1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
/*
SuperCollider real time audio synthesis system
Copyright (c) 2002 James McCartney. All rights reserved.
http://www.audiosynth.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
//UGens by Nick Collins
//Released under the GNU GPL as extensions for SuperCollider 3
//building: SC 3.5/3.4 compatible:
//cmake -DSC_PATH=/data/gitprojects/SuperCollider-Source3.5 -DCMAKE_OSX_ARCHITECTURES='i386;x86_64' ..
//3.6
//cmake -DSC_PATH=/data/gitprojects/scdev/supercollider -DCMAKE_OSX_ARCHITECTURES='x86_64' ..
#include "SC_PlugIn.h"
#include <math.h>
#include <stdlib.h>
InterfaceTable *ft;
struct AttackSlope : public Unit
{
float lastenergy_;
int windowsize_;
float * windowdata_;
float * runningsumdata_;
int datapointer_; //circular buffer position
float runningsum_;
int runningsumcounter_;
int runningsumrecalculate_; //needs to be recalculated once in a while to avoid rounding error accumulation
float leakyintegrator_;
float * peakpickdata_;
int peakpicksize_;
int peakpickpointer_;
//to search for minima of recent energy for actual onset time, and for slope estimate up to peak
float * maxenergydata_;
int maxenergysize_;
int maxenergypointer_;
float lastslope_;
float slopeaverage_;
long lastonsettime_;
float * slopedata_;
int slopesize_;
int slopedatapointer_;
int slopescollected_; //allows test only on slopes collected, avoids initial inaccurate readings
int blockssincelastonset_;
long ugenage_;
};
extern "C" {
void AttackSlope_next(AttackSlope* unit, int inNumSamples);
void AttackSlope_Ctor(AttackSlope* unit);
void AttackSlope_Dtor(AttackSlope* unit);
}
void AttackSlope_Ctor( AttackSlope* unit ) {
//input,windowsize=1024,peakpicksize=10,leak=0.999,energythreshold=0.01,sumthreshold=100,mingap=0
//OUT0(0) = ZIN0(1);
//zero outputs at sample one
OUT0(0) = 0.0f;
// OUT0(1) = 0.0f;
// OUT0(2) = 0.0f;
// OUT0(3) = 0.0f;
// OUT0(4) = 0.0f;
//
unit->windowsize_ = ZIN0(1);
unit->peakpicksize_ = ZIN0(2);
unit->peakpickpointer_ = 0;
int blocksize = unit->mWorld->mFullRate.mBufLength;
if(unit->windowsize_%blocksize!=0) {
unit->windowsize_ += blocksize - (unit->windowsize_%blocksize);
//round up
}
unit->windowdata_ = (float *) RTAlloc(unit->mWorld, sizeof(float)* unit->windowsize_ );
unit->runningsumdata_ = (float *) RTAlloc(unit->mWorld, sizeof(float)* unit->windowsize_ );
unit->peakpickdata_ = (float *) RTAlloc(unit->mWorld, sizeof(float)* unit->peakpicksize_ ); //last N blocks max runningsums to make peak pick decision
int i;
for (i=0; i<unit->windowsize_; ++i) {
unit->windowdata_[i] = 0.0f;
unit->runningsumdata_[i] = 0.0f;
}
for (i=0; i<unit->peakpicksize_; ++i)
unit->peakpickdata_[i] = 0.0f;
unit->maxenergysize_ = 100; //100*64 = 6400 samples
unit->maxenergydata_ = (float *) RTAlloc(unit->mWorld, sizeof(float)* unit->maxenergysize_ );
unit->maxenergypointer_= 0;
for (i=0; i<unit->maxenergysize_; ++i)
unit->maxenergydata_[i] = 0.0f;
unit->lastslope_ = 0.0f;
unit->slopeaverage_ = 0.0f;
unit->lastonsettime_ = -1.0f;
unit->slopesize_ = ZIN0(7); //10; numslopesaveraged argument to UGen
unit->slopedata_ = (float *) RTAlloc(unit->mWorld, sizeof(float)* unit->slopesize_ );
for (i=0; i<unit->slopesize_; ++i)
unit->slopedata_[i] = 0.0f;
unit->slopedatapointer_ = 0;
unit->slopescollected_ = 0;
unit->runningsum_ = 0.0f;
unit->runningsumcounter_ = 0;
unit->runningsumrecalculate_ = unit->windowsize_/blocksize;
unit->lastenergy_ = 0.0f;
unit->leakyintegrator_ = 0.0f;
unit->datapointer_ = 0;
unit->blockssincelastonset_ = 999999;
// unit->magnitudes_ = (float *) RTAlloc(unit->mWorld, sizeof(float)* unit->mediansize_ );
//
//
unit->ugenage_ = 0;
SETCALC(AttackSlope_next);
}
void AttackSlope_Dtor( AttackSlope* unit ) {
RTFree(unit->mWorld, unit->runningsumdata_);
RTFree(unit->mWorld, unit->windowdata_);
RTFree(unit->mWorld, unit->peakpickdata_);
RTFree(unit->mWorld, unit->maxenergydata_);
RTFree(unit->mWorld, unit->slopedata_);
}
void AttackSlope_next( AttackSlope *unit, int inNumSamples ) {
int i,j;
int numSamples = unit->mWorld->mFullRate.mBufLength;
float * windowdata = unit->windowdata_;
float * runningsumdata = unit->runningsumdata_;
float runningsum = unit->runningsum_;
int windowsize = unit->windowsize_;
int datapointer = unit->datapointer_;
float leakyintegrator = unit->leakyintegrator_;
float leak = ZIN0(3); //leak coefficient for leakyintegrator
float energythreshold = ZIN0(4);
float sumthreshold = ZIN0(5);
int postonsetreset = ZIN0(6);
//input,windowsize=1024,peakpicksize=10,leak=0.999,energythreshold=0.01,sumthreshold=100,mingap=0
//printf("here in next\n");
//SC prototype
// var source = PlayBuf.ar(1,b);
// var slope1 = Slope.ar(log(source.squared+1))*0.001;
// var peak1 = RunningSum.ar(if(slope1>0,slope1,0.0),1024);
// //could have rule about number in a row here...
// var leaky = Integrator.ar(peak1,0.99)*0.001;
// //after onset event, sensitivity drops off; so leaks faster after onset
float *input = IN(0);
//float *out = OUT(0); // NB not ZOUT0
float lastenergy = unit->lastenergy_;
float maxval = 0.0f;
float maxenergy = 0.0f;
float compensation = 1.0f/windowsize;
for (i=0; i<numSamples; ++i) {
float source = input[i];
float energy = log(source*source+1);
if(energy>maxenergy) maxenergy = energy;
windowdata[datapointer] = energy;
float slope = energy - lastenergy;
//only positive going slope of interest
if(slope<0.0f) slope = 0.0f;
runningsum += slope - runningsumdata[datapointer];
runningsumdata[datapointer] = slope;
datapointer = (datapointer+1)%windowsize;
leakyintegrator = leakyintegrator * leak + (runningsum*compensation);
if(leakyintegrator>maxval) {
maxval = leakyintegrator;
}
}
//decision time
//minimal conditions:
//
//if energy at least X
//if average recent energy < 0.5*Y where Y is current energy
//if peak pick detection function
//if no recent onset trigger
//onset trigger
//find recent amplitude minima
//measure slope
//peak pick decision
//maxenergy>
float * peakpickdata = unit->peakpickdata_;
//compare latest value to last N
// float sumdiff=0.0f;
//
// for (i=0; i<unit->peakpicksize_; ++i) {
//
// float difference = maxval - peakpickdata[i];
//
// //greater penalty if negative
// //sumdiff += difference>0.0f?difference:(2*difference);
//
// //greater contribution if positive
// sumdiff += difference>0.0f?difference:10.0f*difference;
//
// }
//
// if(sumdiff<0.0f) sumdiff = 0.0f;
//
// if((maxenergy>energythreshold) && (sumdiff>sumthreshold) && (unit->blockssincelastonset_>30)) {
//
// //maxval=0.0f;
//
// unit->blockssincelastonset_ = 0;
// }
peakpickdata[unit->peakpickpointer_] = maxval; //log(maxval+1);
unit->peakpickpointer_ = (unit->peakpickpointer_+1)%unit->peakpicksize_;
++unit->blockssincelastonset_;
float midval = peakpickdata[(unit->peakpickpointer_+unit->peakpicksize_-(unit->peakpicksize_/2))%unit->peakpicksize_];
float sumdiff=0.0f;
for (i=0; i<unit->peakpicksize_; ++i) {
float difference = midval - peakpickdata[i];
//greater penalty if negative
//sumdiff += difference>0.0f?difference:(2*difference);
//greater contribution if positive
sumdiff += difference>0.0f?difference:3.0f*difference;
}
if(sumdiff<0.0f) sumdiff = 0.0f;
float * maxenergydata = unit->maxenergydata_;
if((maxenergy>energythreshold) && (sumdiff>sumthreshold) && (unit->blockssincelastonset_>postonsetreset)) {
//maxval=0.0f;
unit->blockssincelastonset_ = 0;
unit->lastonsettime_ = unit->ugenage_; //convert to actual time?
//find recent minima
//first time energy below X
//else minima in window
int searchsize = unit->maxenergysize_;
int position = unit->maxenergypointer_+searchsize;
int minpos = 0;
float minvalue = maxenergy;
for (i=0; i<searchsize; ++i) {
int posnow = (position-i)%searchsize;
float energythen = maxenergydata[posnow];
if(energythen<minvalue) {
minvalue = energythen;
minpos = i;
}
}
unit->lastonsettime_ -= (minpos+1);
//printf("slope detected %f %f %d \n",maxenergy,minvalue,minpos);
//find slope
unit->lastslope_ = 100.f*(maxenergy-minvalue)/(minpos+1);
//store new slope data
unit->slopedata_[unit->slopedatapointer_] = unit->lastslope_;
unit->slopedatapointer_ = (unit->slopedatapointer_+1)%unit->slopesize_;
++unit->slopescollected_;
//update average slope
float averageslope = 0.f;
if(unit->slopescollected_>=unit->slopesize_) {
for (i=0; i<unit->slopesize_; ++i) {
averageslope += unit->slopedata_[i];
}
averageslope /= unit->slopesize_;
} else {
averageslope = 0.0f; //unit->lastslope_;
}
unit->slopeaverage_ = averageslope;
//printf("slope detected %f %f %d \n",averageslope,unit->lastslope_,(int)unit->lastonsettime_);
}
maxenergydata[unit->maxenergypointer_] = maxenergy;
unit->maxenergypointer_ = (unit->maxenergypointer_+1)%unit->maxenergysize_;
unit->lastenergy_ = lastenergy;
++unit->runningsumcounter_;
if(unit->runningsumrecalculate_ == unit->runningsumcounter_) {
unit->runningsumcounter_ = 0;
//recalculate runningsum for robustness to avoid accumulation of error
float sumnow = 0.0f;
for (i=0; i<unit->windowsize_; ++i) {
sumnow += runningsumdata[i];
}
runningsum = sumnow;
}
unit->runningsum_ = runningsum;
unit->datapointer_ = datapointer;
unit->leakyintegrator_ = leakyintegrator;
unit->lastenergy_ = lastenergy;
OUT0(0) = unit->blockssincelastonset_<postonsetreset?1.0:0.0;
OUT0(1) = unit->lastonsettime_;
OUT0(2) = unit->lastslope_;
OUT0(3) = unit->slopeaverage_;
OUT0(4) = maxval; //maxval; //leakyintegrator;
OUT0(5) = sumdiff/unit->peakpicksize_;
//[0] onset trigger
//[1] corrected to minima time of last onset
//[2] most recent slope measurement
//[3] average slope calculation
//[4] detection function
//[5] peakpick function
//
// OUT0(0) = -1.f;
// OUT0(1) = -1.f;
//
//printf("actual output %f %f \n",OUT0(0),OUT0(1));
++unit->ugenage_;
}
PluginLoad(AttackSlope)
{
ft = inTable;
//DefineDtorUnit
DefineDtorCantAliasUnit(AttackSlope);
}
|