File: Qitch.cpp

package info (click to toggle)
supercollider-sc3-plugins 3.7.1~repack-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,332 kB
  • ctags: 11,704
  • sloc: cpp: 140,180; lisp: 14,746; ansic: 2,133; xml: 86; makefile: 82; haskell: 21; sh: 8
file content (591 lines) | stat: -rw-r--r-- 17,371 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
/*
	SuperCollider real time audio synthesis system
 Copyright (c) 2002 James McCartney. All rights reserved.
	http://www.audiosynth.com
 
 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.
 
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.
 
 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301  USA
 */

//This file is part of MachineListening. Copyright (C) 2006  Nicholas M.Collins distributed under the terms of the GNU General Public License full notice in file MachineListening.license

//this file 8/1/05 by Nicholas M. Collins after Brown/Puckette
//updated for fftw 13/12/06
//converted to SC fft interface, 26 March 2011

#include "PitchDetection.h"

#define TWOPI 6.28318530717952646f 


//float g_fmin;
//int g_qbands;
//float * g_qfreqs;
//float * g_kernels;

//non windowed FFT for the signal x[n] because the kernels are pre windowed
//float * g_hanning; 

//for pitch search, MATLAB calculated
//sieve= round(24*log(1:11)/log(2))       
//amps= fliplr(0.6:0.04:1.0);

int g_sieve[11]= {0,24,38,48,56,62,67,72,76,80,83};
float g_amps[11]={1,0.96,0.92,0.88,0.84,0.8,0.76,0.72,0.68,0.64,0.6}; 

//116 is near 5000 Hz in this , 90 is 2500Hz or so

//other functions
void Qitch_preparefft(Qitch *unit, float* in, int n);
void Qitch_dofft(Qitch *unit);

void Qitch_Ctor(Qitch* unit)
{
	int i;
	
	///////constant Q data in buffer passed in
	
	World *world = unit->mWorld;
    
	uint32 bufnum = (uint32)ZIN0(1);
	if (bufnum >= world->mNumSndBufs) bufnum = 0;
	
	SndBuf *buf = world->mSndBufs + bufnum; 
	
	int bufsize = buf->samples;
	
	//printf("bufnum %d size %d\n",bufnum, bufsize);			
	
	float * pdata= buf->data; 
	//get Q data	
	
	int SR= (int)pdata[0];
	int fftN= (int)pdata[1];
	
	int numbands= (int)pdata[2];
	
	unit->m_qbands=numbands;
	//int cumulsize= (int)pdata[3];
	
	//printf("SR %d N %d bands %d cumulsize %d \n",unit->m_SR, unit->m_N, unit->m_qbands, cumulsize);				
	
	//if(g_SR != SR){
	//		
	//		g_SR=SR; 
	//		g_Nyquist=(int)(SR/2);  
	//		g_framespersec= (float)g_overlap/g_SR;
	//		g_freqperbin= (float)g_SR/(float)g_N;
	//		
	//	};
	
	//other globals like g_N assumed correct for now
	//all FFTs are taken as a multiple of 1024
	unit->m_SR= SR;
	unit->m_Nyquist= SR/2;
	unit->m_N= fftN; 
	unit->m_log2N=(int)(log2(fftN)+0.5);  ;
	unit->m_Nover2= fftN/2;
	unit->m_overlap= fftN-1024;
	unit->m_overlapindex= (1024)%fftN;
	unit->m_framespersec= (float)(unit->m_overlap)/(float)SR;
	unit->m_fftscale= 1.0/(2.0*fftN); //altivec 1.0/(2.0*fftN);
	unit->m_freqperbin= (float)SR/(float)fftN;
	
	//constants for efficiency
	unit->m_twopioverN= TWOPI/(float)fftN;
	unit->realb=cos(unit->m_twopioverN);
	unit->imagb=sin(unit->m_twopioverN);
	
	////////FFT data///////////
	
	unit->m_prepareFFTBuf = (float*)RTAlloc(unit->mWorld, fftN * sizeof(float));
	unit->m_FFTBuf = (float*)RTAlloc(unit->mWorld, fftN * sizeof(float));
	unit->m_bufWritePos = 0;	
	
	SCWorld_Allocator alloc(ft, world);
	
	//no overlap
	//no windowing for constant Q
	unit->m_scfft = scfft_create(fftN, fftN, kRectWindow, unit->m_FFTBuf, unit->m_FFTBuf, kForward, alloc);
	
	
	float * qfreqs=(float*)RTAlloc(world, numbands * sizeof(float));
	int * startindex=(int*)RTAlloc(world, numbands * sizeof(int));
	int * numindices=(int*)RTAlloc(world, numbands * sizeof(int));
	float ** speckernelvals=(float**)RTAlloc(world, numbands * sizeof(float*));
	float * qmags= (float*)RTAlloc(world, numbands * sizeof(float));
	
	/*
	 unit->m_qfreqs= (float*)RTAlloc(world, numbands * sizeof(float));
	 unit->m_startindex= (int*)RTAlloc(world, numbands * sizeof(int));
	 unit->m_numindices= (int*)RTAlloc(world, numbands * sizeof(int));
	 //unit->m_cumulindices= (int*)RTAlloc(world, numbands * sizeof(int));
	 //unit->m_speckernelvals = (float*)RTAlloc(world, cumulsize * sizeof(float));
	 unit->m_speckernelvals = (float*)RTAlloc(world, numbands * sizeof(float*));
	 unit->m_qmags = (float*)RTAlloc(world, numbands * sizeof(float));
	 */
	
	//load data 
	int bufpos=3; //4;
	
	//printf("%d %p %d %p \n",i,&(pdata[bufpos]),bufpos,pdata);
	
	//can be made more efficient with pointers
	for (i=0;i<numbands; ++i) {
		
		//printf("%d %p %d %p \n",i,&(pdata[bufpos]),bufpos,pdata);
		
		//freq startind cumul numvals vals'
		qfreqs[i]= pdata[bufpos];
		startindex[i]= (int) pdata[bufpos+1];
		numindices[i]= (int) pdata[bufpos+2]; //+3
		
		//int specind= pdata[bufpos+2]; //cumulative position into this buffer
		//unit->m_cumulindices[i]=specind;
		
		//printf("%d startind %d numind %d cumul %d \n",i, unit->m_startindex[i], unit->m_numindices[i], unit->m_cumulindices[i]);
		bufpos+=3; //4;
		
		speckernelvals[i]= pdata+bufpos;
		
		//printf("%d %p %d %p %p \n",i,&(pdata[bufpos]),bufpos,pdata+bufpos, speckernelvals[i]);
		
		/*
		 for (j=0;j<unit->m_numindices[i]; ++j) {
			 
			 unit->m_speckernelvals[specind+j]= pdata[bufpos+j];
			 //if(pdata[bufpos+j]>1000) printf("%d big %f indtarget %d indsource %d",i,pdata[bufpos+j],specind+j,bufpos+j);
		 }*/
		
		bufpos+= numindices[i]; 
	}
	
	unit->m_qfreqs=qfreqs;
	unit->m_startindex= startindex;
	unit->m_numindices= numindices;
	unit->m_speckernelvals= speckernelvals;
	unit->m_qmags= qmags;
	
	
	/////storing complex numbers from previous frames for instananeous frequency calculation
	unit->m_topqcandidate=numbands-(g_sieve[10])-1; //85
	float tempfreq= unit->m_qfreqs[unit->m_topqcandidate];
	unit->m_ifbins=((int)ceil((tempfreq/(unit->m_freqperbin))+0.5))+1; //cover yourself for safety
	
	//printf("numbinsstored %d tempfreq %f topcand %d \n",unit->m_ifbins,tempfreq, unit->m_topqcandidate); //more info! 
	
	//if input amp template can correct search comb
	
	for (i=0;i<11;++i)
		unit->m_amps[i]= g_amps[i];
	
	uint32 ampbufnum = (uint32)ZIN0(4);
	if (!((ampbufnum > world->mNumSndBufs) || ampbufnum<0)) {
		SndBuf *buf2 = world->mSndBufs + ampbufnum; 
		
		bufsize = buf2->samples;
		
		pdata= buf2->data; 
		
		if(bufsize==11) {
			for (i=0;i<11;++i)
				unit->m_amps[i]= pdata[i];
		}
	}
	
	unit->m_minfreq= ZIN0(5);
	unit->m_maxfreq= ZIN0(6);
	
	//search qfreqs 
	unit->m_minqband= 0; 
	unit->m_maxqband=unit->m_topqcandidate;
	
	for(i=0;i<numbands; ++i) {
		
		if(qfreqs[i]>=unit->m_minfreq) {unit->m_minqband=i; break;} 
		
	}
	
	for(i=numbands-1;i>=0; --i) {
		
		if(qfreqs[i]<=unit->m_maxfreq) {unit->m_maxqband=i; break;} 
		
	}
	
	//unecessary, already true unit->m_maxqband= sc_min(unit->m_topqcandidate, unit->m_maxqband);
	unit->m_minqband= sc_min(unit->m_minqband, unit->m_maxqband); //necessary test if input stupid
	
	//printf("minfreq %f maxfreq %f minqband %d maxqband %d \n", unit->m_minfreq, unit->m_maxfreq, unit->m_minqband,unit->m_maxqband);
	
	unit->m_currfreq=440;  
	unit->m_hasfreq=0;
	
	unit->mCalcFunc = (UnitCalcFunc)&Qitch_next;
	
}



void Qitch_Dtor(Qitch *unit)
{
	
	RTFree(unit->mWorld, unit->m_prepareFFTBuf);
	RTFree(unit->mWorld, unit->m_FFTBuf);
	
	RTFree(unit->mWorld, unit->m_qfreqs);
	RTFree(unit->mWorld, unit->m_startindex);
	RTFree(unit->mWorld, unit->m_numindices);
	//RTFree(unit->mWorld, unit->m_cumulindices);
	RTFree(unit->mWorld, unit->m_speckernelvals);
	
	//RTFree(unit->mWorld, unit->m_store[0]);
	//RTFree(unit->mWorld, unit->m_store[1]);

	if(unit->m_scfft) {
		SCWorld_Allocator alloc(ft, unit->mWorld);
		scfft_destroy(unit->m_scfft, alloc);
	}
}


void Qitch_next(Qitch *unit, int wrongNumSamples)
{
	//would normally be float,will be cast to int for Tristan's optimisation
	float *in = IN(0);
	
	int numSamples = unit->mWorld->mFullRate.mBufLength;
	
	//float *output = ZOUT(0);
	
	Qitch_preparefft(unit, in, numSamples);
	
	ZOUT0(0)=unit->m_currfreq;
	ZOUT0(1)=unit->m_hasfreq;
	
	//float outval= 0.0;	
	//	for (int i=0; i<numSamples; ++i) {
	//		*++output = outval;
	//	}
	//	
}


//update for unknown SR, overlap

//Tristan Jehan recommends copying ints rather than floats- I say negligible compared to over algorithm costs for the moment
void Qitch_preparefft(Qitch *unit, float* in, int n) {
	
	int i, index = 0, cpt = n, maxindex;
	
	int bufpos= unit->m_bufWritePos;
	
	float * preparefftbuf=unit->m_prepareFFTBuf;
	float * fftbuf= unit->m_FFTBuf;
	
	// Copy input samples into prepare buffer	
	while ((bufpos < unit->m_N) && (cpt > 0)) {
		preparefftbuf[bufpos] = in[index];
		bufpos++;
		index++;
		cpt--;
	}
	
	// When Buffer is full...
	if (bufpos >= unit->m_N) {
		
		// Make a copy of prepared buffer into FFT buffer for computation
		for (i=0; i<unit->m_N; i++) 
			fftbuf[i] = preparefftbuf[i];
		
		//if(unit->m_overlap>0) will be safe as long as overlap=0l overlapindex=0 too
		
		// Save overlapping samples back into buffer- no danger since no indices overwritten
		for (i=0; i<unit->m_overlap; i++) 
			preparefftbuf[i] = preparefftbuf[unit->m_overlapindex+i];
		
		maxindex = n - index + unit->m_overlapindex;
		
		//blockSize less than g_N-g_overlapindex so no problem
		// Copy the rest of incoming samples into prepareFFTBuffer
		for (i=unit->m_overlapindex; i<maxindex; i++) {
			preparefftbuf[i] = in[index];
			index++;
		}
		
		bufpos = maxindex;
		
		//FFT buffer ready- calculate away!
		Qitch_dofft(unit);
	}
	
	
	unit->m_bufWritePos= bufpos;
	//printf("%d \n",bufpos);
	
}



//calculation function once FFT data ready, will be removing windowing! 
void Qitch_dofft(Qitch *unit) {
	
	int i,j;
	
	int fftN= unit->m_N;
	
	float * fftbuf= unit->m_FFTBuf;
	
	float ampthresh = ZIN0(2);
	
	bool ampok=false;
	
	for (j = 0; j < fftN; ++j) {	
		if (fabs(fftbuf[j]) >= ampthresh) {
			ampok = true;
			break;
		}
	}
	
	if(ampok) {
		
		
		//NO WINDOWING FOR CONSTANT Q TRANSFORM 
		//	for (i=0; i<g_N; ++i)
		//		fftbuf[i] *= g_hanning[i];
		//				
		
	//	// Look at the real signal as an interleaved complex vector by casting it.
//		// Then call the transformation function ctoz to get a split complex vector,
//		// which for a real signal, divides into an even-odd configuration.
//		ctoz ((COMPLEX *) fftbuf, 2, &unit->m_vA, 1, unit->m_Nover2);
//		
//		// Carry out a Forward FFT transform
//		fft_zrip(unit->m_vsetup, &unit->m_vA, 1, unit->m_vlog2n, FFT_FORWARD);
//		
//		//correct for scaling error in ALTIVEC
//		//float scale = (float)1.0/(2*n);
//		//vsmul( A.realp, 1, &scale, A.realp, 1, nOver2 );
//		//vsmul( A.imagp, 1, &scale, A.imagp, 1, nOver2 );
//		
//		// The output signal is now in a split real form, ie two arrays for real and imag.  Use the function
//		// ztoc to get a real vector, in format [dc,nyq, bin1realm bin1imag, bin2real, bin2imag, ....] etc
//		ztoc ( &unit->m_vA, 1, (COMPLEX *) fftbuf, 2, unit->m_Nover2);
//		

//need to convert to a usable form for calculations below? fftw output comes out split

		//fftwf_execute(unit->planTime2FFT);
		scfft_dofft(unit->m_scfft);

		//will probably want to store phase first 
		
		// Squared Absolute so get power
		//for (i=0; i<g_N; i+=2)
		//		//i>>1 is i/2 
		//		fftbuf[i>>1] = (fftbuf[i] * fftbuf[i]) + (fftbuf[i+1] * fftbuf[i+1]);
		//	
		
		//amortise state changes:
		
		///////////////////////////////////////////////////////////////
		//constant Q conversion, only need magnitudes
		int qtodo= unit->m_qbands;
		
		float * qfreqs= unit->m_qfreqs;
		int * startindex= unit->m_startindex;
		int * numindices= unit->m_numindices;
		float ** speckernelvals= unit->m_speckernelvals ;
		
		float * qmags = unit->m_qmags;
		
		//int cumul=0;
		
		float magtotal=0.0;
		
		//printf("here 2 %p %p %p \n",speckernelvals, speckernelvals[0], speckernelvals[0]-6);
		
		for (i=0; i<qtodo; ++i) {
			
			float realsum=0.0;
			float imagsum=0.0;
			
			int start= startindex[i];
			int end=start+numindices[i];
			
			float * readbase= speckernelvals[i]-start; //+(unit->m_cumulindices[i])-start;
			
			//printf("%d %p %p %p \n",i, speckernelvals[i], speckernelvals[i]-start, readbase);
			
			for (j=start; j<end; ++j) {
				float mult= readbase[j]; 
				
				//Altivec version
				//realsum+= mult*fftbuf[2*j];
				//imagsum+= mult*fftbuf[2*j+1];
				
				//fftw version
				//realsum+= mult*fftbuf[j];
				//imagsum+= mult*fftbuf[fftN-j];
				
				//sc fft version
				realsum+= mult*fftbuf[2*j];
				imagsum+= mult*fftbuf[2*j+1];
			}
			
			//scale here by 1/(2*g_N)
			
			//sclaing unecessary
			//realsum*=unit->m_fftscale;
			//imagsum*=unit->m_fftscale;
			
			qmags[i]= realsum*realsum+imagsum*imagsum; 
			magtotal+=qmags[i];
			//if(i>70) printf("%d %f   ",i,qmags[i]);
			
		}
		//printf("\n");
		
		/////////////////////////////////////////////////////////
		float max=0.0;
		int maxindex=0;
		
		//done as per Pitch UGen now
		//float intensitycheck = ZIN0(2); //intensity check
		
		//only bother to test if amplitude is sufficient
		//printf("intensity %f check %f \n",magtotal, intensitycheck);
		
		//if(magtotal<intensitycheck) {unit->m_hasfreq=0;}
		//else {
		
		float * pamps= unit->m_amps;
		
		unit->m_hasfreq=1; //could turn off if too close to call...won't bother for now
		
		//pitch detection by cross correlation, only check roots up to 2000 or so, also don't need guard element then! 
		
		//can check even less if use minqband, qmaxband
		
		//int minqband= ZIN0(5);
		//int maxqband= sc_min(unit->m_topqcandidate, ZIN0(6));
		
		//for (i=0; i<unit->m_topqcandidate; ++i) {
		
		for (i=unit->m_minqband; i<unit->m_maxqband; ++i) {
			
			float sum=0.0;
			for (j=0; j<11; ++j) {
				sum+= pamps[j]*qmags[i+g_sieve[j]];
			}
			
			if(sum>max) {max=sum; maxindex=i; 
			//printf("maxsum %f maxind %d \n",max, maxindex);
			}
			
		}
		
		//printf("pitch %f \n",qfreqs[maxindex]);
		
		float pitchcheck = ZIN0(3); 
		
		if(pitchcheck<0.5) { unit->m_currfreq= qfreqs[maxindex];}
		else {
			
			//////////////////////////////////////////////////////////INSTANTANEOUS FREQUENCY TRACK
			
			int k= (int)((qfreqs[maxindex]/unit->m_freqperbin)+0.5);
			
			//printf("check k %f %f %f %d \n",qfreqs[maxindex],unit->m_freqperbin,(qfreqs[maxindex]/unit->m_freqperbin)+0.5,k);
			
			
			//k can't be zero else trouble
			
			//Xhk=0.5*(F.data(k,ii)-0.5*F.data(k+1,ii)-0.5*F.data(k-1,ii));
			//    Xhk2= 0.5*exp(j*2*pi*k/F.N)*(F.data(k,ii)- (0.5*exp(j*2*pi/F.N)*F.data(k+1,ii)) - (0.5*exp(-j*2*pi/F.N)*F.data(k-1,ii)));
			//    
			//    theta2= angle(Xhk2); %atan(imag(Xhk2)/real(Xhk2));
			//    theta= angle(Xhk); %atan(imag(Xhk)/real(Xhk));
			//    
			//    w(ii)= 44100*(abs(theta2-theta))/(2*pi);
			//    
			//	
			
			//instantaneous frequency correction
			float Xhkreal, Xhkimag, Xhk2real, Xhk2imag; 
			
			//Altivec
			//Xhkreal=0.5*((fftbuf[2*k])-(0.5*fftbuf[2*(k+1)])-(0.5*fftbuf[2*(k-1)]));
			//Xhkimag=0.5*((fftbuf[2*k+1])-(0.5*fftbuf[2*(k+1)+1])-(0.5*fftbuf[2*(k-1)+1]));
			
			
			Xhkreal=0.5*((fftbuf[k])-(0.5*fftbuf[k+1])-(0.5*fftbuf[k-1]));
			Xhkimag=0.5*((fftbuf[fftN- k])-(0.5*fftbuf[fftN- (k+1)])-(0.5*fftbuf[fftN- (k-1)]));
			
			
			//complex exponentials to calculate a= exp(j*2*pi*k/F.N)   b= exp(j*2*pi/F.N)  c= exp(-j*2*pi/F.N)
			//float areal= cos(TWOPI*k/g_N);
			//float aimag= sin(TWOPI*k/g_N);
			
			//		float breal= cos(TWOPI/g_N);
			//			float bimag= sin(TWOPI/g_N);
			//			
			//			float creal= breal;
			//			float cimag= -bimag;	
			//			
			//			float tmpreal= fftbuf[2*k] - (0.5*((breal*fftbuf[2*(k+1)]) - (bimag*fftbuf[2*(k+1)+1]))) - (0.5*((creal*fftbuf[2*(k-1)]) - (cimag*fftbuf[2*(k-1)+1])));
			//			float tmpimag= fftbuf[2*k+1] - (0.5*((breal*fftbuf[2*(k+1)+1]) + (bimag*fftbuf[2*(k+1)]))) - (0.5*((creal*fftbuf[2*(k-1)+1]) + (cimag*fftbuf[2*(k-1)])));
			//			
			float calc= (unit->m_twopioverN)*k;
			float areal= cos(calc);
			float aimag= sin(calc);
			
			float breal= unit->realb;
			float bimag= unit->imagb;
			
			
			//float tmpreal= fftbuf[2*k] - (0.5*((breal*fftbuf[2*(k+1)]) - (bimag*fftbuf[2*(k+1)+1]))) - (0.5*((breal*fftbuf[2*(k-1)]) + (bimag*fftbuf[2*(k-1)+1])));
			//float tmpimag= fftbuf[2*k+1] - (0.5*((breal*fftbuf[2*(k+1)+1]) + (bimag*fftbuf[2*(k+1)]))) - (0.5*((breal*fftbuf[2*(k-1)+1]) - (bimag*fftbuf[2*(k-1)])));
			
			
			float tmpreal= fftbuf[k] - (0.5*((breal*fftbuf[k+1]) - (bimag*fftbuf[fftN- (k+1)]))) - (0.5*((breal*fftbuf[k-1]) + (bimag*fftbuf[fftN- (k-1)])));
			float tmpimag= fftbuf[fftN-k] - (0.5*((breal*fftbuf[fftN- (k+1)]) + (bimag*fftbuf[k+1]))) - (0.5*((breal*fftbuf[fftN- (k-1)]) - (bimag*fftbuf[k-1])));
			
			
			Xhk2real= 0.5*(areal*tmpreal- aimag*tmpimag);
			Xhk2imag= 0.5*(areal*tmpimag+ aimag*tmpreal);
			
			//float Xhk2= 0.5*exp(j*2*pi*k/F.N)*(F.data(k,ii)- (0.5*exp(j*2*pi/F.N)*F.data(k+1,ii)) - (0.5*exp(-j*2*pi/F.N)*F.data(k-1,ii)));
			
			float theta2= atan(Xhk2imag/Xhk2real);
			float theta= atan(Xhkimag/Xhkreal);
			
			float freq= ((float)unit->m_SR)*(fabs(theta2-theta))/(TWOPI);
			
			//printf("do you believe freq? %d max %f min %f result %f\n",k,unit->m_maxfreq, unit->m_minfreq, freq);
			
			//check no dodgy answers
			if((freq<unit->m_minfreq) || (freq>unit->m_maxfreq)) {unit->m_hasfreq=0;}
			else
				unit->m_currfreq= freq;
			
		}
		
		
		}	else {unit->m_hasfreq=0;}	
}