1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
|
/*
SuperCollider real time audio synthesis system
Copyright (c) 2002 James McCartney. All rights reserved.
http://www.audiosynth.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/***************************************************************************
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
Tartini (version 1) is Copyright (C) 2002-2005 Philip McLeod.
email : pmcleod@cs.otago.ac.nz
You may use, distribute and copy Tartini (version 1) under the terms of
GNU General Public License version 2.
The source for Tartini (version 1) can be downloaded from http://www.tartini.net
or write to Philip McLeod, Department of Computer Science, University of Otago,
PO Box 56, Dunedin 9015, New Zealand.
***************************************************************************/
//Using FFTW, also GNU GPL
//This file is part of MachineListening. Copyright (C) 2006 Nicholas M.Collins distributed under the terms of the GNU General Public License full notice in file MachineListening.license
//Conversion of Philip McLeod's Tartini pitch detector by Nick Collins, completed November 13, 2006
//13 dec 2006, adapted for a general machine listening distro
// parameters- in, threshold (k-rate), n (i-rate), k (i-rate), overlap (i-rate), smallcutoff(k-rate)
#include "PitchDetection.h"
void setupTartini(InterfaceTable *);
void preparefft(Tartini *unit, float* in);
void dofft(Tartini *unit);
void inversefft(Tartini *unit);
void nsdf(Tartini *unit);
void peakpicking(Tartini *unit);
#if SC_FFT_VDSP
#define FFT_VSP_MAXSIZE 3072
static int fftAllowedSizes[3] = {8,9,10}; //{256,512,1024};
static FFTSetup fftSetup3[3]; // vDSP setups, one per FFT size, allowing 512 + 256, 1024 + 512, 2048 + 1024
static COMPLEX_SPLIT splitBuf; // input buf for vDSP FFT
static COMPLEX_SPLIT splitBuf2; // output buf
#endif
void setupTartini(InterfaceTable * inTable) {
ft= inTable;
//must sort in Tartini plugin itself
//for Tartini
DefineDtorUnit(Tartini);
// prepareFFTW(1024+512);
// prepareFFTW(512+256);
// prepareFFTW(2048+1024);
#if SC_FFT_VDSP
for (int i=0; i<3; ++i) {
fftSetup3[i] = vDSP_create_fftsetup(fftAllowedSizes[i],FFT_RADIX3); //FFT has size 3*(2**n), SC_fftlib.cpp can't support this easily
if(fftSetup3[i] == NULL)
printf("FFT ERROR: Mac vDSP library could not allocate FFT setup for size %i\n", 1<<i);
}
splitBuf.realp = (float*) malloc ( FFT_VSP_MAXSIZE * sizeof(float) );
splitBuf.imagp = (float*) malloc ( FFT_VSP_MAXSIZE * sizeof(float) );
splitBuf2.realp = (float*) malloc ( FFT_VSP_MAXSIZE * sizeof(float) );
splitBuf2.imagp = (float*) malloc ( FFT_VSP_MAXSIZE * sizeof(float) );
#endif
}
void Tartini_Ctor( Tartini* unit ) {
//int i;
double samplingrate = unit->mWorld->mSampleRate; //SAMPLERATE; //unit->mWorld->mFullRate->mSampleRate
unit->blocklength= unit->mWorld->mFullRate.mBufLength; //BUFLENGTH;
int n = (int)(ZIN0(2)+0.1); //poor man's roundoff
int k = (int)(ZIN0(3)+0.1);
int overlap= (int)(ZIN0(4)+0.1);
//printf("n %d k %d overlap %d \n", n, k, overlap);
if (n<256) n=256;
//default
if(k==0) k = (n + 1) / 2;
if(k>n) k=n;
//HARD CODED FOR INITIAL TESTS
#if SC_FFT_VDSP
switch(n) {
case 2048:
k= 1024;
//m_whichfftindex = 2;
break;
case 1024:
k=512;
//m_whichfftindex = 1;
break;
case 512:
k=256;
//m_whichfftindex = 0;
break;
default:
n= 2048;
k=1024;
//printf("Tartini: should never occur, OS X use of vDSP requires n = 2048, 1024, 512, you choose %d \n",n);
break;
}
unit->m_whichfftindex = LOG2CEIL(k)-8;
#endif
if (overlap<0) overlap=0;
//allow time for amortisation
if (overlap>(n-(4*unit->blocklength))) overlap=(n-(4*unit->blocklength));
//int n=2048;
//int k = (n + 1) / 2; //will lead to odd FFT 3072 or 1536 points, cheaper if power of 2
int size = n + k;
//unit->nover2= (n + 1) / 2;
unit->overlap= overlap; //unit->nover2;
unit->overlapindex= n-overlap;
//float freqPerBin = samplingrate / double(size);
//printf("size %d n %d k %d overlap %d overlapindex %d \n", size, n, k, overlap, unit->overlapindex);
unit->n= n;
unit->k= k;
unit->size=size;
//unit->freqPerBin=freqPerBin;
unit->rate=samplingrate;
unit->m_bufWritePos = 0;
unit->output = (float*)RTAlloc(unit->mWorld, sizeof(float) * k);
unit->input = (float*)RTAlloc(unit->mWorld, sizeof(float) * n);
unit->dataTemp = (float*)RTAlloc(unit->mWorld, sizeof(float) * n);
unit->autocorrTime = (float*)RTAlloc(unit->mWorld, sizeof(float) * size);
unit->autocorrFFT = (float*)RTAlloc(unit->mWorld, sizeof(float) * size);
// unit->dataTemp = (float*)fftwf_malloc(sizeof(float) * n);
// unit->autocorrTime = (float*)fftwf_malloc(sizeof(float) * size);
// unit->autocorrFFT = (float*)fftwf_malloc(sizeof(float) * size);
#if SC_FFT_FFTW
unit->planAutocorrTime2FFT = fftwf_plan_r2r_1d(size, unit->autocorrTime, unit->autocorrFFT, FFTW_R2HC, FFTW_ESTIMATE);
unit->planAutocorrFFT2Time = fftwf_plan_r2r_1d(size, unit->autocorrFFT, unit->autocorrTime, FFTW_HC2R, FFTW_ESTIMATE);
#elif SC_FFT_VDSP
unit->log2n = fftAllowedSizes[unit->m_whichfftindex]; //LOG2CEIL(size)
#endif
unit->m_currfreq=440;
unit->m_hasfreq=0;
//amortisation and states
unit->m_amortisationstate=0; //off
SETCALC(Tartini_next);
}
void Tartini_Dtor(Tartini *unit) {
#if SC_FFT_FFTW
fftwf_destroy_plan(unit->planAutocorrFFT2Time);
fftwf_destroy_plan(unit->planAutocorrTime2FFT);
#endif
// fftwf_free(unit->autocorrFFT);
// fftwf_free(unit->autocorrTime);
// fftwf_free(unit->dataTemp);
//fftwf_free(unit->output);
// fftwf_free(unit->input);
RTFree(unit->mWorld, unit->autocorrFFT);
RTFree(unit->mWorld, unit->autocorrTime);
RTFree(unit->mWorld, unit->dataTemp);
RTFree(unit->mWorld, unit->output);
RTFree(unit->mWorld, unit->input);
}
//kr rate
void Tartini_next( Tartini *unit, int inNumSamples ) {
float *in = IN(0);
switch(unit->m_amortisationstate) {
case 0:
break; //do nothing case (will take fft if necessary)
case 1: //calculate ifft and nsdf
inversefft(unit);
unit->m_amortisationstate=2;
break;
case 2: //calculate ifft and nsdf
nsdf(unit);
unit->m_amortisationstate=3;
break;
case 3: //calculate peak picking
peakpicking(unit);
unit->m_amortisationstate=0;
break;
//default:
// break;
}
preparefft(unit, in);
ZOUT0(0)=unit->m_currfreq;
ZOUT0(1)=unit->m_hasfreq;
}
//rewritten this for arbitrary overlap, n
//Tristan Jehan recommends copying ints rather than floats- I say negligible compared to other algorithm costs for the moment
void preparefft(Tartini *unit, float* in) {
int n=unit->n;
//urk!
int bufpos= unit->m_bufWritePos;
int blocklength=unit->blocklength;
int i, index = 0, cpt = blocklength, maxindex;
float * preparefftbuf=unit->dataTemp;
float * fftbuf= unit->autocorrTime;
// Copy input samples into prepare buffer
while ((bufpos < n) && (cpt > 0)) {
preparefftbuf[bufpos] = in[index];
++bufpos;
++index;
--cpt;
}
// When Buffer is full...
if (bufpos >= n) {
float * input= unit->input;
// Make a copy of prepared buffer into FFT buffer for computation
/*
for (i=0; i<n; i++) {
fftbuf[i] = preparefftbuf[i];
input[i]= preparefftbuf[i];
}
*/
Copy(n, fftbuf, preparefftbuf);
Copy(n, input , preparefftbuf);
//zero padding: zero the top k elements
int size=unit->size;
Clear(size-n, fftbuf+n);
//proving that fftw FFT doesn't do anything to input data array!
//
// printf("before \n");
// for (i=0; i<20; i++)
// printf("%f ",preparefftbuf[i]);
//
// printf("\n\n");
//FFT buffer ready- calculate away!
dofft(unit);
//need to use preparefftbuf too, must be careful if amortising or make a copy of time domain too
//
// printf("after \n");
// for (i=0; i<20; i++)
// printf("%f ",preparefftbuf[i]);
//
// printf("\n\n");
//if(unit->m_overlap>0) will be safe as long as overlap=0l overlapindex=0 too
// Save overlapping samples back into buffer- no danger since no indices overwritten
/*
for (i=0; i<unit->overlap; i++)
preparefftbuf[i] = preparefftbuf[unit->overlapindex+i];
*/
Copy(unit->overlap, preparefftbuf, preparefftbuf + unit->overlapindex);
maxindex = blocklength - index + unit->overlap;
//blockSize less than n-overlapindex so no problem
// Copy the rest of incoming samples into prepareFFTBuffer
for (i=unit->overlap; i<maxindex; i++) {
preparefftbuf[i] = in[index];
index++;
}
bufpos = maxindex;
}
unit->m_bufWritePos= bufpos;
//printf("%d \n",bufpos);
}
//calculation function once FFT data ready, will be removing windowing!
//I've split the autocorr calculation over two functions, as below, for amortisation, hence a small amount of repeated code
void dofft(Tartini *unit) {
int j;
int size=unit->size;
float * autocorrFFT= unit->autocorrFFT; //results of FFT
#if SC_FFT_FFTW
fftwf_execute(unit->planAutocorrTime2FFT);
//do half of the calculations
for(j=1; j<size/4; ++j) {
float val1= autocorrFFT[j];
float val2= autocorrFFT[size-j];
autocorrFFT[j] = (val1*val1) + (val2*val2);
autocorrFFT[size-j] = 0.0f;
}
#else
float * autocorrTime= unit->autocorrTime; //input to FFT
//different packing: as complex data
//leave junk data in FFT_VSP_MAXSIZE, just prepare up to size
for(j=0; j<size; ++j) {
splitBuf.realp[j] = autocorrTime[j];
splitBuf.imagp[j] = 0.0f;
}
// Now the actual FFT; out of place COMPLEX to COMPLEX FFT
vDSP_fft3_zop(fftSetup3[unit->m_whichfftindex], &splitBuf, 1, &splitBuf2, 1, unit->log2n, 1);
unit->m_nyquist = splitBuf2.realp[size/2];
// Copy the data to the public output buf, transforming it back out of "split" representation
vDSP_ztoc(&splitBuf2, 1, (DSPComplex*)autocorrFFT, 2, size >> 1);
//NO SCALING REQUIRED FOR FORWARDS FFT if complex rather than real input
//http://developer.apple.com/library/ios/#documentation/Performance/Conceptual/vDSP_Programming_Guide/UsingFourierTransforms/UsingFourierTransforms.html
//float scale = 0.5f;
//vDSP_vsmul(autocorrFFT, 1, &scale, autocorrFFT, 1, size);
//do half of the calculations
for(j=1; j<size/4; ++j) {
float val1= autocorrFFT[2*j];
float val2= autocorrFFT[2*j+1];
autocorrFFT[j] = (val1*val1) + (val2*val2);
autocorrFFT[size-j] = 0.0f;
}
#endif
unit->m_amortisationstate=1; //on
}
void inversefft(Tartini *unit) {
int j;
int size=unit->size;
int start= size/4;
float * autocorrFFT= unit->autocorrFFT; //results of FFT
#if SC_FFT_FFTW
for(j=start; j<size/2; j++) {
float val1= autocorrFFT[j];
float val2= autocorrFFT[size-j];
autocorrFFT[j] = (val1*val1) + (val2*val2);
autocorrFFT[size-j] = 0.0f;
}
autocorrFFT[0] = autocorrFFT[0]*autocorrFFT[0];
autocorrFFT[size/2] = autocorrFFT[size/2]*autocorrFFT[size/2];
//Do an inverse FFT
fftwf_execute(unit->planAutocorrFFT2Time);
#else
float * autocorrTime= unit->autocorrTime; //input to FFT
for(j=start; j<size/2; j++) {
float val1= autocorrFFT[2*j];
float val2= autocorrFFT[2*j+1];
autocorrFFT[j] = (val1*val1) + (val2*val2);
autocorrFFT[size-j] = 0.0f;
}
autocorrFFT[0] = autocorrFFT[0]*autocorrFFT[0]; //dc
float nyquist = unit->m_nyquist;
autocorrFFT[size/2] = nyquist*nyquist; //autocorrFFT[size/2]*autocorrFFT[size/2]; //nyquist, packed format from vDSP
//leave junk data in FFT_VSP_MAXSIZE, just prepare up to size
for(j=0; j<size; ++j) {
splitBuf.realp[j] = autocorrFFT[j];
splitBuf.imagp[j] = 0.0f;
}
vDSP_fft3_zop(fftSetup3[unit->m_whichfftindex], &splitBuf, 1, &splitBuf2, 1, unit->log2n, 0);
for(j=0; j<size; j++) {
autocorrTime[j] = splitBuf2.realp[j];
}
//No scaling required because later comparative stage does this, otherwise IFFT would be divided by size
//float scale = 1.0/((float) size) ;
//vDSP_vsmul(autocorrTime, 1, &scale, autocorrTime, 1, size);
#endif
}
//amortised
void nsdf(Tartini *unit) {
int j;
int size=unit->size;
float * autocorrTime= unit->autocorrTime; //results ofinverse FFT
float * output= unit->output;
float fsize_rec = 1.f / float(size);
//buffer for k outputs (512 autocorr coefficients- check if same if take 2048 point autocorr?)
int k= unit->k;
int n= unit->n;
for(float *p1=output, *p2=autocorrTime+1; p1<output+k;)
*p1++ = *p2++ * fsize_rec;
//
double sumSq= double(autocorrTime[0]) * double(fsize_rec);
//NSDF
double sumRightSq = sumSq, sumLeftSq = sumSq;
float * input= unit->input; //dataTemp; //safety because of amortisation
for(j=0; j<k; ++j) {
float left= input[n-1-j];
float right= input[j];
sumLeftSq -= left*left;
sumRightSq -= right*right;
//output[j] = 1.0 - (sumLeftSq + sumRightSq - 2*output[j]) / (sumLeftSq + sumRightSq);
output[j] *= 2.f / static_cast<float>(sumLeftSq + sumRightSq);
}
//now have k lags efficiently calculated, peak picking time
//double rms= sumSq/double(n)
//peakpicking(unit); //now amortised as next step, will happen for next block
//see Qitch
//float ampthresh = ZIN0(2);
//section 7 of paper, confidence measure test power against threshold and clarity of pitch estimate unit->m_hasfreq=0;
}
inline void parabolaTurningPoint2(float y_1, float y0, float y1, float xOffset, float *x, float *y)
{
float yTop = y_1 - y1;
float yBottom = y1 + y_1 - 2 * y0;
if(yBottom != 0.0) {
*x = xOffset + yTop / (2 * yBottom);
*y = y0 - ((yTop*yTop) / (8 * yBottom));
} else {
*x = xOffset;
*y = y0;
}
}
#include <vector>
//can move vectors to permanent membership, clear each time used
//relatively direct port of Tartini code, even keeping the std library code ; )
//doesn't push up plug-in size too dramatically
void peakpicking(Tartini *unit) {
float * output= unit->output;
int k=unit->k;
//int n=unit->n;
std::vector<int> maxPositions; //std library include
int pos = 0;
int curMaxPos = 0;
/**
Find the highest maxima between each pair of positive zero crossings.
Including the highest maxima between the last +ve zero crossing and the end if any.
Ignoring the first (which is at zero)
In this diagram the disired maxima are marked with a *
* *
\ * /\ * /\
_\____/\____/__\/\__/\____/__
\ / \ / \/ \ /
\/ \/ \/
*/
//while(pos < k-1 && output[pos] > 0.0f) pos++; //find the first negitive zero crossing
while(pos < (k-1)/3 && output[pos] > 0.0f) pos++; //find the first negitive zero crossing
while(pos < k-1 && output[pos] <= 0.0f) pos++; //loop over all the values below zero
if(pos == 0) pos = 1; // can happen if output[0] is NAN
while(pos < k-1) {
if(output[pos] > output[pos-1] && !(output[pos] < output[pos+1])) { //a local maxima
//if(output[pos] >= threshold) { maxPos = pos; break; } //the first maxima above threshold. Stop there.
if(curMaxPos == 0) curMaxPos = pos; //the first maxima (between zero crossings)
else if(output[pos] > output[curMaxPos]) curMaxPos = pos; //a higher maxima (between the zero crossings)
}
pos++;
if(pos < k-1 && !(output[pos] > 0.0f)) { //a negative zero crossing
if(curMaxPos > 0) { //if there was a maximum
maxPositions.push_back(curMaxPos); //add it to the vector of maxima
curMaxPos = 0; //clear the maximum position, so we start looking for a new ones
}
while(pos < k-1 && !(output[pos] > 0.0f)) pos++; //loop over all the values below zero
}
}
if(curMaxPos > 0) { //if there was a maximum in the last part
maxPositions.push_back(curMaxPos); //add it to the vector of maxima
curMaxPos = 0; //clear the maximum position, so we start looking for a new ones
}
std::vector<float> periodEstimates;
std::vector<float> periodEstimatesAmp;
//store some of the best period estimates
periodEstimates.clear();
periodEstimatesAmp.clear();
//float smallThreshold = 0.7f;
//float smallCutoff = output[overallMaxIndex] * smallThreshold;
float smallCutoff = ZIN0(5); //0.5f;
for(std::vector<int>::iterator iter = maxPositions.begin(); iter < maxPositions.end(); iter++) {
if(output[*iter] >= smallCutoff) {
float x, y;
//do a parabola fit to find the maximum
parabolaTurningPoint2(output[*iter-1], output[*iter], output[*iter+1], float(*iter + 1), &x, &y);
if(y < -1.0f) y = -1.0f;
if(y > 1.0f) y = 1.0f;
//y = bound(y, -1.0f, 1.0f);
periodEstimates.push_back(x);
periodEstimatesAmp.push_back(y);
}
}
//if(maxPositions.empty()) { //no period found
if(periodEstimates.empty()) { //no period found
// analysisData.correlation = 0.0f;
// analysisData.fundamentalFreq = 0.0f;
// analysisData.note = 0.0f;
// analysisData.volumeValue = 0.0f;
// analysisData.highestCorrelationIndex = -1;
// analysisData.chosenCorrelationIndex = -1;
// analysisData.noteIndex = -1;
// analysisData.done = true;
//
unit->m_hasfreq=0;
return;
}
//find the overall maximum position
int overallMaxIndex = 0;
unsigned int iterPos;
//for(std::vector<float>::iterator iterPos = analysisData.periodEstimatesAmp.begin()+1; iterPos < analysisData.periodEstimatesAmp.end(); iterPos++) {
for(iterPos = 1; iterPos < periodEstimatesAmp.size(); iterPos++) {
if(periodEstimatesAmp[iterPos] > periodEstimatesAmp[overallMaxIndex]) overallMaxIndex = iterPos;
}
int highestCorrelationIndex = overallMaxIndex;
//chooseCorrelationIndex(analysisData, threshold);
//uint iterPos;
int choosenMaxIndex = 0;
//already tested!
//if(periodEstimates.empty()) return; //no period found
//seems to be an int of 97 in setting code but I'll ignore for now
float threshold= ZIN0(1); //0.93; //93% is GUI default in Tartini program
//choose a cutoff value based on the highest value and a relative threshold
float cutoff = periodEstimatesAmp[highestCorrelationIndex] * threshold;
//find the first of the maxPositions which is above the cutoff
for(iterPos = 0; iterPos < periodEstimatesAmp.size(); iterPos++) {
if(periodEstimatesAmp[iterPos] >= cutoff) { choosenMaxIndex = iterPos; break; }
}
//int chosenCorrelationIndex = choosenMaxIndex;
//float correlation = periodEstimatesAmp[choosenMaxIndex];
double period = periodEstimates[choosenMaxIndex];
double freq = (unit->rate) / period;
float fundamentalFreq = float(freq);
//was unit->m_hasfreq= 1, Dan Stowell spotted this quick fix:
unit->m_hasfreq = periodEstimatesAmp[iterPos]; // According to McLeod (2005), the "clarity" (between 0 and 1) is simply this value
unit->m_currfreq= fundamentalFreq;
//printf("freq %f period %f rate %f \n",fundamentalFreq, period, unit->rate);
}
|