1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
class:: LTI
summary:: Linear Time Invariant General Filter Equation
categories:: UGens>Filters
keyword:: SLUGens
SLUGens released under the GNU GPL as extensions for SuperCollider 3, by Nick Collins
http://composerprogrammer.com/index.html
Description::
General Linear Time-Invariant (LTI) filter UGen where you specify any coefficient set via a Buffer
Represents the general LTI filter difference equation in the time domain:
y(n) = b0x(n) + b1x(n-1) + ... + b(Nb)x(n-Nb) + a1y(n-1) + ... + a(Na)y(n-Na)
This is not a pole/zero view, so you'd need to calculate time domain coefficients yourself if you want to work from z-plane backwards. A corollary is, stability is not guaranteed. This is part of the fun?
You need to pass in the coefficients via two buffers, of arbitrary size.
classmethods::
method::ar
argument::input
What do you want to filter?
argument::bufnuma
Feedback filter coefficients, from previous outputs
argument::bufnumb
Feedforward filter coefficients, from previous inputs
Examples::
code::
(
a = [0.02, -0.01]; // feedback coefficients
b = [1, 0.7, 0, 0, 0, 0, -0.8, 0, 0, 0, 0, 0.9, 0, 0, 0, -0.5, 0, 0, 0, 0, 0, 0, 0.25, 0.1, 0.25]; // feedforward coefficients
c = Buffer.sendCollection(s, a, 1);
d = Buffer.sendCollection(s, b, 1);
)
{ LTI.ar(SoundIn.ar([0, 1]), c.bufnum, d.bufnum) }.play
// Note- you cannot update buffers during playback unless you stay within the initially allocated sizes
(
a = Array.fill(100, { 0.0 }); // feedback coefficients
b = Array.rand(100, -0.5, 0.5); // feedforward coefficients
b[0] = 1;
c = Buffer.sendCollection(s, a, 1);
d = Buffer.sendCollection(s, b, 1);
)
{ LTI.ar(SoundIn.ar([0, 1]), c.bufnum, d.bufnum) }.play
(
b = Array.rand(100, -0.5, 0.5); // feedforward coefficients
b[0] = 1;
d.sendCollection(b);
)
// may explode...
(
10.do({ arg i; a[100.rand] = rrand(-0.1, 0.1) }); // feedforward coefficients
c.sendCollection(a);
)
// from a routine
(
e = {
inf.do {
b = Array.rand(100, -0.5, 0.5); // feedforward coefficients
b[0] = 1;
d.sendCollection(b);
0.1.wait;
}
}.fork
)
e.stop;
// Code for testing and trying coefficients:
// given two arrays of filter coefficients, calculate an impulse response over 1024 samples, then the fft gives approximate frequency gain and phase response
(
var size = 1024, real, imag, cosTable, complex;
var a, b;
var lastn, lastindex, num;
var y, max;
a = [0.02, 0.05, 0, 0, 0.01]; // feedback coefficients
b = [1, 1, -0.5, 0, 0, 0, -0.6, 0.7]; // feedforward coefficients
// check poles of a are inside the unit circle by factorising the complex polynomial?
// this procedure uses only a finite impulse response so may give fallacious results of stability
num = a.size;
lastn = Array.fill(num, { 0 });
lastindex = 0;
real = Signal.fill(size, { arg i;
y = if(i < b.size) { b[i] } { 0 };
y = y + ((a.collect({ arg val, j; val*(lastn.wrapAt(lastindex + num-1-j)); })).sum);
lastn[lastindex] = y;
lastindex = (lastindex + 1) % num;
y
});
imag = Signal.newClear(size);
cosTable = Signal.fftCosTable(size);
complex = fft(real, imag, cosTable);
a = complex.postln;
[real, (complex.magnitude), (complex.phase) ].flop.flat
.plot("fft", Rect(0, 0, 1024 + 8, 500), numChannels: 3);
max = 0;
y = complex.magnitude;
y.do { arg val; if(val > max, { max = val }) };
max
)
// how to create the arbitrary filter from its difference equation coefficients? Need a new UGen (LTI)- or use Csound
(
a = [0.02, 0.05, 0, 0, 0.01]; // feedback coefficients
b = [1, 1, -0.5, 0, 0, 0, -0.6, 0.7]; // feedforward coefficients
c = Buffer.sendCollection(s, a, 1);
d = Buffer.sendCollection(s, b, 1);
)
{ Impulse.ar(1) }.play
{ LTI.ar(Impulse.ar(1), c.bufnum, d.bufnum) }.play
{ LTI.ar(SoundIn.ar([0, 1]), c.bufnum, d.bufnum) }.play
(
a = [0.01, -0.01]; // Array.fill(10, { rrand(0.001, 0.01) }); // feedback coefficients
b = [1] ++ Array.fill(100, { exprand(0.1, 1) }); // feedforward coefficients
c = Buffer.sendCollection(s, a, 1);
d = Buffer.sendCollection(s, b, 1);
)
// piercing, careful!
{ Saw.ar(LFNoise0.kr(10, 4000, 5000)) }.play
{ LTI.ar(Saw.ar(LFNoise0.kr(10, 4000, 5000)), c.bufnum, d.bufnum, 0.1) }.play
// Also see [Convolution]
::
|