bimag*fftbuf[k+1]))) - (0.5*((breal*fftbuf[fftN- (k-1)]) - (bimag*fftbuf[k-1])));
Xhk2real= 0.5*(areal*tmpreal- aimag*tmpimag);
Xhk2imag= 0.5*(areal*tmpimag+ aimag*tmpreal);
//float Xhk2= 0.5*exp(j*2*pi*k/F.N)*(F.data(k,ii)- (0.5*exp(j*2*pi/F.N)*F.data(k+1,ii)) - (0.5*exp(-j*2*pi/F.N)*F.data(k-1,ii)));
float theta2= atan(Xhk2imag/Xhk2real);
float theta= atan(Xhkimag/Xhkreal);
float freq= ((float)unit->m_SR)*(fabs(theta2-theta))/(TWOPI);
//printf("do you believe freq? %d max %f min %f result %f\n",k,unit->m_maxfreq, unit->m_minfreq, freq);
//check no dodgy answers
if((freq<unit->m_minfreq) || (freq>unit->m_maxfreq)) {unit->m_hasfreq=0;}
else
unit->m_currfreq= freq;
}
} else {unit->m_hasfreq=0;}
}
|