File: KeyMode.cpp

package info (click to toggle)
supercollider-sc3-plugins 3.7.1~repack-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,332 kB
  • ctags: 11,704
  • sloc: cpp: 140,180; lisp: 14,746; ansic: 2,133; xml: 86; makefile: 82; haskell: 21; sh: 8
file content (489 lines) | stat: -rw-r--r-- 45,647 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/*
	SuperCollider real time audio synthesis system
 Copyright (c) 2002 James McCartney. All rights reserved.
	http://www.audiosynth.com

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301  USA
 */

//Nick Collins 20 Feb 2006
//revision of algorithm 22 Nov 2007
//converted to give output as key clarity (highest correlation) 25 Sep 2013. Note that have switched to using Krumhansl Kessler profiles here
//further converted to compare major vs minor vs neutral (total chromatic) probability distributions

//Key tracker using weights of FFT bins.

#include "SC_PlugIn.h"
#include "FFT_UGens.h"

InterfaceTable *ft; 

//hard coded FFT size
#define N 4096
#define NOVER2 2048

//CONVERT TO m_frameperiod to cope with different sampling rates?
#define FRAMEPERIOD 0.046439909297052

//weighting parameters



struct KeyMode : Unit {
    
	//FFT data
	float * m_FFTBuf;
    
	//coping with different sampling rates
	float m_srate;		//use as a flag to check sample rate is correct
	float * m_weights;  //will point to the sample rate specific data
	int * m_bins;
	float m_frameperiod;
    
	//counter
	//uint32 m_frame;
    
	//experimental transient avoidance
	//float m_prevphase[720]; //60*12
	//float m_leaknote[60];
    
//	float m_chroma[12];
//	float m_key[36]; //12 major and minor plus one chromatic
//    
//	float m_histogram[36];   //key histogram
//    //float m_keyleak; //fade parameter for histogram
//	//int m_triggerid;
//    
    
	float m_chroma[12];
	float m_key[36]; //12 major and minor and chromatic, or if 6 scales make this 72
    
	float m_histogram[36];
    
	int m_currentKey;
    float m_currentMaxCorrelation;
    int m_currentMode;
};



extern "C"
{
    
	void KeyMode_next(KeyMode *unit, int wrongNumSamples);
	void KeyMode_Ctor(KeyMode *unit);
	void KeyMode_Dtor(KeyMode *unit);

}


//4096 FFT at 44100 SR
static float g_weights44100[720]= { 0.89160997732426, 0.10839002267574, 0.39160997732426, 0.10839002267574, 0.2249433106576, 0.10839002267574, 0.14160997732426, 0.10839002267574, 0.091609977324263, 0.10839002267574, 0.05827664399093, 0.10839002267574, 0.58784929938181, 0.41215070061819, 0.087849299381813, 0.41215070061819, 0.25451596604848, 0.078817367284855, 0.087849299381813, 0.16215070061819, 0.18784929938181, 0.012150700618187, 0.087849299381812, 0.078817367284855, 0.26602607158423, 0.73397392841577, 0.26602607158423, 0.23397392841577, 0.26602607158423, 0.067307261749107, 0.016026071584227, 0.23397392841577, 0.066026071584226, 0.13397392841577, 0.099359404917559, 0.067307261749107, 0.9250662388251, 0.074933761174898, 0.4250662388251, 0.074933761174898, 0.25839957215844, 0.074933761174898, 0.1750662388251, 0.074933761174898, 0.1250662388251, 0.074933761174898, 0.091732905491768, 0.074933761174898, 0.56383187935789, 0.43616812064211, 0.063831879357891, 0.43616812064211, 0.23049854602456, 0.10283478730877, 0.063831879357891, 0.18616812064211, 0.16383187935789, 0.03616812064211, 0.063831879357892, 0.10283478730877, 0.18111740708786, 0.81888259291214, 0.18111740708786, 0.31888259291214, 0.18111740708786, 0.15221592624547, 0.18111740708786, 0.068882592912141, 0.18111740708786, 0.018882592912141, 0.014450740421193, 0.15221592624547, 0.77564554804057, 0.22435445195943, 0.27564554804057, 0.22435445195943, 0.1089788813739, 0.22435445195943, 0.02564554804057, 0.22435445195943, 0.17564554804057, 0.024354451959429, 0.1089788813739, 0.057687785292764, 0.34606307757871, 0.65393692242129, 0.34606307757871, 0.15393692242129, 0.012729744245378, 0.32060358908796, 0.096063077578711, 0.15393692242129, 0.14606307757871, 0.053936922421289, 0.012729744245378, 0.15393692242129, 0.89093630414068, 0.10906369585932, 0.39093630414068, 0.10906369585932, 0.22426963747401, 0.10906369585932, 0.14093630414068, 0.10906369585932, 0.090936304140679, 0.10906369585932, 0.057602970807346, 0.10906369585932, 0.40874628442826, 0.59125371557174, 0.40874628442826, 0.091253715571737, 0.075412951094929, 0.2579203822384, 0.15874628442826, 0.091253715571737, 0.0087462844282626, 0.19125371557174, 0.075412951094929, 0.091253715571738, 0.89788375407457, 0.10211624592543, 0.39788375407457, 0.10211624592543, 0.23121708740791, 0.10211624592543, 0.14788375407457, 0.10211624592543, 0.097883754074573, 0.10211624592543, 0.06455042074124, 0.10211624592543, 0.35664375687383, 0.64335624312617, 0.35664375687383, 0.14335624312617, 0.023310423540502, 0.31002290979283, 0.10664375687383, 0.14335624312617, 0.15664375687384, 0.043356243126163, 0.023310423540502, 0.14335624312616, 0.78321995464853, 0.21678004535147, 0.28321995464853, 0.21678004535147, 0.11655328798186, 0.21678004535147, 0.033219954648526, 0.21678004535147, 0.18321995464853, 0.016780045351474, 0.11655328798186, 0.050113378684807, 0.17569859876363, 0.82430140123637, 0.17569859876363, 0.32430140123637, 0.17569859876362, 0.15763473456971, 0.17569859876363, 0.074301401236374, 0.17569859876363, 0.024301401236373, 0.0090319320969575, 0.15763473456971, 0.53205214316846, 0.46794785683154, 0.032052143168455, 0.46794785683154, 0.19871880983512, 0.13461452349821, 0.032052143168455, 0.21794785683154, 0.13205214316846, 0.067947856831543, 0.032052143168454, 0.13461452349821, 0.8501324776502, 0.1498675223498, 0.3501324776502, 0.1498675223498, 0.18346581098354, 0.1498675223498, 0.1001324776502, 0.1498675223498, 0.050132477650203, 0.1498675223498, 0.01679914431687, 0.1498675223498, 0.12766375871578, 0.87233624128422, 0.12766375871578, 0.37233624128422, 0.12766375871578, 0.20566957461755, 0.12766375871578, 0.12233624128422, 0.12766375871578, 0.072336241284219, 0.12766375871578, 0.039002907950883, 0.36223481417572, 0.63776518582428, 0.36223481417572, 0.13776518582428, 0.028901480842386, 0.30443185249095, 0.11223481417572, 0.13776518582428, 0.16223481417572, 0.037765185824279, 0.028901480842386, 0.13776518582428, 0.55129109608114, 0.44870890391886, 0.05129109608114, 0.44870890391886, 0.21795776274781, 0.11537557058553, 0.05129109608114, 0.19870890391886, 0.15129109608114, 0.048708903918859, 0.051291096081139, 0.11537557058553, 0.69212615515742, 0.30787384484258, 0.19212615515742, 0.30787384484258, 0.025459488490756, 0.30787384484258, 0.19212615515742, 0.057873844842579, 0.092126155157422, 0.10787384484258, 0.025459488490756, 0.14120717817591, 0.78187260828136, 0.21812739171864, 0.28187260828136, 0.21812739171864, 0.11520594161469, 0.21812739171864, 0.031872608281361, 0.21812739171864, 0.18187260828136, 0.018127391718639, 0.11520594161469, 0.051460725051972, 0.81749256885653, 0.18250743114347, 0.31749256885653, 0.18250743114347, 0.15082590218986, 0.18250743114348, 0.067492568856526, 0.18250743114347, 0.017492568856525, 0.18250743114347, 0.15082590218986, 0.015840764476809, 0.79576750814915, 0.20423249185085, 0.29576750814915, 0.20423249185085, 0.12910084148248, 0.20423249185085, 0.045767508149147, 0.20423249185085, 0.19576750814915, 0.0042324918508541, 0.12910084148248, 0.037565825184186, 0.71328751374767, 0.28671248625233, 0.21328751374767, 0.28671248625233, 0.046620847081009, 0.28671248625232, 0.21328751374767, 0.036712486252327, 0.11328751374767, 0.086712486252327, 0.046620847081009, 0.12004581958566, 0.56643990929705, 0.43356009070295, 0.066439909297053, 0.43356009070295, 0.23310657596372, 0.10022675736961, 0.066439909297053, 0.18356009070295, 0.16643990929705, 0.033560090702949, 0.066439909297053, 0.10022675736961, 0.35139719752725, 0.64860280247275, 0.35139719752725, 0.14860280247275, 0.018063864193915, 0.31526946913942, 0.10139719752725, 0.14860280247275, 0.15139719752725, 0.048602802472746, 0.018063864193915, 0.14860280247275, 0.06410428633691, 0.93589571366309, 0.06410428633691, 0.43589571366309, 0.064104286336909, 0.26922904699642, 0.06410428633691, 0.18589571366309, 0.064104286336914, 0.13589571366309, 0.064104286336909, 0.10256238032976, 0.70026495530041, 0.29973504469959, 0.20026495530041, 0.29973504469959, 0.03359828863374, 0.29973504469959, 0.20026495530041, 0.049735044699592, 0.10026495530041, 0.099735044699594, 0.03359828863374, 0.13306837803293, 0.25532751743156, 0.74467248256844, 0.25532751743156, 0.24467248256844, 0.25532751743157, 0.078005815901766, 0.0053275174315637, 0.24467248256844, 0.055327517431562, 0.14467248256844, 0.088660850764901, 0.078005815901766, 0.72446962835144, 0.27553037164856, 0.22446962835144, 0.27553037164856, 0.057802961684772, 0.27553037164856, 0.22446962835144, 0.025530371648557, 0.12446962835144, 0.075530371648557, 0.057802961684772, 0.1088637049819, 0.10258219216228, 0.89741780783772, 0.10258219216228, 0.39741780783772, 0.10258219216228, 0.23075114117105, 0.10258219216228, 0.14741780783772, 0.10258219216228, 0.097417807837718, 0.10258219216228, 0.064084474504388, 0.38425231031485, 0.61574768968515, 0.38425231031485, 0.11574768968515, 0.050918976981516, 0.28241435635182, 0.13425231031485, 0.11574768968515, 0.18425231031485, 0.015747689685151, 0.050918976981516, 0.11574768968515, 0.56374521656272, 0.43625478343728, 0.063745216562722, 0.43625478343728, 0.23041188322939, 0.10292145010394, 0.063745216562722, 0.18625478343728, 0.16374521656272, 0.036254783437278, 0.063745216562722, 0.10292145010394, 0.63498513771305, 0.36501486228695, 0.13498513771305, 0.36501486228695, 0.30165180437972, 0.031681528953617, 0.13498513771305, 0.11501486228695, 0.034985137713051, 0.16501486228695, 0.13498513771305, 0.031681528953617, 0.5915350162983, 0.4084649837017, 0.091535016298302, 0.4084649837017, 0.25820168296497, 0.075131650368367, 0.091535016298302, 0.1584649837017, 0.1915350162983, 0.0084649837017025, 0.091535016298299, 0.075131650368367, 0.42657502749535, 0.57342497250465, 0.42657502749535, 0.073424972504654, 0.093241694162018, 0.24009163917132, 0.17657502749535, 0.073424972504654, 0.026575027495346, 0.17342497250465, 0.093241694162018, 0.073424972504649, 0.13287981859411, 0.86712018140589, 0.13287981859411, 0.36712018140589, 0.13287981859411, 0.20045351473923, 0.13287981859411, 0.11712018140589, 0.1328798185941, 0.067120181405897, 0.13287981859411, 0.033786848072561, 0.7027943950545, 0.2972056049455, 0.2027943950545, 0.2972056049455, 0.03612772838783, 0.2972056049455, 0.2027943950545, 0.047205604945496, 0.10279439505451, 0.097205604945492, 0.03612772838783, 0.13053893827884, 0.12820857267382, 0.87179142732618, 0.12820857267382, 0.37179142732618, 0.12820857267382, 0.20512476065952, 0.12820857267382, 0.12179142732618, 0.12820857267383, 0.071791427326173, 0.12820857267382, 0.038458093992849, 0.40052991060082, 0.59947008939918, 0.40052991060082, 0.099470089399183, 0.067196577267481, 0.26613675606585, 0.15052991060082, 0.099470089399183, 0.0005299106008124, 0.19947008939919, 0.067196577267481, 0.099470089399186, 0.51065503486313, 0.48934496513687, 0.010655034863127, 0.48934496513687, 0.1773217015298, 0.15601163180353, 0.010655034863127, 0.23934496513687, 0.11065503486312, 0.089344965136877, 0.010655034863134, 0.15601163180353, 0.44893925670289, 0.55106074329711, 0.44893925670289, 0.051060743297114, 0.11560592336954, 0.21772740996379, 0.19893925670289, 0.051060743297114, 0.048939256702886, 0.15106074329711, 0.11560592336954, 0.051060743297124, 0.20516438432456, 0.79483561567544, 0.20516438432456, 0.29483561567544, 0.20516438432456, 0.12816894900878, 0.20516438432456, 0.044835615675439, 0.0051643843245643, 0.19483561567544, 0.03849771765789, 0.12816894900878, 0.7685046206297, 0.2314953793703, 0.2685046206297, 0.2314953793703, 0.10183795396303, 0.2314953793703, 0.018504620629699, 0.2314953793703, 0.1685046206297, 0.031495379370301, 0.10183795396303, 0.064828712703635, 0.12749043312544, 0.87250956687456, 0.12749043312544, 0.37250956687456, 0.12749043312544, 0.20584290020789, 0.12749043312544, 0.12250956687456, 0.12749043312544, 0.072509566874555, 0.12749043312544, 0.039176233541222, 0.2699702754261, 0.7300297245739, 0.2699702754261, 0.2300297245739, 0.2699702754261, 0.063363057907234, 0.019970275426104, 0.2300297245739, 0.069970275426101, 0.1300297245739, 0.10330360875943, 0.063363057907234, 0.1830700325966, 0.8169299674034, 0.1830700325966, 0.3169299674034, 0.1830700325966, 0.15026330073673, 0.1830700325966, 0.066929967403397, 0.18307003259659, 0.016929967403405, 0.016403365929932, 0.15026330073673, 0.85315005499069, 0.14684994500931, 0.35315005499069, 0.14684994500931, 0.18648338832404, 0.1468499450093, 0.10315005499069, 0.14684994500931, 0.053150054990692, 0.14684994500931, 0.019816721657368, 0.1468499450093, 0.26575963718821, 0.73424036281179, 0.26575963718821, 0.23424036281179, 0.26575963718821, 0.067573696145123, 0.015759637188211, 0.23424036281179, 0.065759637188205, 0.13424036281179, 0.099092970521544, 0.067573696145123, 0.40558879010901, 0.59441120989099, 0.40558879010901, 0.094411209890993, 0.07225545677566, 0.26107787655767, 0.15558879010901, 0.094411209890993, 0.0055887901090159, 0.19441120989098, 0.07225545677566, 0.094411209891007, 0.25641714534767, 0.74358285465233, 0.25641714534767, 0.24358285465233, 0.25641714534767, 0.07691618798566, 0.0064171453476689, 0.24358285465233, 0.056417145347666, 0.14358285465233, 0.089750478681007, 0.07691618798566, 0.80105982120163, 0.19894017879837, 0.30105982120163, 0.19894017879837, 0.13439315453496, 0.19894017879837, 0.051059821201633, 0.19894017879837, 0.0010598212016248, 0.19894017879838, 0.13439315453496, 0.032273512131705, 0.021310069726255, 0.97868993027375, 0.021310069726255, 0.47868993027375, 0.021310069726269, 0.31202326360706, 0.021310069726255, 0.22868993027375, 0.021310069726246, 0.17868993027375, 0.021310069726269, 0.1453565969404, 0.89787851340579, 0.10212148659421, 0.39787851340579, 0.10212148659421, 0.23121184673912, 0.10212148659421, 0.14787851340579, 0.10212148659421, 0.097878513405794, 0.10212148659421, 0.064545180072457, 0.10212148659421, 0.41032876864912, 0.58967123135088, 0.41032876864912, 0.089671231350877, 0.07699543531578, 0.25633789801755, 0.16032876864912, 0.089671231350877, 0.010328768649129, 0.18967123135087, 0.07699543531578, 0.089671231350887, 0.5370092412594, 0.4629907587406, 0.037009241259398, 0.4629907587406, 0.20367590792606, 0.12965742540727, 0.037009241259398, 0.2129907587406, 0.1370092412594, 0.062990758740602, 0.037009241259398, 0.12965742540727, 0.25498086625089, 0.74501913374911, 0.25498086625089, 0.24501913374911, 0.25498086625089, 0.078352467082444, 0.0049808662508894, 0.24501913374911, 0.054980866250889, 0.14501913374911, 0.088314199584223, 0.078352467082444, 0.53994055085221, 0.46005944914779, 0.039940550852208, 0.46005944914779, 0.20660721751887, 0.12672611581447, 0.039940550852208, 0.21005944914779, 0.1399405508522, 0.060059449147798, 0.039940550852198, 0.12672611581447, 0.36614006519321, 0.63385993480679, 0.36614006519321, 0.13385993480679, 0.032806731859864, 0.30052660147347, 0.11614006519321, 0.13385993480679, 0.16614006519319, 0.03385993480681, 0.032806731859864, 0.1338599348068, 0.70630010998138, 0.29369989001862, 0.20630010998138, 0.29369989001862, 0.039633443314737, 0.2936998900186, 0.20630010998138, 0.043699890018615, 0.10630010998138, 0.093699890018615, 0.039633443314737, 0.12703322335193 };
static int g_bins44100[720]= { 5, 6, 10, 11, 15, 16, 20, 21, 25, 26, 30, 31, 5, 6, 10, 11, 16, 17, 21, 22, 27, 28, 32, 33, 5, 6, 11, 12, 17, 18, 22, 23, 28, 29, 34, 35, 6, 7, 12, 13, 18, 19, 24, 25, 30, 31, 36, 37, 6, 7, 12, 13, 19, 20, 25, 26, 32, 33, 38, 39, 6, 7, 13, 14, 20, 21, 27, 28, 34, 35, 40, 41, 7, 8, 14, 15, 21, 22, 28, 29, 36, 37, 43, 44, 7, 8, 15, 16, 22, 23, 30, 31, 38, 39, 45, 46, 8, 9, 16, 17, 24, 25, 32, 33, 40, 41, 48, 49, 8, 9, 17, 18, 25, 26, 34, 35, 42, 43, 51, 52, 9, 10, 18, 19, 27, 28, 36, 37, 45, 46, 54, 55, 9, 10, 19, 20, 28, 29, 38, 39, 48, 49, 57, 58, 10, 11, 20, 21, 30, 31, 40, 41, 51, 52, 61, 62, 10, 11, 21, 22, 32, 33, 43, 44, 54, 55, 64, 65, 11, 12, 22, 23, 34, 35, 45, 46, 57, 58, 68, 69, 12, 13, 24, 25, 36, 37, 48, 49, 60, 61, 72, 73, 12, 13, 25, 26, 38, 39, 51, 52, 64, 65, 77, 78, 13, 14, 27, 28, 40, 41, 54, 55, 68, 69, 81, 82, 14, 15, 28, 29, 43, 44, 57, 58, 72, 73, 86, 87, 15, 16, 30, 31, 45, 46, 61, 62, 76, 77, 91, 92, 16, 17, 32, 33, 48, 49, 64, 65, 81, 82, 97, 98, 17, 18, 34, 35, 51, 52, 68, 69, 85, 86, 103, 104, 18, 19, 36, 37, 54, 55, 72, 73, 91, 92, 109, 110, 19, 20, 38, 39, 57, 58, 77, 78, 96, 97, 115, 116, 20, 21, 40, 41, 61, 62, 81, 82, 102, 103, 122, 123, 21, 22, 43, 44, 64, 65, 86, 87, 108, 109, 129, 130, 22, 23, 45, 46, 68, 69, 91, 92, 114, 115, 137, 138, 24, 25, 48, 49, 72, 73, 97, 98, 121, 122, 145, 146, 25, 26, 51, 52, 77, 78, 102, 103, 128, 129, 154, 155, 27, 28, 54, 55, 81, 82, 109, 110, 136, 137, 163, 164, 28, 29, 57, 58, 86, 87, 115, 116, 144, 145, 173, 174, 30, 31, 61, 62, 91, 92, 122, 123, 153, 154, 183, 184, 32, 33, 64, 65, 97, 98, 129, 130, 162, 163, 194, 195, 34, 35, 68, 69, 103, 104, 137, 138, 171, 172, 206, 207, 36, 37, 72, 73, 109, 110, 145, 146, 182, 183, 218, 219, 38, 39, 77, 78, 115, 116, 154, 155, 192, 193, 231, 232, 40, 41, 81, 82, 122, 123, 163, 164, 204, 205, 245, 246, 43, 44, 86, 87, 129, 130, 173, 174, 216, 217, 259, 260, 45, 46, 91, 92, 137, 138, 183, 184, 229, 230, 275, 276, 48, 49, 97, 98, 145, 146, 194, 195, 242, 243, 291, 292, 51, 52, 102, 103, 154, 155, 205, 206, 257, 258, 308, 309, 54, 55, 109, 110, 163, 164, 218, 219, 272, 273, 327, 328, 57, 58, 115, 116, 173, 174, 231, 232, 288, 289, 346, 347, 61, 62, 122, 123, 183, 184, 244, 245, 306, 307, 367, 368, 64, 65, 129, 130, 194, 195, 259, 260, 324, 325, 389, 390, 68, 69, 137, 138, 206, 207, 274, 275, 343, 344, 412, 413, 72, 73, 145, 146, 218, 219, 291, 292, 364, 365, 436, 437, 77, 78, 154, 155, 231, 232, 308, 309, 385, 386, 462, 463, 81, 82, 163, 164, 245, 246, 326, 327, 408, 409, 490, 491, 86, 87, 173, 174, 259, 260, 346, 347, 432, 433, 519, 520, 91, 92, 183, 184, 275, 276, 366, 367, 458, 459, 550, 551, 97, 98, 194, 195, 291, 292, 388, 389, 485, 486, 583, 584, 102, 103, 205, 206, 308, 309, 411, 412, 514, 515, 617, 618, 109, 110, 218, 219, 327, 328, 436, 437, 545, 546, 654, 655, 115, 116, 231, 232, 346, 347, 462, 463, 577, 578, 693, 694, 122, 123, 244, 245, 367, 368, 489, 490, 612, 613, 734, 735, 129, 130, 259, 260, 389, 390, 518, 519, 648, 649, 778, 779, 137, 138, 274, 275, 412, 413, 549, 550, 687, 688, 824, 825, 145, 146, 291, 292, 436, 437, 582, 583, 728, 729, 873, 874, 154, 155, 308, 309, 462, 463, 617, 618, 771, 772, 925, 926 };

//4096 FFT at 48000 SR
static float g_weights48000[720]= { 0.30666666666667, 0.69333333333333, 0.30666666666667, 0.19333333333333, 0.30666666666667, 0.026666666666667, 0.056666666666667, 0.19333333333333, 0.10666666666667, 0.093333333333333, 0.14, 0.026666666666667, 0.027586543807041, 0.97241345619296, 0.027586543807041, 0.47241345619296, 0.02758654380704, 0.30574678952629, 0.027586543807041, 0.22241345619296, 0.027586543807041, 0.17241345619296, 0.02758654380704, 0.13908012285963, 0.73191145326801, 0.26808854673199, 0.23191145326801, 0.26808854673199, 0.065244786601342, 0.26808854673199, 0.23191145326801, 0.018088546731992, 0.13191145326801, 0.068088546731992, 0.065244786601342, 0.10142188006533, 0.41865460692056, 0.58134539307944, 0.41865460692056, 0.081345393079437, 0.08532127358723, 0.2480120597461, 0.16865460692056, 0.081345393079437, 0.018654606920562, 0.18134539307944, 0.08532127358723, 0.081345393079437, 0.086770539160062, 0.91322946083994, 0.086770539160062, 0.41322946083994, 0.086770539160063, 0.24656279417327, 0.086770539160062, 0.16322946083994, 0.086770539160062, 0.11322946083994, 0.086770539160063, 0.079896127506604, 0.73515161776197, 0.26484838223803, 0.23515161776197, 0.26484838223803, 0.068484951095304, 0.26484838223803, 0.23515161776197, 0.014848382238029, 0.13515161776197, 0.064848382238029, 0.068484951095304, 0.098181715571363, 0.36262434726227, 0.63737565273773, 0.36262434726227, 0.13737565273773, 0.02929101392894, 0.30404231940439, 0.11262434726227, 0.13737565273773, 0.16262434726227, 0.037375652737727, 0.02929101392894, 0.13737565273773, 0.96794545252544, 0.032054547474559, 0.46794545252544, 0.032054547474559, 0.30127878585877, 0.03205454747456, 0.21794545252544, 0.032054547474559, 0.16794545252544, 0.03205454747456, 0.13461211919211, 0.03205454747456, 0.54979772942925, 0.45020227057075, 0.049797729429249, 0.45020227057075, 0.21646439609592, 0.11686893723742, 0.049797729429249, 0.20020227057075, 0.14979772942925, 0.05020227057075, 0.049797729429249, 0.11686893723742, 0.10678564881847, 0.89321435118153, 0.10678564881847, 0.39321435118153, 0.10678564881847, 0.22654768451487, 0.10678564881847, 0.14321435118153, 0.10678564881847, 0.093214351181534, 0.10678564881847, 0.059881017848201, 0.63743069905602, 0.36256930094398, 0.13743069905602, 0.36256930094398, 0.30409736572268, 0.029235967610653, 0.13743069905602, 0.11256930094398, 0.037430699056014, 0.16256930094399, 0.13743069905601, 0.029235967610653, 0.14016645162784, 0.85983354837216, 0.14016645162784, 0.35983354837216, 0.14016645162784, 0.1931668817055, 0.14016645162784, 0.10983354837216, 0.14016645162784, 0.059833548372163, 0.14016645162784, 0.02650021503883, 0.61333333333333, 0.38666666666667, 0.11333333333333, 0.38666666666667, 0.28, 0.053333333333333, 0.11333333333333, 0.13666666666667, 0.013333333333334, 0.18666666666667, 0.11333333333333, 0.053333333333333, 0.055173087614081, 0.94482691238592, 0.055173087614081, 0.44482691238592, 0.055173087614081, 0.27816024571925, 0.055173087614081, 0.19482691238592, 0.055173087614082, 0.14482691238592, 0.055173087614081, 0.11149357905259, 0.46382290653602, 0.53617709346398, 0.46382290653602, 0.036177093463982, 0.13048957320268, 0.20284376013065, 0.21382290653602, 0.036177093463982, 0.063822906536019, 0.13617709346398, 0.13048957320268, 0.036177093463982, 0.83730921384113, 0.16269078615887, 0.33730921384113, 0.16269078615887, 0.17064254717446, 0.16269078615887, 0.087309213841126, 0.16269078615887, 0.037309213841124, 0.16269078615888, 0.0039758805077928, 0.16269078615887, 0.17354107832012, 0.82645892167988, 0.17354107832012, 0.32645892167988, 0.17354107832013, 0.15979225501321, 0.17354107832012, 0.076458921679876, 0.17354107832012, 0.026458921679875, 0.0068744116534584, 0.15979225501321, 0.47030323552394, 0.52969676447606, 0.47030323552394, 0.029696764476057, 0.13696990219061, 0.19636343114272, 0.22030323552394, 0.029696764476057, 0.070303235523944, 0.12969676447606, 0.13696990219061, 0.029696764476057, 0.72524869452455, 0.27475130547545, 0.22524869452455, 0.27475130547545, 0.058582027857881, 0.27475130547545, 0.22524869452455, 0.024751305475453, 0.12524869452455, 0.074751305475453, 0.058582027857881, 0.10808463880879, 0.93589090505088, 0.064109094949119, 0.43589090505088, 0.064109094949119, 0.26922423838421, 0.06410909494912, 0.18589090505088, 0.064109094949119, 0.13589090505088, 0.06410909494912, 0.10255757171755, 0.06410909494912, 0.0995954588585, 0.9004045411415, 0.0995954588585, 0.4004045411415, 0.0995954588585, 0.23373787447483, 0.0995954588585, 0.1504045411415, 0.099595458858502, 0.1004045411415, 0.0995954588585, 0.067071207808167, 0.21357129763693, 0.78642870236307, 0.21357129763693, 0.28642870236307, 0.21357129763693, 0.1197620356964, 0.21357129763693, 0.036428702363068, 0.013571297636932, 0.18642870236307, 0.046904630970265, 0.1197620356964, 0.27486139811203, 0.72513860188797, 0.27486139811203, 0.22513860188797, 0.27486139811203, 0.058471935221306, 0.02486139811203, 0.22513860188797, 0.074861398112029, 0.12513860188797, 0.10819473144536, 0.058471935221306, 0.28033290325568, 0.71966709674432, 0.28033290325568, 0.21966709674432, 0.28033290325568, 0.053000430077657, 0.030332903255676, 0.21966709674432, 0.080332903255675, 0.11966709674433, 0.11366623658901, 0.053000430077657, 0.22666666666667, 0.77333333333333, 0.22666666666667, 0.27333333333333, 0.22666666666667, 0.10666666666667, 0.22666666666667, 0.023333333333333, 0.026666666666668, 0.17333333333333, 0.06, 0.10666666666667, 0.11034617522816, 0.88965382477184, 0.11034617522816, 0.38965382477184, 0.11034617522816, 0.22298715810517, 0.11034617522816, 0.13965382477184, 0.11034617522816, 0.089653824771835, 0.11034617522816, 0.056320491438505, 0.92764581307204, 0.072354186927964, 0.42764581307204, 0.072354186927964, 0.26097914640537, 0.072354186927965, 0.17764581307204, 0.072354186927964, 0.12764581307204, 0.072354186927961, 0.094312479738702, 0.072354186927965, 0.67461842768225, 0.32538157231775, 0.17461842768225, 0.32538157231775, 0.0079517610155856, 0.32538157231775, 0.17461842768225, 0.075381572317749, 0.074618427682248, 0.12538157231775, 0.0079517610155856, 0.15871490565108, 0.34708215664025, 0.65291784335975, 0.34708215664025, 0.15291784335975, 0.013748823306917, 0.31958451002642, 0.097082156640248, 0.15291784335975, 0.14708215664025, 0.052917843359751, 0.013748823306917, 0.15291784335975, 0.94060647104789, 0.059393528952114, 0.44060647104789, 0.059393528952114, 0.27393980438122, 0.059393528952114, 0.19060647104789, 0.059393528952114, 0.14060647104789, 0.059393528952111, 0.10727313771455, 0.059393528952114, 0.45049738904909, 0.54950261095091, 0.45049738904909, 0.049502610950906, 0.11716405571576, 0.21616927761757, 0.20049738904909, 0.049502610950906, 0.050497389049093, 0.14950261095091, 0.11716405571576, 0.049502610950905, 0.87178181010177, 0.12821818989823, 0.37178181010177, 0.12821818989823, 0.2051151434351, 0.12821818989823, 0.12178181010177, 0.12821818989823, 0.071781810101766, 0.12821818989823, 0.038448476768437, 0.12821818989823, 0.199190917717, 0.800809082283, 0.199190917717, 0.300809082283, 0.199190917717, 0.13414241561633, 0.199190917717, 0.050809082282999, 0.199190917717, 0.00080908228299563, 0.032524251050333, 0.13414241561633, 0.42714259527386, 0.57285740472614, 0.42714259527386, 0.072857404726136, 0.093809261940531, 0.2395240713928, 0.17714259527386, 0.072857404726136, 0.027142595273864, 0.17285740472614, 0.093809261940531, 0.072857404726136, 0.54972279622406, 0.45027720377594, 0.04972279622406, 0.45027720377594, 0.21638946289073, 0.1169438704426, 0.04972279622406, 0.20027720377594, 0.14972279622406, 0.050277203775937, 0.049722796224065, 0.1169438704426, 0.56066580651135, 0.43933419348865, 0.060665806511352, 0.43933419348865, 0.22733247317802, 0.10600086015531, 0.060665806511352, 0.18933419348865, 0.16066580651135, 0.039334193488651, 0.060665806511352, 0.10600086015531, 0.45333333333333, 0.54666666666667, 0.45333333333333, 0.046666666666667, 0.12, 0.21333333333333, 0.20333333333333, 0.046666666666667, 0.053333333333336, 0.14666666666666, 0.12, 0.046666666666667, 0.22069235045632, 0.77930764954368, 0.22069235045632, 0.27930764954368, 0.22069235045632, 0.11264098287701, 0.22069235045632, 0.029307649543675, 0.020692350456329, 0.17930764954367, 0.054025683789656, 0.11264098287701, 0.85529162614407, 0.14470837385593, 0.35529162614407, 0.14470837385593, 0.1886249594774, 0.14470837385593, 0.10529162614407, 0.14470837385593, 0.055291626144077, 0.14470837385592, 0.021958292810737, 0.14470837385593, 0.3492368553645, 0.6507631446355, 0.3492368553645, 0.1507631446355, 0.015903522031171, 0.31742981130216, 0.099236855364502, 0.1507631446355, 0.1492368553645, 0.050763144635505, 0.015903522031171, 0.1507631446355, 0.6941643132805, 0.3058356867195, 0.1941643132805, 0.3058356867195, 0.027497646613834, 0.3058356867195, 0.1941643132805, 0.055835686719504, 0.094164313280498, 0.1058356867195, 0.027497646613834, 0.13916902005283, 0.88121294209577, 0.11878705790423, 0.38121294209577, 0.11878705790423, 0.21454627542911, 0.11878705790423, 0.13121294209577, 0.11878705790423, 0.081212942095777, 0.11878705790422, 0.047879608762438, 0.11878705790423, 0.90099477809819, 0.099005221901812, 0.40099477809819, 0.099005221901812, 0.23432811143152, 0.09900522190181, 0.15099477809819, 0.099005221901812, 0.10099477809819, 0.099005221901814, 0.067661444764857, 0.09900522190181, 0.74356362020353, 0.25643637979647, 0.24356362020353, 0.25643637979647, 0.076896953536874, 0.25643637979646, 0.24356362020353, 0.0064363797964688, 0.14356362020353, 0.056436379796469, 0.076896953536874, 0.089769713129793, 0.398381835434, 0.601618164566, 0.398381835434, 0.101618164566, 0.065048502100666, 0.26828483123267, 0.148381835434, 0.101618164566, 0.19838183543401, 0.0016181645659913, 0.065048502100666, 0.101618164566, 0.85428519054773, 0.14571480945227, 0.35428519054773, 0.14571480945227, 0.18761852388106, 0.14571480945227, 0.10428519054773, 0.14571480945227, 0.054285190547728, 0.14571480945227, 0.020951857214394, 0.14571480945227, 0.09944559244812, 0.90055440755188, 0.09944559244812, 0.40055440755188, 0.09944559244813, 0.2338877408852, 0.09944559244812, 0.15055440755188, 0.099445592448126, 0.10055440755187, 0.09944559244813, 0.067221074218537, 0.1213316130227, 0.8786683869773, 0.1213316130227, 0.3786683869773, 0.1213316130227, 0.21200172031063, 0.1213316130227, 0.1286683869773, 0.1213316130227, 0.078668386977301, 0.1213316130227, 0.045335053643962, 0.90666666666667, 0.093333333333334, 0.40666666666667, 0.093333333333334, 0.24, 0.093333333333334, 0.15666666666667, 0.093333333333334, 0.10666666666667, 0.093333333333328, 0.073333333333333, 0.093333333333334, 0.44138470091265, 0.55861529908735, 0.44138470091265, 0.05861529908735, 0.10805136757931, 0.22528196575402, 0.19138470091265, 0.05861529908735, 0.041384700912658, 0.15861529908734, 0.10805136757931, 0.058615299087355, 0.71058325228817, 0.28941674771183, 0.21058325228817, 0.28941674771183, 0.043916585621503, 0.28941674771183, 0.21058325228817, 0.039416747711826, 0.11058325228817, 0.089416747711834, 0.043916585621503, 0.12275008104516, 0.698473710729, 0.301526289271, 0.198473710729, 0.301526289271, 0.031807044062343, 0.30152628927099, 0.198473710729, 0.051526289270996, 0.09847371072899, 0.10152628927101, 0.031807044062343, 0.13485962260432, 0.38832862656099, 0.61167137343901, 0.38832862656099, 0.11167137343901, 0.054995293227667, 0.27833804010567, 0.13832862656099, 0.11167137343901, 0.188328626561, 0.011671373439003, 0.054995293227667, 0.111671373439, 0.76242588419157, 0.23757411580843, 0.26242588419157, 0.23757411580843, 0.095759217524896, 0.23757411580844, 0.012425884191572, 0.23757411580843, 0.16242588419157, 0.037574115808434, 0.095759217524896, 0.070907449141771, 0.80198955619638, 0.19801044380362, 0.30198955619638, 0.19801044380362, 0.13532288952971, 0.19801044380362, 0.051989556196375, 0.19801044380362, 0.0019895561963722, 0.19801044380363, 0.13532288952971, 0.031343777136954, 0.48712724040706, 0.51287275959294, 0.48712724040706, 0.012872759592938, 0.15379390707375, 0.17953942625959, 0.23712724040706, 0.012872759592938, 0.087127240407062, 0.11287275959294, 0.15379390707375, 0.012872759592919, 0.796763670868, 0.203236329132, 0.296763670868, 0.203236329132, 0.13009700420133, 0.203236329132, 0.046763670868003, 0.203236329132, 0.19676367086802, 0.0032363291319825, 0.13009700420133, 0.036569662465335, 0.70857038109546, 0.29142961890454, 0.20857038109546, 0.29142961890454, 0.041903714428789, 0.29142961890454, 0.20857038109546, 0.041429618904544, 0.10857038109546, 0.091429618904544, 0.041903714428789, 0.12476295223788, 0.19889118489624, 0.80110881510376, 0.19889118489624, 0.30110881510376, 0.19889118489626, 0.13444214843707, 0.19889118489624, 0.05110881510376, 0.19889118489625, 0.0011088151037484, 0.032224518229593, 0.13444214843707, 0.24266322604541, 0.75733677395459, 0.24266322604541, 0.25733677395459, 0.24266322604541, 0.090670107287925, 0.24266322604541, 0.0073367739545915, 0.042663226045397, 0.1573367739546, 0.075996559378742, 0.090670107287925 };
static int g_bins48000[720]= { 4, 5, 9, 10, 14, 15, 18, 19, 23, 24, 28, 29, 4, 5, 9, 10, 14, 15, 19, 20, 24, 25, 29, 30, 5, 6, 10, 11, 15, 16, 21, 22, 26, 27, 31, 32, 5, 6, 11, 12, 16, 17, 22, 23, 27, 28, 33, 34, 5, 6, 11, 12, 17, 18, 23, 24, 29, 30, 35, 36, 6, 7, 12, 13, 18, 19, 25, 26, 31, 32, 37, 38, 6, 7, 13, 14, 19, 20, 26, 27, 33, 34, 39, 40, 7, 8, 14, 15, 21, 22, 28, 29, 35, 36, 42, 43, 7, 8, 14, 15, 22, 23, 29, 30, 37, 38, 44, 45, 7, 8, 15, 16, 23, 24, 31, 32, 39, 40, 47, 48, 8, 9, 16, 17, 25, 26, 33, 34, 41, 42, 50, 51, 8, 9, 17, 18, 26, 27, 35, 36, 44, 45, 53, 54, 9, 10, 18, 19, 28, 29, 37, 38, 46, 47, 56, 57, 9, 10, 19, 20, 29, 30, 39, 40, 49, 50, 59, 60, 10, 11, 21, 22, 31, 32, 42, 43, 52, 53, 63, 64, 11, 12, 22, 23, 33, 34, 44, 45, 55, 56, 66, 67, 11, 12, 23, 24, 35, 36, 47, 48, 59, 60, 70, 71, 12, 13, 25, 26, 37, 38, 50, 51, 62, 63, 75, 76, 13, 14, 26, 27, 39, 40, 53, 54, 66, 67, 79, 80, 14, 15, 28, 29, 42, 43, 56, 57, 70, 71, 84, 85, 14, 15, 29, 30, 44, 45, 59, 60, 74, 75, 89, 90, 15, 16, 31, 32, 47, 48, 63, 64, 78, 79, 94, 95, 16, 17, 33, 34, 50, 51, 66, 67, 83, 84, 100, 101, 17, 18, 35, 36, 53, 54, 70, 71, 88, 89, 106, 107, 18, 19, 37, 38, 56, 57, 75, 76, 93, 94, 112, 113, 19, 20, 39, 40, 59, 60, 79, 80, 99, 100, 119, 120, 21, 22, 42, 43, 63, 64, 84, 85, 105, 106, 126, 127, 22, 23, 44, 45, 66, 67, 89, 90, 111, 112, 133, 134, 23, 24, 47, 48, 70, 71, 94, 95, 118, 119, 141, 142, 25, 26, 50, 51, 75, 76, 100, 101, 125, 126, 150, 151, 26, 27, 53, 54, 79, 80, 106, 107, 132, 133, 159, 160, 28, 29, 56, 57, 84, 85, 112, 113, 140, 141, 168, 169, 29, 30, 59, 60, 89, 90, 119, 120, 149, 150, 178, 179, 31, 32, 63, 64, 94, 95, 126, 127, 157, 158, 189, 190, 33, 34, 66, 67, 100, 101, 133, 134, 167, 168, 200, 201, 35, 36, 70, 71, 106, 107, 141, 142, 177, 178, 212, 213, 37, 38, 75, 76, 112, 113, 150, 151, 187, 188, 225, 226, 39, 40, 79, 80, 119, 120, 159, 160, 198, 199, 238, 239, 42, 43, 84, 85, 126, 127, 168, 169, 210, 211, 252, 253, 44, 45, 89, 90, 133, 134, 178, 179, 223, 224, 267, 268, 47, 48, 94, 95, 141, 142, 189, 190, 236, 237, 283, 284, 50, 51, 100, 101, 150, 151, 200, 201, 250, 251, 300, 301, 53, 54, 106, 107, 159, 160, 212, 213, 265, 266, 318, 319, 56, 57, 112, 113, 168, 169, 225, 226, 281, 282, 337, 338, 59, 60, 119, 120, 178, 179, 238, 239, 298, 299, 357, 358, 63, 64, 126, 127, 189, 190, 252, 253, 315, 316, 378, 379, 66, 67, 133, 134, 200, 201, 267, 268, 334, 335, 401, 402, 70, 71, 141, 142, 212, 213, 283, 284, 354, 355, 425, 426, 75, 76, 150, 151, 225, 226, 300, 301, 375, 376, 450, 451, 79, 80, 159, 160, 238, 239, 318, 319, 397, 398, 477, 478, 84, 85, 168, 169, 252, 253, 337, 338, 421, 422, 505, 506, 89, 90, 178, 179, 267, 268, 357, 358, 446, 447, 535, 536, 94, 95, 189, 190, 283, 284, 378, 379, 473, 474, 567, 568, 100, 101, 200, 201, 300, 301, 400, 401, 501, 502, 601, 602, 106, 107, 212, 213, 318, 319, 424, 425, 530, 531, 637, 638, 112, 113, 225, 226, 337, 338, 450, 451, 562, 563, 675, 676, 119, 120, 238, 239, 357, 358, 476, 477, 596, 597, 715, 716, 126, 127, 252, 253, 378, 379, 505, 506, 631, 632, 757, 758, 133, 134, 267, 268, 401, 402, 535, 536, 669, 670, 802, 803, 141, 142, 283, 284, 425, 426, 567, 568, 708, 709, 850, 851 };

//Krumhansl Kessler profiles (normalised)
static double g_kkminor[12] = { 0.14221523253202, 0.060211188496967, 0.079083352055718, 0.12087171422152, 0.05841383958661, 0.079308020669512, 0.057065827903842, 0.10671759155246, 0.089418108290272, 0.060435857110762, 0.075039317007414, 0.071219950572905 };
static double g_kkmajor[12] = { 0.15195022732711, 0.053362048336923, 0.083273510409189, 0.055754965302704, 0.10480976310122, 0.097870303900455, 0.060301507537688, 0.12419239052405, 0.057190715482173, 0.087580760947595, 0.054797798516391, 0.068916008614501 };
//just calculate correlate as sum of entries divided by twelve
//static double g_chromatic[12] = { };

//following Izmirli; see MIREX2006
static double g_diatonicmajor[12] = {0.17241379310345, 0, 0.12068965517241, 0, 0.1551724137931, 0.13793103448276, 0, 0.1551724137931, 0, 0.12068965517241, 0, 0.13793103448276}; //{ 5.0, 0.0, 3.5, 0.0,  4.5, 4.0, 0.0, 4.5,  0.0, 3.5, 0.0, 4.0};
static double g_diatonicminor[12] = { 0.17241379310345, 0, 0.12068965517241, 0.1551724137931, 0, 0.13793103448276, 0, 0.1551724137931, 0.12068965517241, 0, 0, 0.13793103448276 }; //{ 5.0, 0.0, 3.5, 4.5,  0.0, 4.0, 0.0, 4.5,  3.5, 0.0, 0.0, 4.0};

static int g_minor[7] = {0,2,3,5,7,8,11};
static int g_major[7] = {0,2,4,5,7,9,11};


static int g_numscales = 6;
static int g_scales[] = {
    
    1, 0, 1, 0, 1, 1, 0, 1,  0, 1, 0, 1, //major
    
    1, 0, 1, 1, 0, 1, 0, 1,  1, 0, 0, 1, //harmonic minor
    
    1, 1, 1, 0, 1, 0, 1, 0,  1, 0, 1, 0, //whole tone plus one
    
    1, 1, 1, 1, 1, 1, 1, 0,  0, 0, 0, 0, //chromatic cluster
    
    1, 0, 1, 1, 0, 1, 1, 0,  1, 1, 0, 0, //octotonic minus one
    
    1, 0, 1, 0, 1, 0, 1, 1,  0, 1, 1, 0, //natural
    
};

//all same else gets confused with comparability
static int g_scalesize[] = {

    7,
    7,
    7,
    7,
    7,
    7
};


//other functions
static void KeyMode_calculatekey(KeyMode *, uint32);


void KeyMode_Ctor(KeyMode* unit)
{
	unit->m_srate = unit->mWorld->mFullRate.mSampleRate;

	//if sample rate is 88200 or 96000, assume taking double size FFT to start with
	if(unit->m_srate > (44100.0*1.5)) unit->m_srate = unit->m_srate*0.5;

	if(((int)(unit->m_srate+0.01))==44100)
	{
		unit->m_weights = g_weights44100;
		unit->m_bins = g_bins44100;
		unit->m_frameperiod = 0.046439909297052;
	}
	else  //else 48000; potentially dangerous if it isn't! Fortunately, shouldn't write any data to unknown memory
	{
		unit->m_weights = g_weights48000;
		unit->m_bins = g_bins48000;
		unit->m_frameperiod = 0.042666666666667;
	}

	//only need space for half!
	unit->m_FFTBuf = (float*)RTAlloc(unit->mWorld, NOVER2 * sizeof(float));

	//zero chroma
	Clear(12, unit->m_chroma);
	Clear(36, unit->m_key);
	Clear(36, unit->m_histogram);

	//for(j=0;j<60;++j) {
//		unit->m_leaknote[j]=0.0;
//	}

//	for(j=0;j<360;++j) {
//		unit->m_prevphase[j]=0.0;
//	}

	//triggers
	//unit->m_triggerid=(int)ZIN0(1);

	unit->m_currentKey=0;
    unit->m_currentMaxCorrelation= 0.0f; 
    unit->m_currentMode = 2; //start by identifying with chromatic as neutral starting point
	//unit->m_frame=0;

	unit->mCalcFunc = (UnitCalcFunc)&KeyMode_next;
}


void KeyMode_Dtor(KeyMode *unit)
{
	RTFree(unit->mWorld, unit->m_FFTBuf);
}


void KeyMode_next(KeyMode *unit, int wrongNumSamples)
{
	//int numSamples = unit->mWorld->mFullRate.mBufLength;

	//float *output = ZOUT(0);

	float fbufnum = ZIN0(0)+0.001;

	//next FFT bufffer ready, update
	//assuming at this point that buffer precalculated for any resampling
	if (fbufnum > -0.01f) {  // && ( ZIN0(3)<0.5)

		//unit->m_frame= unit->m_frame+1;
		KeyMode_calculatekey(unit, (uint32)fbufnum);
	}

	//always output current mode
	float outval= unit->m_currentMode; //unit->m_currentKey;

	//control rate output
	ZOUT0(0)=outval;
}


//calculation function once FFT data ready
void KeyMode_calculatekey(KeyMode *unit, uint32 ibufnum)
{
	World *world = unit->mWorld;
	
    SndBuf *buf;
    
    if (ibufnum >= world->mNumSndBufs) { 
		int localBufNum = ibufnum - world->mNumSndBufs; 
		Graph *parent = unit->mParent; 
		if(localBufNum <= parent->localBufNum) { 
			buf = parent->mLocalSndBufs + localBufNum; 
		} else { 
			buf = world->mSndBufs; 
			if(unit->mWorld->mVerbosity > -1){ Print("KeyMode error: Buffer number overrun: %i\n", ibufnum); } 
		} 
	} else { 
		buf = world->mSndBufs + ibufnum; 
	} 
    
	LOCK_SNDBUF(buf);

	//assumed in this representation
	ToComplexApx(buf);

	const float * data= buf->data;

	//memcpy(unit->m_FFTBuf, data, NOVER2);

	//to hold powers
	float * fftbuf= unit->m_FFTBuf;

	//get powers for bins
	//don't need to calculate past half Nyquist, because no indices involved of harmonics above 10000 Hz or so (see index data at top of file)
	for (int i=0; i<NOVER2; i+=2) {
		//i>>1 is i/2
		fftbuf[i>>1] = ((data[i] * data[i]) + (data[i+1] * data[i+1]));
	}


	float * chroma= unit->m_chroma;

	float sum;
	int indexbase, index;

	//experimental; added leaky integration on each note; also, only add to sum if harmonic, ie not a transient

	float * weights = unit->m_weights;
	int * bins = unit->m_bins;

	float chromaleak= ZIN0(2);

	//zero for new round (should add leaky integrator here!
	for (int i=0;i<12;++i)
		chroma[i] *= chromaleak;

	for (int i=0;i<60;++i) {
		int chromaindex = (i+9)%12; //starts at A1 up to G#6

		sum=0.0;

		indexbase= 12*i; //6 partials, 2 of each

		//transient sum, setting up last values too

		for(int j=0;j<12;++j) { //12 if 144 data points

			index=indexbase+j;

			//experimental transient detection code, not reliable
			//int binindex= unit->m_bins[index]-1;
			//SCPolar binnow= p->bin[binindex].ToPolarApx();
			//float phaseadvance= (binindex+1)*(TWOPI*0.5); //k * (512/44100) * (44100/1024) //convert bin number to frequency
			//float power= binnow.mag * binnow.mag; //(p->bin[binindex].real)*(p->bin[binindex].real) + (p->bin[binindex].imag)*(p->bin[binindex].imag); //(p->bin[binindex].mag);
			//power *= power;

			//int phaseindex= indexbase+j;
			//float phasenow= binnow.phase; //0.0; //(p->bin[binindex].phase);
			//float prevphase = fmod(unit->m_prevphase[index]+phaseadvance,TWOPI);
			//float a,b,tmp;
			//a=phasenow; b=prevphase;
			//b=phasenow; a=prevphase;

			//if(b<a) {b= b+TWOPI;}

			//float phasechange = sc_min(b-a,a+TWOPI-b); //more complicated, need mod 2pi and to know lower and upper
			//phasesum+= phasechange;
			//unit->m_prevphase[index]= phasenow;

			//((p->bin[index-1].mag) * (p->bin[index-1].mag))

			//printf("comparison %f %f \n",fftbuf[g_bins2[index]], power);
			//sum+= (unit->m_weights[index])* power;

			sum+= (weights[index])* (fftbuf[bins[index]]);
		}


		//transient test here too?
		//if(phasesum>(5*PI)){sum=0.0;}

		//if((i>5) && (i<15))
		//printf("test phasesum %f \n", phasesum);
		//unit->m_leaknote[i] = (0.8*unit->m_leaknote[i]) + sum;

		chroma[chromaindex]+= sum; //unit->m_leaknote[i]; //sum;
	}

	float* key = unit->m_key;

    
    //normalize chroma within reason (e.g. if energy too low, don't touch)
    
    float maxchromaval = 0.0f; 
    
    for (int i=0;i<12;++i)
		if (chroma[i]>maxchromaval) maxchromaval= chroma[i];
    
    if(maxchromaval>0.1f) {
        
        maxchromaval = 1.0f/maxchromaval;
        
        for (int i=0;i<12;++i)
            chroma[i] *= maxchromaval; 
    }
    
    
//only sort of works, problematic
//    for (int k =0; k< g_numscales; ++k) {
//        
//        int scaleoffset = k*12;
//        float scaleweighting = 1.0f/g_scalesize[k];
//        for (int i=0;i<12;++i) {
//            
//            sum=0.0;
//            
//            //avoid working with the zeros; g_diatonic scales are normed over the diatonic entries so no issues
//            for (int j=0;j<12;++j) {
//              
//                index=(i+j)%12;
//                //sum+=(chroma[index]*g_kkmajor[indexbase]);
//                
//                sum+=(chroma[index]*g_scales[scaleoffset+j]);
//                
//            }
//            
//            key[scaleoffset+i]=sum; //10*log10(sum+1);
//        }
//    }
    
    
	//major
	for (int i=0;i<12;++i) {

		sum=0.0;
        
        //avoid working with the zeros; g_diatonic scales are normed over the diatonic entries so no issues
		for (int j=0;j<7;++j) {
			indexbase=g_major[j];

			index=(i+indexbase)%12;
			//sum+=(chroma[index]*g_kkmajor[indexbase]);

			sum+=(chroma[index]*g_diatonicmajor[indexbase]);

		}

		key[i]=sum; //10*log10(sum+1);
	}

	//minor
	for (int i=0;i<12;++i) {

		sum=0.0;
		for (int j=0;j<7;++j) {
			indexbase=g_minor[j];

			index=(i+indexbase)%12;
			//sum+=(chroma[index]*g_kkminor[indexbase]);

			sum+=(chroma[index]*g_diatonicminor[indexbase]);

		}

		key[12+i]=sum;
	}
    
    
    //chromatic correlation
    for (int i=0;i<12;++i) {
        
		sum=0.0;
		for (int j=0;j<7;++j) {
			indexbase=j;
            
			index=(i+indexbase)%12;
			//sum+=(chroma[index]*g_kkminor[indexbase]);
            
			sum+=(chroma[index]);
            
		}
        
		key[24+i]=sum/7.0f;
	}
    
    
    
    
//    sum = 0.0f;
//    for (int i=0;i<12;++i)
//        sum += chroma[i]; //correlated with 1
//    
//    key[24] = sum/12.0; //12.0; //divide by 12.0 to normalise

	float keyleak= ZIN0(1); //fade parameter to 0.01 for histogram in seconds, convert to FFT frames

	//keyleak in seconds, convert to drop time in FFT hop frames (FRAMEPERIOD)
	keyleak= sc_max(0.001f,keyleak/unit->m_frameperiod); //FRAMEPERIOD;

	//now number of frames, actual leak param is decay exponent to reach 0.01 in x seconds, ie 0.01 = leakparam ** (x/ffthopsize)
	//0.01 is -40dB
	keyleak= pow(0.01f,(1.f/keyleak));

	float * histogram= unit->m_histogram;

	int bestkey=0;
	float bestscore=0.0;

    //was 72 for multiple scales version
	for (int i=0;i<36;++i) {
		histogram[i]= (keyleak*histogram[i])+key[i];

		if(histogram[i]>bestscore) {
			bestscore=histogram[i];
			bestkey=i;
		}

	//printf("%f ",histogram[i]);
	}

	//should find secondbest and only swap if win by a margin

	//printf(" best %d \n\n",bestkey);
	//what is winning currently? find max in histogram
	unit->m_currentKey=bestkey;
    unit->m_currentMaxCorrelation = bestscore;
    
    unit->m_currentMode = bestkey/12; //bestkey<12 ? 0 : (bestkey<24 ? 1 : 2); //bestkey/12; //as integer //<12 ? 0 : (bestkey<24 ? 1 : 2);
	//about 5 times per second
	//if((unit->m_triggerid) && ((unit->m_frame%2==0))) SendTrigger(&unit->mParent->mNode, unit->m_triggerid, bestkey);
}



PluginLoad(KeyMode) {
	
	init_SCComplex(inTable);
	
	ft = inTable;
    
	DefineDtorCantAliasUnit(KeyMode);
    
}