1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
|
/*
SuperCollider real time audio synthesis system
Copyright (c) 2002 James McCartney. All rights reserved.
http://www.audiosynth.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
//Nick Collins 20 Feb 2006
//revision of algorithm 22 Nov 2007
//converted to give output as key clarity (highest correlation) 25 Sep 2013. Note that have switched to using Krumhansl Kessler profiles here
//further converted to compare major vs minor vs neutral (total chromatic) probability distributions
//Key tracker using weights of FFT bins.
#include "SC_PlugIn.h"
#include "FFT_UGens.h"
InterfaceTable *ft;
//hard coded FFT size
#define N 4096
#define NOVER2 2048
//CONVERT TO m_frameperiod to cope with different sampling rates?
#define FRAMEPERIOD 0.046439909297052
//weighting parameters
struct KeyMode : Unit {
//FFT data
float * m_FFTBuf;
//coping with different sampling rates
float m_srate; //use as a flag to check sample rate is correct
float * m_weights; //will point to the sample rate specific data
int * m_bins;
float m_frameperiod;
//counter
//uint32 m_frame;
//experimental transient avoidance
//float m_prevphase[720]; //60*12
//float m_leaknote[60];
// float m_chroma[12];
// float m_key[36]; //12 major and minor plus one chromatic
//
// float m_histogram[36]; //key histogram
// //float m_keyleak; //fade parameter for histogram
// //int m_triggerid;
//
float m_chroma[12];
float m_key[36]; //12 major and minor and chromatic, or if 6 scales make this 72
float m_histogram[36];
int m_currentKey;
float m_currentMaxCorrelation;
int m_currentMode;
};
extern "C"
{
void KeyMode_next(KeyMode *unit, int wrongNumSamples);
void KeyMode_Ctor(KeyMode *unit);
void KeyMode_Dtor(KeyMode *unit);
}
//4096 FFT at 44100 SR
static float g_weights44100[720]= { 0.89160997732426, 0.10839002267574, 0.39160997732426, 0.10839002267574, 0.2249433106576, 0.10839002267574, 0.14160997732426, 0.10839002267574, 0.091609977324263, 0.10839002267574, 0.05827664399093, 0.10839002267574, 0.58784929938181, 0.41215070061819, 0.087849299381813, 0.41215070061819, 0.25451596604848, 0.078817367284855, 0.087849299381813, 0.16215070061819, 0.18784929938181, 0.012150700618187, 0.087849299381812, 0.078817367284855, 0.26602607158423, 0.73397392841577, 0.26602607158423, 0.23397392841577, 0.26602607158423, 0.067307261749107, 0.016026071584227, 0.23397392841577, 0.066026071584226, 0.13397392841577, 0.099359404917559, 0.067307261749107, 0.9250662388251, 0.074933761174898, 0.4250662388251, 0.074933761174898, 0.25839957215844, 0.074933761174898, 0.1750662388251, 0.074933761174898, 0.1250662388251, 0.074933761174898, 0.091732905491768, 0.074933761174898, 0.56383187935789, 0.43616812064211, 0.063831879357891, 0.43616812064211, 0.23049854602456, 0.10283478730877, 0.063831879357891, 0.18616812064211, 0.16383187935789, 0.03616812064211, 0.063831879357892, 0.10283478730877, 0.18111740708786, 0.81888259291214, 0.18111740708786, 0.31888259291214, 0.18111740708786, 0.15221592624547, 0.18111740708786, 0.068882592912141, 0.18111740708786, 0.018882592912141, 0.014450740421193, 0.15221592624547, 0.77564554804057, 0.22435445195943, 0.27564554804057, 0.22435445195943, 0.1089788813739, 0.22435445195943, 0.02564554804057, 0.22435445195943, 0.17564554804057, 0.024354451959429, 0.1089788813739, 0.057687785292764, 0.34606307757871, 0.65393692242129, 0.34606307757871, 0.15393692242129, 0.012729744245378, 0.32060358908796, 0.096063077578711, 0.15393692242129, 0.14606307757871, 0.053936922421289, 0.012729744245378, 0.15393692242129, 0.89093630414068, 0.10906369585932, 0.39093630414068, 0.10906369585932, 0.22426963747401, 0.10906369585932, 0.14093630414068, 0.10906369585932, 0.090936304140679, 0.10906369585932, 0.057602970807346, 0.10906369585932, 0.40874628442826, 0.59125371557174, 0.40874628442826, 0.091253715571737, 0.075412951094929, 0.2579203822384, 0.15874628442826, 0.091253715571737, 0.0087462844282626, 0.19125371557174, 0.075412951094929, 0.091253715571738, 0.89788375407457, 0.10211624592543, 0.39788375407457, 0.10211624592543, 0.23121708740791, 0.10211624592543, 0.14788375407457, 0.10211624592543, 0.097883754074573, 0.10211624592543, 0.06455042074124, 0.10211624592543, 0.35664375687383, 0.64335624312617, 0.35664375687383, 0.14335624312617, 0.023310423540502, 0.31002290979283, 0.10664375687383, 0.14335624312617, 0.15664375687384, 0.043356243126163, 0.023310423540502, 0.14335624312616, 0.78321995464853, 0.21678004535147, 0.28321995464853, 0.21678004535147, 0.11655328798186, 0.21678004535147, 0.033219954648526, 0.21678004535147, 0.18321995464853, 0.016780045351474, 0.11655328798186, 0.050113378684807, 0.17569859876363, 0.82430140123637, 0.17569859876363, 0.32430140123637, 0.17569859876362, 0.15763473456971, 0.17569859876363, 0.074301401236374, 0.17569859876363, 0.024301401236373, 0.0090319320969575, 0.15763473456971, 0.53205214316846, 0.46794785683154, 0.032052143168455, 0.46794785683154, 0.19871880983512, 0.13461452349821, 0.032052143168455, 0.21794785683154, 0.13205214316846, 0.067947856831543, 0.032052143168454, 0.13461452349821, 0.8501324776502, 0.1498675223498, 0.3501324776502, 0.1498675223498, 0.18346581098354, 0.1498675223498, 0.1001324776502, 0.1498675223498, 0.050132477650203, 0.1498675223498, 0.01679914431687, 0.1498675223498, 0.12766375871578, 0.87233624128422, 0.12766375871578, 0.37233624128422, 0.12766375871578, 0.20566957461755, 0.12766375871578, 0.12233624128422, 0.12766375871578, 0.072336241284219, 0.12766375871578, 0.039002907950883, 0.36223481417572, 0.63776518582428, 0.36223481417572, 0.13776518582428, 0.028901480842386, 0.30443185249095, 0.11223481417572, 0.13776518582428, 0.16223481417572, 0.037765185824279, 0.028901480842386, 0.13776518582428, 0.55129109608114, 0.44870890391886, 0.05129109608114, 0.44870890391886, 0.21795776274781, 0.11537557058553, 0.05129109608114, 0.19870890391886, 0.15129109608114, 0.048708903918859, 0.051291096081139, 0.11537557058553, 0.69212615515742, 0.30787384484258, 0.19212615515742, 0.30787384484258, 0.025459488490756, 0.30787384484258, 0.19212615515742, 0.057873844842579, 0.092126155157422, 0.10787384484258, 0.025459488490756, 0.14120717817591, 0.78187260828136, 0.21812739171864, 0.28187260828136, 0.21812739171864, 0.11520594161469, 0.21812739171864, 0.031872608281361, 0.21812739171864, 0.18187260828136, 0.018127391718639, 0.11520594161469, 0.051460725051972, 0.81749256885653, 0.18250743114347, 0.31749256885653, 0.18250743114347, 0.15082590218986, 0.18250743114348, 0.067492568856526, 0.18250743114347, 0.017492568856525, 0.18250743114347, 0.15082590218986, 0.015840764476809, 0.79576750814915, 0.20423249185085, 0.29576750814915, 0.20423249185085, 0.12910084148248, 0.20423249185085, 0.045767508149147, 0.20423249185085, 0.19576750814915, 0.0042324918508541, 0.12910084148248, 0.037565825184186, 0.71328751374767, 0.28671248625233, 0.21328751374767, 0.28671248625233, 0.046620847081009, 0.28671248625232, 0.21328751374767, 0.036712486252327, 0.11328751374767, 0.086712486252327, 0.046620847081009, 0.12004581958566, 0.56643990929705, 0.43356009070295, 0.066439909297053, 0.43356009070295, 0.23310657596372, 0.10022675736961, 0.066439909297053, 0.18356009070295, 0.16643990929705, 0.033560090702949, 0.066439909297053, 0.10022675736961, 0.35139719752725, 0.64860280247275, 0.35139719752725, 0.14860280247275, 0.018063864193915, 0.31526946913942, 0.10139719752725, 0.14860280247275, 0.15139719752725, 0.048602802472746, 0.018063864193915, 0.14860280247275, 0.06410428633691, 0.93589571366309, 0.06410428633691, 0.43589571366309, 0.064104286336909, 0.26922904699642, 0.06410428633691, 0.18589571366309, 0.064104286336914, 0.13589571366309, 0.064104286336909, 0.10256238032976, 0.70026495530041, 0.29973504469959, 0.20026495530041, 0.29973504469959, 0.03359828863374, 0.29973504469959, 0.20026495530041, 0.049735044699592, 0.10026495530041, 0.099735044699594, 0.03359828863374, 0.13306837803293, 0.25532751743156, 0.74467248256844, 0.25532751743156, 0.24467248256844, 0.25532751743157, 0.078005815901766, 0.0053275174315637, 0.24467248256844, 0.055327517431562, 0.14467248256844, 0.088660850764901, 0.078005815901766, 0.72446962835144, 0.27553037164856, 0.22446962835144, 0.27553037164856, 0.057802961684772, 0.27553037164856, 0.22446962835144, 0.025530371648557, 0.12446962835144, 0.075530371648557, 0.057802961684772, 0.1088637049819, 0.10258219216228, 0.89741780783772, 0.10258219216228, 0.39741780783772, 0.10258219216228, 0.23075114117105, 0.10258219216228, 0.14741780783772, 0.10258219216228, 0.097417807837718, 0.10258219216228, 0.064084474504388, 0.38425231031485, 0.61574768968515, 0.38425231031485, 0.11574768968515, 0.050918976981516, 0.28241435635182, 0.13425231031485, 0.11574768968515, 0.18425231031485, 0.015747689685151, 0.050918976981516, 0.11574768968515, 0.56374521656272, 0.43625478343728, 0.063745216562722, 0.43625478343728, 0.23041188322939, 0.10292145010394, 0.063745216562722, 0.18625478343728, 0.16374521656272, 0.036254783437278, 0.063745216562722, 0.10292145010394, 0.63498513771305, 0.36501486228695, 0.13498513771305, 0.36501486228695, 0.30165180437972, 0.031681528953617, 0.13498513771305, 0.11501486228695, 0.034985137713051, 0.16501486228695, 0.13498513771305, 0.031681528953617, 0.5915350162983, 0.4084649837017, 0.091535016298302, 0.4084649837017, 0.25820168296497, 0.075131650368367, 0.091535016298302, 0.1584649837017, 0.1915350162983, 0.0084649837017025, 0.091535016298299, 0.075131650368367, 0.42657502749535, 0.57342497250465, 0.42657502749535, 0.073424972504654, 0.093241694162018, 0.24009163917132, 0.17657502749535, 0.073424972504654, 0.026575027495346, 0.17342497250465, 0.093241694162018, 0.073424972504649, 0.13287981859411, 0.86712018140589, 0.13287981859411, 0.36712018140589, 0.13287981859411, 0.20045351473923, 0.13287981859411, 0.11712018140589, 0.1328798185941, 0.067120181405897, 0.13287981859411, 0.033786848072561, 0.7027943950545, 0.2972056049455, 0.2027943950545, 0.2972056049455, 0.03612772838783, 0.2972056049455, 0.2027943950545, 0.047205604945496, 0.10279439505451, 0.097205604945492, 0.03612772838783, 0.13053893827884, 0.12820857267382, 0.87179142732618, 0.12820857267382, 0.37179142732618, 0.12820857267382, 0.20512476065952, 0.12820857267382, 0.12179142732618, 0.12820857267383, 0.071791427326173, 0.12820857267382, 0.038458093992849, 0.40052991060082, 0.59947008939918, 0.40052991060082, 0.099470089399183, 0.067196577267481, 0.26613675606585, 0.15052991060082, 0.099470089399183, 0.0005299106008124, 0.19947008939919, 0.067196577267481, 0.099470089399186, 0.51065503486313, 0.48934496513687, 0.010655034863127, 0.48934496513687, 0.1773217015298, 0.15601163180353, 0.010655034863127, 0.23934496513687, 0.11065503486312, 0.089344965136877, 0.010655034863134, 0.15601163180353, 0.44893925670289, 0.55106074329711, 0.44893925670289, 0.051060743297114, 0.11560592336954, 0.21772740996379, 0.19893925670289, 0.051060743297114, 0.048939256702886, 0.15106074329711, 0.11560592336954, 0.051060743297124, 0.20516438432456, 0.79483561567544, 0.20516438432456, 0.29483561567544, 0.20516438432456, 0.12816894900878, 0.20516438432456, 0.044835615675439, 0.0051643843245643, 0.19483561567544, 0.03849771765789, 0.12816894900878, 0.7685046206297, 0.2314953793703, 0.2685046206297, 0.2314953793703, 0.10183795396303, 0.2314953793703, 0.018504620629699, 0.2314953793703, 0.1685046206297, 0.031495379370301, 0.10183795396303, 0.064828712703635, 0.12749043312544, 0.87250956687456, 0.12749043312544, 0.37250956687456, 0.12749043312544, 0.20584290020789, 0.12749043312544, 0.12250956687456, 0.12749043312544, 0.072509566874555, 0.12749043312544, 0.039176233541222, 0.2699702754261, 0.7300297245739, 0.2699702754261, 0.2300297245739, 0.2699702754261, 0.063363057907234, 0.019970275426104, 0.2300297245739, 0.069970275426101, 0.1300297245739, 0.10330360875943, 0.063363057907234, 0.1830700325966, 0.8169299674034, 0.1830700325966, 0.3169299674034, 0.1830700325966, 0.15026330073673, 0.1830700325966, 0.066929967403397, 0.18307003259659, 0.016929967403405, 0.016403365929932, 0.15026330073673, 0.85315005499069, 0.14684994500931, 0.35315005499069, 0.14684994500931, 0.18648338832404, 0.1468499450093, 0.10315005499069, 0.14684994500931, 0.053150054990692, 0.14684994500931, 0.019816721657368, 0.1468499450093, 0.26575963718821, 0.73424036281179, 0.26575963718821, 0.23424036281179, 0.26575963718821, 0.067573696145123, 0.015759637188211, 0.23424036281179, 0.065759637188205, 0.13424036281179, 0.099092970521544, 0.067573696145123, 0.40558879010901, 0.59441120989099, 0.40558879010901, 0.094411209890993, 0.07225545677566, 0.26107787655767, 0.15558879010901, 0.094411209890993, 0.0055887901090159, 0.19441120989098, 0.07225545677566, 0.094411209891007, 0.25641714534767, 0.74358285465233, 0.25641714534767, 0.24358285465233, 0.25641714534767, 0.07691618798566, 0.0064171453476689, 0.24358285465233, 0.056417145347666, 0.14358285465233, 0.089750478681007, 0.07691618798566, 0.80105982120163, 0.19894017879837, 0.30105982120163, 0.19894017879837, 0.13439315453496, 0.19894017879837, 0.051059821201633, 0.19894017879837, 0.0010598212016248, 0.19894017879838, 0.13439315453496, 0.032273512131705, 0.021310069726255, 0.97868993027375, 0.021310069726255, 0.47868993027375, 0.021310069726269, 0.31202326360706, 0.021310069726255, 0.22868993027375, 0.021310069726246, 0.17868993027375, 0.021310069726269, 0.1453565969404, 0.89787851340579, 0.10212148659421, 0.39787851340579, 0.10212148659421, 0.23121184673912, 0.10212148659421, 0.14787851340579, 0.10212148659421, 0.097878513405794, 0.10212148659421, 0.064545180072457, 0.10212148659421, 0.41032876864912, 0.58967123135088, 0.41032876864912, 0.089671231350877, 0.07699543531578, 0.25633789801755, 0.16032876864912, 0.089671231350877, 0.010328768649129, 0.18967123135087, 0.07699543531578, 0.089671231350887, 0.5370092412594, 0.4629907587406, 0.037009241259398, 0.4629907587406, 0.20367590792606, 0.12965742540727, 0.037009241259398, 0.2129907587406, 0.1370092412594, 0.062990758740602, 0.037009241259398, 0.12965742540727, 0.25498086625089, 0.74501913374911, 0.25498086625089, 0.24501913374911, 0.25498086625089, 0.078352467082444, 0.0049808662508894, 0.24501913374911, 0.054980866250889, 0.14501913374911, 0.088314199584223, 0.078352467082444, 0.53994055085221, 0.46005944914779, 0.039940550852208, 0.46005944914779, 0.20660721751887, 0.12672611581447, 0.039940550852208, 0.21005944914779, 0.1399405508522, 0.060059449147798, 0.039940550852198, 0.12672611581447, 0.36614006519321, 0.63385993480679, 0.36614006519321, 0.13385993480679, 0.032806731859864, 0.30052660147347, 0.11614006519321, 0.13385993480679, 0.16614006519319, 0.03385993480681, 0.032806731859864, 0.1338599348068, 0.70630010998138, 0.29369989001862, 0.20630010998138, 0.29369989001862, 0.039633443314737, 0.2936998900186, 0.20630010998138, 0.043699890018615, 0.10630010998138, 0.093699890018615, 0.039633443314737, 0.12703322335193 };
static int g_bins44100[720]= { 5, 6, 10, 11, 15, 16, 20, 21, 25, 26, 30, 31, 5, 6, 10, 11, 16, 17, 21, 22, 27, 28, 32, 33, 5, 6, 11, 12, 17, 18, 22, 23, 28, 29, 34, 35, 6, 7, 12, 13, 18, 19, 24, 25, 30, 31, 36, 37, 6, 7, 12, 13, 19, 20, 25, 26, 32, 33, 38, 39, 6, 7, 13, 14, 20, 21, 27, 28, 34, 35, 40, 41, 7, 8, 14, 15, 21, 22, 28, 29, 36, 37, 43, 44, 7, 8, 15, 16, 22, 23, 30, 31, 38, 39, 45, 46, 8, 9, 16, 17, 24, 25, 32, 33, 40, 41, 48, 49, 8, 9, 17, 18, 25, 26, 34, 35, 42, 43, 51, 52, 9, 10, 18, 19, 27, 28, 36, 37, 45, 46, 54, 55, 9, 10, 19, 20, 28, 29, 38, 39, 48, 49, 57, 58, 10, 11, 20, 21, 30, 31, 40, 41, 51, 52, 61, 62, 10, 11, 21, 22, 32, 33, 43, 44, 54, 55, 64, 65, 11, 12, 22, 23, 34, 35, 45, 46, 57, 58, 68, 69, 12, 13, 24, 25, 36, 37, 48, 49, 60, 61, 72, 73, 12, 13, 25, 26, 38, 39, 51, 52, 64, 65, 77, 78, 13, 14, 27, 28, 40, 41, 54, 55, 68, 69, 81, 82, 14, 15, 28, 29, 43, 44, 57, 58, 72, 73, 86, 87, 15, 16, 30, 31, 45, 46, 61, 62, 76, 77, 91, 92, 16, 17, 32, 33, 48, 49, 64, 65, 81, 82, 97, 98, 17, 18, 34, 35, 51, 52, 68, 69, 85, 86, 103, 104, 18, 19, 36, 37, 54, 55, 72, 73, 91, 92, 109, 110, 19, 20, 38, 39, 57, 58, 77, 78, 96, 97, 115, 116, 20, 21, 40, 41, 61, 62, 81, 82, 102, 103, 122, 123, 21, 22, 43, 44, 64, 65, 86, 87, 108, 109, 129, 130, 22, 23, 45, 46, 68, 69, 91, 92, 114, 115, 137, 138, 24, 25, 48, 49, 72, 73, 97, 98, 121, 122, 145, 146, 25, 26, 51, 52, 77, 78, 102, 103, 128, 129, 154, 155, 27, 28, 54, 55, 81, 82, 109, 110, 136, 137, 163, 164, 28, 29, 57, 58, 86, 87, 115, 116, 144, 145, 173, 174, 30, 31, 61, 62, 91, 92, 122, 123, 153, 154, 183, 184, 32, 33, 64, 65, 97, 98, 129, 130, 162, 163, 194, 195, 34, 35, 68, 69, 103, 104, 137, 138, 171, 172, 206, 207, 36, 37, 72, 73, 109, 110, 145, 146, 182, 183, 218, 219, 38, 39, 77, 78, 115, 116, 154, 155, 192, 193, 231, 232, 40, 41, 81, 82, 122, 123, 163, 164, 204, 205, 245, 246, 43, 44, 86, 87, 129, 130, 173, 174, 216, 217, 259, 260, 45, 46, 91, 92, 137, 138, 183, 184, 229, 230, 275, 276, 48, 49, 97, 98, 145, 146, 194, 195, 242, 243, 291, 292, 51, 52, 102, 103, 154, 155, 205, 206, 257, 258, 308, 309, 54, 55, 109, 110, 163, 164, 218, 219, 272, 273, 327, 328, 57, 58, 115, 116, 173, 174, 231, 232, 288, 289, 346, 347, 61, 62, 122, 123, 183, 184, 244, 245, 306, 307, 367, 368, 64, 65, 129, 130, 194, 195, 259, 260, 324, 325, 389, 390, 68, 69, 137, 138, 206, 207, 274, 275, 343, 344, 412, 413, 72, 73, 145, 146, 218, 219, 291, 292, 364, 365, 436, 437, 77, 78, 154, 155, 231, 232, 308, 309, 385, 386, 462, 463, 81, 82, 163, 164, 245, 246, 326, 327, 408, 409, 490, 491, 86, 87, 173, 174, 259, 260, 346, 347, 432, 433, 519, 520, 91, 92, 183, 184, 275, 276, 366, 367, 458, 459, 550, 551, 97, 98, 194, 195, 291, 292, 388, 389, 485, 486, 583, 584, 102, 103, 205, 206, 308, 309, 411, 412, 514, 515, 617, 618, 109, 110, 218, 219, 327, 328, 436, 437, 545, 546, 654, 655, 115, 116, 231, 232, 346, 347, 462, 463, 577, 578, 693, 694, 122, 123, 244, 245, 367, 368, 489, 490, 612, 613, 734, 735, 129, 130, 259, 260, 389, 390, 518, 519, 648, 649, 778, 779, 137, 138, 274, 275, 412, 413, 549, 550, 687, 688, 824, 825, 145, 146, 291, 292, 436, 437, 582, 583, 728, 729, 873, 874, 154, 155, 308, 309, 462, 463, 617, 618, 771, 772, 925, 926 };
//4096 FFT at 48000 SR
static float g_weights48000[720]= { 0.30666666666667, 0.69333333333333, 0.30666666666667, 0.19333333333333, 0.30666666666667, 0.026666666666667, 0.056666666666667, 0.19333333333333, 0.10666666666667, 0.093333333333333, 0.14, 0.026666666666667, 0.027586543807041, 0.97241345619296, 0.027586543807041, 0.47241345619296, 0.02758654380704, 0.30574678952629, 0.027586543807041, 0.22241345619296, 0.027586543807041, 0.17241345619296, 0.02758654380704, 0.13908012285963, 0.73191145326801, 0.26808854673199, 0.23191145326801, 0.26808854673199, 0.065244786601342, 0.26808854673199, 0.23191145326801, 0.018088546731992, 0.13191145326801, 0.068088546731992, 0.065244786601342, 0.10142188006533, 0.41865460692056, 0.58134539307944, 0.41865460692056, 0.081345393079437, 0.08532127358723, 0.2480120597461, 0.16865460692056, 0.081345393079437, 0.018654606920562, 0.18134539307944, 0.08532127358723, 0.081345393079437, 0.086770539160062, 0.91322946083994, 0.086770539160062, 0.41322946083994, 0.086770539160063, 0.24656279417327, 0.086770539160062, 0.16322946083994, 0.086770539160062, 0.11322946083994, 0.086770539160063, 0.079896127506604, 0.73515161776197, 0.26484838223803, 0.23515161776197, 0.26484838223803, 0.068484951095304, 0.26484838223803, 0.23515161776197, 0.014848382238029, 0.13515161776197, 0.064848382238029, 0.068484951095304, 0.098181715571363, 0.36262434726227, 0.63737565273773, 0.36262434726227, 0.13737565273773, 0.02929101392894, 0.30404231940439, 0.11262434726227, 0.13737565273773, 0.16262434726227, 0.037375652737727, 0.02929101392894, 0.13737565273773, 0.96794545252544, 0.032054547474559, 0.46794545252544, 0.032054547474559, 0.30127878585877, 0.03205454747456, 0.21794545252544, 0.032054547474559, 0.16794545252544, 0.03205454747456, 0.13461211919211, 0.03205454747456, 0.54979772942925, 0.45020227057075, 0.049797729429249, 0.45020227057075, 0.21646439609592, 0.11686893723742, 0.049797729429249, 0.20020227057075, 0.14979772942925, 0.05020227057075, 0.049797729429249, 0.11686893723742, 0.10678564881847, 0.89321435118153, 0.10678564881847, 0.39321435118153, 0.10678564881847, 0.22654768451487, 0.10678564881847, 0.14321435118153, 0.10678564881847, 0.093214351181534, 0.10678564881847, 0.059881017848201, 0.63743069905602, 0.36256930094398, 0.13743069905602, 0.36256930094398, 0.30409736572268, 0.029235967610653, 0.13743069905602, 0.11256930094398, 0.037430699056014, 0.16256930094399, 0.13743069905601, 0.029235967610653, 0.14016645162784, 0.85983354837216, 0.14016645162784, 0.35983354837216, 0.14016645162784, 0.1931668817055, 0.14016645162784, 0.10983354837216, 0.14016645162784, 0.059833548372163, 0.14016645162784, 0.02650021503883, 0.61333333333333, 0.38666666666667, 0.11333333333333, 0.38666666666667, 0.28, 0.053333333333333, 0.11333333333333, 0.13666666666667, 0.013333333333334, 0.18666666666667, 0.11333333333333, 0.053333333333333, 0.055173087614081, 0.94482691238592, 0.055173087614081, 0.44482691238592, 0.055173087614081, 0.27816024571925, 0.055173087614081, 0.19482691238592, 0.055173087614082, 0.14482691238592, 0.055173087614081, 0.11149357905259, 0.46382290653602, 0.53617709346398, 0.46382290653602, 0.036177093463982, 0.13048957320268, 0.20284376013065, 0.21382290653602, 0.036177093463982, 0.063822906536019, 0.13617709346398, 0.13048957320268, 0.036177093463982, 0.83730921384113, 0.16269078615887, 0.33730921384113, 0.16269078615887, 0.17064254717446, 0.16269078615887, 0.087309213841126, 0.16269078615887, 0.037309213841124, 0.16269078615888, 0.0039758805077928, 0.16269078615887, 0.17354107832012, 0.82645892167988, 0.17354107832012, 0.32645892167988, 0.17354107832013, 0.15979225501321, 0.17354107832012, 0.076458921679876, 0.17354107832012, 0.026458921679875, 0.0068744116534584, 0.15979225501321, 0.47030323552394, 0.52969676447606, 0.47030323552394, 0.029696764476057, 0.13696990219061, 0.19636343114272, 0.22030323552394, 0.029696764476057, 0.070303235523944, 0.12969676447606, 0.13696990219061, 0.029696764476057, 0.72524869452455, 0.27475130547545, 0.22524869452455, 0.27475130547545, 0.058582027857881, 0.27475130547545, 0.22524869452455, 0.024751305475453, 0.12524869452455, 0.074751305475453, 0.058582027857881, 0.10808463880879, 0.93589090505088, 0.064109094949119, 0.43589090505088, 0.064109094949119, 0.26922423838421, 0.06410909494912, 0.18589090505088, 0.064109094949119, 0.13589090505088, 0.06410909494912, 0.10255757171755, 0.06410909494912, 0.0995954588585, 0.9004045411415, 0.0995954588585, 0.4004045411415, 0.0995954588585, 0.23373787447483, 0.0995954588585, 0.1504045411415, 0.099595458858502, 0.1004045411415, 0.0995954588585, 0.067071207808167, 0.21357129763693, 0.78642870236307, 0.21357129763693, 0.28642870236307, 0.21357129763693, 0.1197620356964, 0.21357129763693, 0.036428702363068, 0.013571297636932, 0.18642870236307, 0.046904630970265, 0.1197620356964, 0.27486139811203, 0.72513860188797, 0.27486139811203, 0.22513860188797, 0.27486139811203, 0.058471935221306, 0.02486139811203, 0.22513860188797, 0.074861398112029, 0.12513860188797, 0.10819473144536, 0.058471935221306, 0.28033290325568, 0.71966709674432, 0.28033290325568, 0.21966709674432, 0.28033290325568, 0.053000430077657, 0.030332903255676, 0.21966709674432, 0.080332903255675, 0.11966709674433, 0.11366623658901, 0.053000430077657, 0.22666666666667, 0.77333333333333, 0.22666666666667, 0.27333333333333, 0.22666666666667, 0.10666666666667, 0.22666666666667, 0.023333333333333, 0.026666666666668, 0.17333333333333, 0.06, 0.10666666666667, 0.11034617522816, 0.88965382477184, 0.11034617522816, 0.38965382477184, 0.11034617522816, 0.22298715810517, 0.11034617522816, 0.13965382477184, 0.11034617522816, 0.089653824771835, 0.11034617522816, 0.056320491438505, 0.92764581307204, 0.072354186927964, 0.42764581307204, 0.072354186927964, 0.26097914640537, 0.072354186927965, 0.17764581307204, 0.072354186927964, 0.12764581307204, 0.072354186927961, 0.094312479738702, 0.072354186927965, 0.67461842768225, 0.32538157231775, 0.17461842768225, 0.32538157231775, 0.0079517610155856, 0.32538157231775, 0.17461842768225, 0.075381572317749, 0.074618427682248, 0.12538157231775, 0.0079517610155856, 0.15871490565108, 0.34708215664025, 0.65291784335975, 0.34708215664025, 0.15291784335975, 0.013748823306917, 0.31958451002642, 0.097082156640248, 0.15291784335975, 0.14708215664025, 0.052917843359751, 0.013748823306917, 0.15291784335975, 0.94060647104789, 0.059393528952114, 0.44060647104789, 0.059393528952114, 0.27393980438122, 0.059393528952114, 0.19060647104789, 0.059393528952114, 0.14060647104789, 0.059393528952111, 0.10727313771455, 0.059393528952114, 0.45049738904909, 0.54950261095091, 0.45049738904909, 0.049502610950906, 0.11716405571576, 0.21616927761757, 0.20049738904909, 0.049502610950906, 0.050497389049093, 0.14950261095091, 0.11716405571576, 0.049502610950905, 0.87178181010177, 0.12821818989823, 0.37178181010177, 0.12821818989823, 0.2051151434351, 0.12821818989823, 0.12178181010177, 0.12821818989823, 0.071781810101766, 0.12821818989823, 0.038448476768437, 0.12821818989823, 0.199190917717, 0.800809082283, 0.199190917717, 0.300809082283, 0.199190917717, 0.13414241561633, 0.199190917717, 0.050809082282999, 0.199190917717, 0.00080908228299563, 0.032524251050333, 0.13414241561633, 0.42714259527386, 0.57285740472614, 0.42714259527386, 0.072857404726136, 0.093809261940531, 0.2395240713928, 0.17714259527386, 0.072857404726136, 0.027142595273864, 0.17285740472614, 0.093809261940531, 0.072857404726136, 0.54972279622406, 0.45027720377594, 0.04972279622406, 0.45027720377594, 0.21638946289073, 0.1169438704426, 0.04972279622406, 0.20027720377594, 0.14972279622406, 0.050277203775937, 0.049722796224065, 0.1169438704426, 0.56066580651135, 0.43933419348865, 0.060665806511352, 0.43933419348865, 0.22733247317802, 0.10600086015531, 0.060665806511352, 0.18933419348865, 0.16066580651135, 0.039334193488651, 0.060665806511352, 0.10600086015531, 0.45333333333333, 0.54666666666667, 0.45333333333333, 0.046666666666667, 0.12, 0.21333333333333, 0.20333333333333, 0.046666666666667, 0.053333333333336, 0.14666666666666, 0.12, 0.046666666666667, 0.22069235045632, 0.77930764954368, 0.22069235045632, 0.27930764954368, 0.22069235045632, 0.11264098287701, 0.22069235045632, 0.029307649543675, 0.020692350456329, 0.17930764954367, 0.054025683789656, 0.11264098287701, 0.85529162614407, 0.14470837385593, 0.35529162614407, 0.14470837385593, 0.1886249594774, 0.14470837385593, 0.10529162614407, 0.14470837385593, 0.055291626144077, 0.14470837385592, 0.021958292810737, 0.14470837385593, 0.3492368553645, 0.6507631446355, 0.3492368553645, 0.1507631446355, 0.015903522031171, 0.31742981130216, 0.099236855364502, 0.1507631446355, 0.1492368553645, 0.050763144635505, 0.015903522031171, 0.1507631446355, 0.6941643132805, 0.3058356867195, 0.1941643132805, 0.3058356867195, 0.027497646613834, 0.3058356867195, 0.1941643132805, 0.055835686719504, 0.094164313280498, 0.1058356867195, 0.027497646613834, 0.13916902005283, 0.88121294209577, 0.11878705790423, 0.38121294209577, 0.11878705790423, 0.21454627542911, 0.11878705790423, 0.13121294209577, 0.11878705790423, 0.081212942095777, 0.11878705790422, 0.047879608762438, 0.11878705790423, 0.90099477809819, 0.099005221901812, 0.40099477809819, 0.099005221901812, 0.23432811143152, 0.09900522190181, 0.15099477809819, 0.099005221901812, 0.10099477809819, 0.099005221901814, 0.067661444764857, 0.09900522190181, 0.74356362020353, 0.25643637979647, 0.24356362020353, 0.25643637979647, 0.076896953536874, 0.25643637979646, 0.24356362020353, 0.0064363797964688, 0.14356362020353, 0.056436379796469, 0.076896953536874, 0.089769713129793, 0.398381835434, 0.601618164566, 0.398381835434, 0.101618164566, 0.065048502100666, 0.26828483123267, 0.148381835434, 0.101618164566, 0.19838183543401, 0.0016181645659913, 0.065048502100666, 0.101618164566, 0.85428519054773, 0.14571480945227, 0.35428519054773, 0.14571480945227, 0.18761852388106, 0.14571480945227, 0.10428519054773, 0.14571480945227, 0.054285190547728, 0.14571480945227, 0.020951857214394, 0.14571480945227, 0.09944559244812, 0.90055440755188, 0.09944559244812, 0.40055440755188, 0.09944559244813, 0.2338877408852, 0.09944559244812, 0.15055440755188, 0.099445592448126, 0.10055440755187, 0.09944559244813, 0.067221074218537, 0.1213316130227, 0.8786683869773, 0.1213316130227, 0.3786683869773, 0.1213316130227, 0.21200172031063, 0.1213316130227, 0.1286683869773, 0.1213316130227, 0.078668386977301, 0.1213316130227, 0.045335053643962, 0.90666666666667, 0.093333333333334, 0.40666666666667, 0.093333333333334, 0.24, 0.093333333333334, 0.15666666666667, 0.093333333333334, 0.10666666666667, 0.093333333333328, 0.073333333333333, 0.093333333333334, 0.44138470091265, 0.55861529908735, 0.44138470091265, 0.05861529908735, 0.10805136757931, 0.22528196575402, 0.19138470091265, 0.05861529908735, 0.041384700912658, 0.15861529908734, 0.10805136757931, 0.058615299087355, 0.71058325228817, 0.28941674771183, 0.21058325228817, 0.28941674771183, 0.043916585621503, 0.28941674771183, 0.21058325228817, 0.039416747711826, 0.11058325228817, 0.089416747711834, 0.043916585621503, 0.12275008104516, 0.698473710729, 0.301526289271, 0.198473710729, 0.301526289271, 0.031807044062343, 0.30152628927099, 0.198473710729, 0.051526289270996, 0.09847371072899, 0.10152628927101, 0.031807044062343, 0.13485962260432, 0.38832862656099, 0.61167137343901, 0.38832862656099, 0.11167137343901, 0.054995293227667, 0.27833804010567, 0.13832862656099, 0.11167137343901, 0.188328626561, 0.011671373439003, 0.054995293227667, 0.111671373439, 0.76242588419157, 0.23757411580843, 0.26242588419157, 0.23757411580843, 0.095759217524896, 0.23757411580844, 0.012425884191572, 0.23757411580843, 0.16242588419157, 0.037574115808434, 0.095759217524896, 0.070907449141771, 0.80198955619638, 0.19801044380362, 0.30198955619638, 0.19801044380362, 0.13532288952971, 0.19801044380362, 0.051989556196375, 0.19801044380362, 0.0019895561963722, 0.19801044380363, 0.13532288952971, 0.031343777136954, 0.48712724040706, 0.51287275959294, 0.48712724040706, 0.012872759592938, 0.15379390707375, 0.17953942625959, 0.23712724040706, 0.012872759592938, 0.087127240407062, 0.11287275959294, 0.15379390707375, 0.012872759592919, 0.796763670868, 0.203236329132, 0.296763670868, 0.203236329132, 0.13009700420133, 0.203236329132, 0.046763670868003, 0.203236329132, 0.19676367086802, 0.0032363291319825, 0.13009700420133, 0.036569662465335, 0.70857038109546, 0.29142961890454, 0.20857038109546, 0.29142961890454, 0.041903714428789, 0.29142961890454, 0.20857038109546, 0.041429618904544, 0.10857038109546, 0.091429618904544, 0.041903714428789, 0.12476295223788, 0.19889118489624, 0.80110881510376, 0.19889118489624, 0.30110881510376, 0.19889118489626, 0.13444214843707, 0.19889118489624, 0.05110881510376, 0.19889118489625, 0.0011088151037484, 0.032224518229593, 0.13444214843707, 0.24266322604541, 0.75733677395459, 0.24266322604541, 0.25733677395459, 0.24266322604541, 0.090670107287925, 0.24266322604541, 0.0073367739545915, 0.042663226045397, 0.1573367739546, 0.075996559378742, 0.090670107287925 };
static int g_bins48000[720]= { 4, 5, 9, 10, 14, 15, 18, 19, 23, 24, 28, 29, 4, 5, 9, 10, 14, 15, 19, 20, 24, 25, 29, 30, 5, 6, 10, 11, 15, 16, 21, 22, 26, 27, 31, 32, 5, 6, 11, 12, 16, 17, 22, 23, 27, 28, 33, 34, 5, 6, 11, 12, 17, 18, 23, 24, 29, 30, 35, 36, 6, 7, 12, 13, 18, 19, 25, 26, 31, 32, 37, 38, 6, 7, 13, 14, 19, 20, 26, 27, 33, 34, 39, 40, 7, 8, 14, 15, 21, 22, 28, 29, 35, 36, 42, 43, 7, 8, 14, 15, 22, 23, 29, 30, 37, 38, 44, 45, 7, 8, 15, 16, 23, 24, 31, 32, 39, 40, 47, 48, 8, 9, 16, 17, 25, 26, 33, 34, 41, 42, 50, 51, 8, 9, 17, 18, 26, 27, 35, 36, 44, 45, 53, 54, 9, 10, 18, 19, 28, 29, 37, 38, 46, 47, 56, 57, 9, 10, 19, 20, 29, 30, 39, 40, 49, 50, 59, 60, 10, 11, 21, 22, 31, 32, 42, 43, 52, 53, 63, 64, 11, 12, 22, 23, 33, 34, 44, 45, 55, 56, 66, 67, 11, 12, 23, 24, 35, 36, 47, 48, 59, 60, 70, 71, 12, 13, 25, 26, 37, 38, 50, 51, 62, 63, 75, 76, 13, 14, 26, 27, 39, 40, 53, 54, 66, 67, 79, 80, 14, 15, 28, 29, 42, 43, 56, 57, 70, 71, 84, 85, 14, 15, 29, 30, 44, 45, 59, 60, 74, 75, 89, 90, 15, 16, 31, 32, 47, 48, 63, 64, 78, 79, 94, 95, 16, 17, 33, 34, 50, 51, 66, 67, 83, 84, 100, 101, 17, 18, 35, 36, 53, 54, 70, 71, 88, 89, 106, 107, 18, 19, 37, 38, 56, 57, 75, 76, 93, 94, 112, 113, 19, 20, 39, 40, 59, 60, 79, 80, 99, 100, 119, 120, 21, 22, 42, 43, 63, 64, 84, 85, 105, 106, 126, 127, 22, 23, 44, 45, 66, 67, 89, 90, 111, 112, 133, 134, 23, 24, 47, 48, 70, 71, 94, 95, 118, 119, 141, 142, 25, 26, 50, 51, 75, 76, 100, 101, 125, 126, 150, 151, 26, 27, 53, 54, 79, 80, 106, 107, 132, 133, 159, 160, 28, 29, 56, 57, 84, 85, 112, 113, 140, 141, 168, 169, 29, 30, 59, 60, 89, 90, 119, 120, 149, 150, 178, 179, 31, 32, 63, 64, 94, 95, 126, 127, 157, 158, 189, 190, 33, 34, 66, 67, 100, 101, 133, 134, 167, 168, 200, 201, 35, 36, 70, 71, 106, 107, 141, 142, 177, 178, 212, 213, 37, 38, 75, 76, 112, 113, 150, 151, 187, 188, 225, 226, 39, 40, 79, 80, 119, 120, 159, 160, 198, 199, 238, 239, 42, 43, 84, 85, 126, 127, 168, 169, 210, 211, 252, 253, 44, 45, 89, 90, 133, 134, 178, 179, 223, 224, 267, 268, 47, 48, 94, 95, 141, 142, 189, 190, 236, 237, 283, 284, 50, 51, 100, 101, 150, 151, 200, 201, 250, 251, 300, 301, 53, 54, 106, 107, 159, 160, 212, 213, 265, 266, 318, 319, 56, 57, 112, 113, 168, 169, 225, 226, 281, 282, 337, 338, 59, 60, 119, 120, 178, 179, 238, 239, 298, 299, 357, 358, 63, 64, 126, 127, 189, 190, 252, 253, 315, 316, 378, 379, 66, 67, 133, 134, 200, 201, 267, 268, 334, 335, 401, 402, 70, 71, 141, 142, 212, 213, 283, 284, 354, 355, 425, 426, 75, 76, 150, 151, 225, 226, 300, 301, 375, 376, 450, 451, 79, 80, 159, 160, 238, 239, 318, 319, 397, 398, 477, 478, 84, 85, 168, 169, 252, 253, 337, 338, 421, 422, 505, 506, 89, 90, 178, 179, 267, 268, 357, 358, 446, 447, 535, 536, 94, 95, 189, 190, 283, 284, 378, 379, 473, 474, 567, 568, 100, 101, 200, 201, 300, 301, 400, 401, 501, 502, 601, 602, 106, 107, 212, 213, 318, 319, 424, 425, 530, 531, 637, 638, 112, 113, 225, 226, 337, 338, 450, 451, 562, 563, 675, 676, 119, 120, 238, 239, 357, 358, 476, 477, 596, 597, 715, 716, 126, 127, 252, 253, 378, 379, 505, 506, 631, 632, 757, 758, 133, 134, 267, 268, 401, 402, 535, 536, 669, 670, 802, 803, 141, 142, 283, 284, 425, 426, 567, 568, 708, 709, 850, 851 };
//Krumhansl Kessler profiles (normalised)
static double g_kkminor[12] = { 0.14221523253202, 0.060211188496967, 0.079083352055718, 0.12087171422152, 0.05841383958661, 0.079308020669512, 0.057065827903842, 0.10671759155246, 0.089418108290272, 0.060435857110762, 0.075039317007414, 0.071219950572905 };
static double g_kkmajor[12] = { 0.15195022732711, 0.053362048336923, 0.083273510409189, 0.055754965302704, 0.10480976310122, 0.097870303900455, 0.060301507537688, 0.12419239052405, 0.057190715482173, 0.087580760947595, 0.054797798516391, 0.068916008614501 };
//just calculate correlate as sum of entries divided by twelve
//static double g_chromatic[12] = { };
//following Izmirli; see MIREX2006
static double g_diatonicmajor[12] = {0.17241379310345, 0, 0.12068965517241, 0, 0.1551724137931, 0.13793103448276, 0, 0.1551724137931, 0, 0.12068965517241, 0, 0.13793103448276}; //{ 5.0, 0.0, 3.5, 0.0, 4.5, 4.0, 0.0, 4.5, 0.0, 3.5, 0.0, 4.0};
static double g_diatonicminor[12] = { 0.17241379310345, 0, 0.12068965517241, 0.1551724137931, 0, 0.13793103448276, 0, 0.1551724137931, 0.12068965517241, 0, 0, 0.13793103448276 }; //{ 5.0, 0.0, 3.5, 4.5, 0.0, 4.0, 0.0, 4.5, 3.5, 0.0, 0.0, 4.0};
static int g_minor[7] = {0,2,3,5,7,8,11};
static int g_major[7] = {0,2,4,5,7,9,11};
static int g_numscales = 6;
static int g_scales[] = {
1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, //major
1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, //harmonic minor
1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, //whole tone plus one
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, //chromatic cluster
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, //octotonic minus one
1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, //natural
};
//all same else gets confused with comparability
static int g_scalesize[] = {
7,
7,
7,
7,
7,
7
};
//other functions
static void KeyMode_calculatekey(KeyMode *, uint32);
void KeyMode_Ctor(KeyMode* unit)
{
unit->m_srate = unit->mWorld->mFullRate.mSampleRate;
//if sample rate is 88200 or 96000, assume taking double size FFT to start with
if(unit->m_srate > (44100.0*1.5)) unit->m_srate = unit->m_srate*0.5;
if(((int)(unit->m_srate+0.01))==44100)
{
unit->m_weights = g_weights44100;
unit->m_bins = g_bins44100;
unit->m_frameperiod = 0.046439909297052;
}
else //else 48000; potentially dangerous if it isn't! Fortunately, shouldn't write any data to unknown memory
{
unit->m_weights = g_weights48000;
unit->m_bins = g_bins48000;
unit->m_frameperiod = 0.042666666666667;
}
//only need space for half!
unit->m_FFTBuf = (float*)RTAlloc(unit->mWorld, NOVER2 * sizeof(float));
//zero chroma
Clear(12, unit->m_chroma);
Clear(36, unit->m_key);
Clear(36, unit->m_histogram);
//for(j=0;j<60;++j) {
// unit->m_leaknote[j]=0.0;
// }
// for(j=0;j<360;++j) {
// unit->m_prevphase[j]=0.0;
// }
//triggers
//unit->m_triggerid=(int)ZIN0(1);
unit->m_currentKey=0;
unit->m_currentMaxCorrelation= 0.0f;
unit->m_currentMode = 2; //start by identifying with chromatic as neutral starting point
//unit->m_frame=0;
unit->mCalcFunc = (UnitCalcFunc)&KeyMode_next;
}
void KeyMode_Dtor(KeyMode *unit)
{
RTFree(unit->mWorld, unit->m_FFTBuf);
}
void KeyMode_next(KeyMode *unit, int wrongNumSamples)
{
//int numSamples = unit->mWorld->mFullRate.mBufLength;
//float *output = ZOUT(0);
float fbufnum = ZIN0(0)+0.001;
//next FFT bufffer ready, update
//assuming at this point that buffer precalculated for any resampling
if (fbufnum > -0.01f) { // && ( ZIN0(3)<0.5)
//unit->m_frame= unit->m_frame+1;
KeyMode_calculatekey(unit, (uint32)fbufnum);
}
//always output current mode
float outval= unit->m_currentMode; //unit->m_currentKey;
//control rate output
ZOUT0(0)=outval;
}
//calculation function once FFT data ready
void KeyMode_calculatekey(KeyMode *unit, uint32 ibufnum)
{
World *world = unit->mWorld;
SndBuf *buf;
if (ibufnum >= world->mNumSndBufs) {
int localBufNum = ibufnum - world->mNumSndBufs;
Graph *parent = unit->mParent;
if(localBufNum <= parent->localBufNum) {
buf = parent->mLocalSndBufs + localBufNum;
} else {
buf = world->mSndBufs;
if(unit->mWorld->mVerbosity > -1){ Print("KeyMode error: Buffer number overrun: %i\n", ibufnum); }
}
} else {
buf = world->mSndBufs + ibufnum;
}
LOCK_SNDBUF(buf);
//assumed in this representation
ToComplexApx(buf);
const float * data= buf->data;
//memcpy(unit->m_FFTBuf, data, NOVER2);
//to hold powers
float * fftbuf= unit->m_FFTBuf;
//get powers for bins
//don't need to calculate past half Nyquist, because no indices involved of harmonics above 10000 Hz or so (see index data at top of file)
for (int i=0; i<NOVER2; i+=2) {
//i>>1 is i/2
fftbuf[i>>1] = ((data[i] * data[i]) + (data[i+1] * data[i+1]));
}
float * chroma= unit->m_chroma;
float sum;
int indexbase, index;
//experimental; added leaky integration on each note; also, only add to sum if harmonic, ie not a transient
float * weights = unit->m_weights;
int * bins = unit->m_bins;
float chromaleak= ZIN0(2);
//zero for new round (should add leaky integrator here!
for (int i=0;i<12;++i)
chroma[i] *= chromaleak;
for (int i=0;i<60;++i) {
int chromaindex = (i+9)%12; //starts at A1 up to G#6
sum=0.0;
indexbase= 12*i; //6 partials, 2 of each
//transient sum, setting up last values too
for(int j=0;j<12;++j) { //12 if 144 data points
index=indexbase+j;
//experimental transient detection code, not reliable
//int binindex= unit->m_bins[index]-1;
//SCPolar binnow= p->bin[binindex].ToPolarApx();
//float phaseadvance= (binindex+1)*(TWOPI*0.5); //k * (512/44100) * (44100/1024) //convert bin number to frequency
//float power= binnow.mag * binnow.mag; //(p->bin[binindex].real)*(p->bin[binindex].real) + (p->bin[binindex].imag)*(p->bin[binindex].imag); //(p->bin[binindex].mag);
//power *= power;
//int phaseindex= indexbase+j;
//float phasenow= binnow.phase; //0.0; //(p->bin[binindex].phase);
//float prevphase = fmod(unit->m_prevphase[index]+phaseadvance,TWOPI);
//float a,b,tmp;
//a=phasenow; b=prevphase;
//b=phasenow; a=prevphase;
//if(b<a) {b= b+TWOPI;}
//float phasechange = sc_min(b-a,a+TWOPI-b); //more complicated, need mod 2pi and to know lower and upper
//phasesum+= phasechange;
//unit->m_prevphase[index]= phasenow;
//((p->bin[index-1].mag) * (p->bin[index-1].mag))
//printf("comparison %f %f \n",fftbuf[g_bins2[index]], power);
//sum+= (unit->m_weights[index])* power;
sum+= (weights[index])* (fftbuf[bins[index]]);
}
//transient test here too?
//if(phasesum>(5*PI)){sum=0.0;}
//if((i>5) && (i<15))
//printf("test phasesum %f \n", phasesum);
//unit->m_leaknote[i] = (0.8*unit->m_leaknote[i]) + sum;
chroma[chromaindex]+= sum; //unit->m_leaknote[i]; //sum;
}
float* key = unit->m_key;
//normalize chroma within reason (e.g. if energy too low, don't touch)
float maxchromaval = 0.0f;
for (int i=0;i<12;++i)
if (chroma[i]>maxchromaval) maxchromaval= chroma[i];
if(maxchromaval>0.1f) {
maxchromaval = 1.0f/maxchromaval;
for (int i=0;i<12;++i)
chroma[i] *= maxchromaval;
}
//only sort of works, problematic
// for (int k =0; k< g_numscales; ++k) {
//
// int scaleoffset = k*12;
// float scaleweighting = 1.0f/g_scalesize[k];
// for (int i=0;i<12;++i) {
//
// sum=0.0;
//
// //avoid working with the zeros; g_diatonic scales are normed over the diatonic entries so no issues
// for (int j=0;j<12;++j) {
//
// index=(i+j)%12;
// //sum+=(chroma[index]*g_kkmajor[indexbase]);
//
// sum+=(chroma[index]*g_scales[scaleoffset+j]);
//
// }
//
// key[scaleoffset+i]=sum; //10*log10(sum+1);
// }
// }
//major
for (int i=0;i<12;++i) {
sum=0.0;
//avoid working with the zeros; g_diatonic scales are normed over the diatonic entries so no issues
for (int j=0;j<7;++j) {
indexbase=g_major[j];
index=(i+indexbase)%12;
//sum+=(chroma[index]*g_kkmajor[indexbase]);
sum+=(chroma[index]*g_diatonicmajor[indexbase]);
}
key[i]=sum; //10*log10(sum+1);
}
//minor
for (int i=0;i<12;++i) {
sum=0.0;
for (int j=0;j<7;++j) {
indexbase=g_minor[j];
index=(i+indexbase)%12;
//sum+=(chroma[index]*g_kkminor[indexbase]);
sum+=(chroma[index]*g_diatonicminor[indexbase]);
}
key[12+i]=sum;
}
//chromatic correlation
for (int i=0;i<12;++i) {
sum=0.0;
for (int j=0;j<7;++j) {
indexbase=j;
index=(i+indexbase)%12;
//sum+=(chroma[index]*g_kkminor[indexbase]);
sum+=(chroma[index]);
}
key[24+i]=sum/7.0f;
}
// sum = 0.0f;
// for (int i=0;i<12;++i)
// sum += chroma[i]; //correlated with 1
//
// key[24] = sum/12.0; //12.0; //divide by 12.0 to normalise
float keyleak= ZIN0(1); //fade parameter to 0.01 for histogram in seconds, convert to FFT frames
//keyleak in seconds, convert to drop time in FFT hop frames (FRAMEPERIOD)
keyleak= sc_max(0.001f,keyleak/unit->m_frameperiod); //FRAMEPERIOD;
//now number of frames, actual leak param is decay exponent to reach 0.01 in x seconds, ie 0.01 = leakparam ** (x/ffthopsize)
//0.01 is -40dB
keyleak= pow(0.01f,(1.f/keyleak));
float * histogram= unit->m_histogram;
int bestkey=0;
float bestscore=0.0;
//was 72 for multiple scales version
for (int i=0;i<36;++i) {
histogram[i]= (keyleak*histogram[i])+key[i];
if(histogram[i]>bestscore) {
bestscore=histogram[i];
bestkey=i;
}
//printf("%f ",histogram[i]);
}
//should find secondbest and only swap if win by a margin
//printf(" best %d \n\n",bestkey);
//what is winning currently? find max in histogram
unit->m_currentKey=bestkey;
unit->m_currentMaxCorrelation = bestscore;
unit->m_currentMode = bestkey/12; //bestkey<12 ? 0 : (bestkey<24 ? 1 : 2); //bestkey/12; //as integer //<12 ? 0 : (bestkey<24 ? 1 : 2);
//about 5 times per second
//if((unit->m_triggerid) && ((unit->m_frame%2==0))) SendTrigger(&unit->mParent->mNode, unit->m_triggerid, bestkey);
}
PluginLoad(KeyMode) {
init_SCComplex(inTable);
ft = inTable;
DefineDtorCantAliasUnit(KeyMode);
}
|